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Definition

» An n x n matrix D is an EDM if there exist points p*,..., p"
in some Euclidean space such that:

dj=|lp' = p/|]* foralli,j=1,....n

» The dimension of the affine span of the generating points of
an EDM D is called the embedding dimension of D.

» An EDM D is spherical if its generating points lie on a
hypersphere. Otherwise, it is nonspherical.
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Important Vectors in EDM Theory

» e the vector of all 1'sin R" and V : V'e =0 and
ViV =1,;.
» w where Dw = e. Some times we set w = DTe.

» s where e’s = 1. Vector s fixes the origin. Two important
choices: s =e/n and s = 2w.
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Characterizing EDMs

» Theorem [Schoenberg '35, Young and Householder '38]: Let
D be a real symmetric matrix with zero diagonal. Then D is

an EDM iff D is negative semidefinite on e*.

> Let e’s = 1. This theorem can be re-stated as [Gower '85] :

Let D be a real symmetric matrix with zero diagonal. Then
D is EDM iff

T(D) = —%(/ —es")D(I —se™) = 0.

Moreover, the embedding dimension of D = rank T(D).

» B =T(D) is the Gram matrix of the generating points of D.
Note that Bs = 0.

» Given B, generating points of D are given by the rows of P,
where B = PPT.
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Proof

Define:
SI={A:Aissym, As = 0}
Sp={A:Alis sym,diag(A) = 0}.
T:Sp— S T(D)=—%(l—es")D(I — se™)
K:Sr— S K(B) = diag(B)e' + e(diag(B))" — 2B.
» Theorem [Critchley '88 |:

Tlsp = (Kls;) ™ and Klsp = (Tsp) ™

> ,J:Hp’ P> = Bi + B — 2B;j;, where B = PPT. Thus

I_]1

K(B) and D € S/ is an EDM iff B="T(D) = 0
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Projected Gram Matrices

» Set s=e/nandlet J=/—ee’/n. Hence B= —JDJ/2
and Be = 0.

» J=VV' where Vie=0and V'V =1,_;.

F ={B > 0:Be=0}is a face of the PSD cone.

F ={B = VXVT X =0} is isomorphic to PSD cone of
order n — 1.

v

» X = VBV is called the projected Gram matrix. Moreover,
X = 0 and of rank r iff B = 0 and of rank r.

Define [A. , Khandani and Wolkowicz '99]:

Kv(X) =K(VXVT) and

Tv(D) = VTT(D)V = —VTDV/2. Then the cone of
EDMs of order n is the image of the PSD cone of order n —1
under Cy/.

v
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Restatement of the Basic Characterization

» Theorem [AlHomidan and Fletcher '95, A. et al '99] Let D
be a real symmetric matrix with zero diagonal. Then D is an
EDM iff )

X =Tv(D) = —EVTDV = 0.

Moreover, the embedding dimension of D = rank X.
» Let UT =[—e,_1 I,_1]. Then
Theorem [AlHomidan and Wolkowicz '05] Let
0 d7 : .
D = d D be an n X n real symmetric matrix with zero
diagonal. Then D is an EDM iff

ed” +de” — D = 0.

» This is equivalent to setting s = e!, i.e., p! = 0.



Characterization of 0 — 1 EDMs

» Theorem [A. '18] Let A be the adjacency matrix of a simple
graph G. Then Ais an EDM if and only if G is a complete
multipartite graph.



EDM Completions

» Let A be a symmetric partial matrix with only some entries
specified. Question: How to choose the unspecified entries to
make A an EDM?



EDM Completions

» Let A be a symmetric partial matrix with only some entries
specified. Question: How to choose the unspecified entries to
make A an EDM?

» Let H be the adjacency matrix of the graph of the specified
entries of A. Then

min 0
subject to HoKy(X) = HoA,
X = 0.



EDM Completions

» Let A be a symmetric partial matrix with only some entries
specified. Question: How to choose the unspecified entries to
make A an EDM?

» Let H be the adjacency matrix of the graph of the specified
entries of A. Then

min 0
subject to HoKy(X) = HoA,
X = 0.

Salter condition may not hold.
» [A., Khandani and Wolkowicz '99]

min [|H o Kv(Tv(A) — X)||%
subject to X = 0.
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Other Characterizations

» Theorem [Crouzeix and Ferland '82] Let D be a real
symmetric matrix with zero diagonal. Assume that D has
exactly one positive eigenvalue. Then D is an EDM iff there
exists w € R" such that Dw = e and e"w > 0.

» Whether e"w = 0 or e"w > 0 has geometrical significance
as will be seen later.
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Cayley-Menger Matrix

» Let D be anTEDM. The Cayley-Menger matrix of D is
0 e
M= { 0 e }

» Theorem [Hayden and Wells '88, Fiedler '94] Let D be a real
sym matrix with zero diagonal. Then D is an EDM iff its
Cayley-Menger matrix M has exactly one positive eigenvalue,
in which case, rank M = r + 2, where r is the embedding
dimension of D.

» Theorem [A.'19] Let M be the Cayley-Menger matrix of an

EDM D. Then:
D is spherical of radius p < 1 iff M is an EDM.

D is spherical of radius p = 1 iff M is a nonspherical EDM.
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in terms of the leading principal minors of the Cayley-Menger
matrix.



Cayley-Menger Matrix Cont'd

» There is another characterization of EDMs [Blumenthal '53]

in terms of the leading principal minors of the Cayley-Menger
matrix.

» Let V denote the volume of the simplex defined by
pl,....p". Then

Vi = 2"—1(((7"1?1)!)201%[2 eg}
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Gale Transform

» The Gale space of D is
P B
gal(D)=null(| "+ [)=null(| F |).
e e
» Let Z be the n x (n — r — 1) matrix whose columns form a
basis of gal(D).
» The columns of Z encode the affine dependency of
Pt p"
» Let z'| denote the ith row of Z. z' is Gale Transform of p'.
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Properties of EDMs

Let D be an n x n EDM of embedding dimension r. Then:

» D has exactly one positive eigenvalue.

» null(D) C gal(D).
» e € col(D), Dw = e implies that e"w > 0.
» rank(D) = r + 1 or r + 2 independent of n.
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Spherical EDMs

Let D be an EDM of embedding dimension r. If r = n — 1, then
D is spherical. Otherwise, if r < n— 2, then the following are
equivalent:

» D is spherical

» null(D) = gal(D), i.e., DZ = 0. [A. and Wolkowicz '02].

» rank(D)= r + 1. [Gower '85].

» Jscalar 3: Bee” — D = 0 [Neumaier '81, Tarazaga et al '96]
Moreover, Bmin = 2p°.

» e’w >0, where Dw = e. p?> = 1/(2e"w). [Gower '82 '85].

» da: Pa = Jdiag(B)/2 where B = —JDJ/2. ais center of

sphere and p? = a"a + e” De/(2n?) [Tarazaga et al '96].
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The Geometry of EDMs

» The set of spherical EDMs is convex [Tarazaga '05].
» The EDM cone is the closure of the set of spherical EDMs.

» The interior of the EDM cone is made up of spherical EDMs,
while its boundary is made up of both spherical and
nonspherical EDMs.
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Examples of Spherical EDMs: 1- Regular EDMs

» A spherical EDM is regular if its generating points lie on a
sphere centered at the centroid of these points.

» Theorem [Hayden and Tarazaga '93 | Let D be an n x n
EDM. The D is regular iff (e” De/n, e) is the Perron
eigenpair of D.

» Theorem [A. '18] Let D be an n x n EDM and let
A > —ap > -+ > —aqy be the distinct eigenvalues of D.
Then 3 polynomial f(D): f(D) = ee’ iff D is regular, in
which case

Hfle(D‘i‘O‘iI)
Hf.;l(eTDe/n%—a,-)'

f(D)=n

f(D) is called the Hoffman polynomial of D.
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2- Cell Matrices

» D is a cell matrix if for each i # j, djj = ¢; + ¢; for some
¢ > 0. They model hub and spoke or star topology.

» Theorem [Jaklic and Modic '10] Cell matrices are spherical
EDMs.

» Let s denote the number of 0 entries of ¢ € R", ¢ > 0. Then
the embedding dimension of D is

. n—1 ifs=0ors=1,
] n—s otherwise.
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3-Manhattan Distance Matrices on Grids

Consider a rectangular grid of unit squares with m row and n
columns. Let dju =|i — k| +|j — I|.

(k, 1)

(iJ)
» D=E,® G, + G, ® E,, where G, and G, are rectangular
grids of 1 row and 1 column respectively.
» Theorem [A.] D is a spherical EDM with p? = (n+m—2)/4.

» QAP library (Nugent): [Mettlemann and Peng '10]
I(n+m—2)ee” — D = 0.
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4-Hamming Distance Matrices on the Cube

v

The vertices p'’s of the Hypercube Q, are all points in R"
whose entries are 0 or 1.

Let dy = >4 [Pk — Pil-

» D is a regular EDM of embedding dimension r and of radius
p=+/r/2.

Theorem [Graham and Winkler '85] Let p, ..., p"*t of Q,
form a simplex. Then the det of the submatrix of D induced
by these points is:

v

v

(—1)"r2r %
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5-Distance Matrices of Trees

» For a tree T on n nodes, let djj = the number of edges in the
path between nodes i/ and j.

» Theorem [Graham and Pollak '71 ] D has exactly one
positive and n — 1 negative eigenvalues. Moreover,

detD = (—1)"Y(n—1)2"2.

» Theorem [Graham and Lovdsz '78 | Let L denote the
Laplacian of tree T. Then

1
D! = _EL + (2e — deg)(2e — deg)".

2(n—1)

» Theorem D is a spherical EDM of radius p = /n —1/2.
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6-Resistance Distance Matrices of Electrical
Networks

Consider a graph G where each edge is a unit resistor.

S

» The terminals of a battery are attached to nodes s and t.
What is the effective resistance €7

» Let L denote the Laplacian of G. Then
Q = K(L") = diag(L")e" + e(diag(L"))" — 2L

2 is a spherical EDM since embedding dim = n — 1.
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Nonspherical EDMs

Let D be an EDM of embedding dimension r, where r < n — 2.
Then the following are equivalent:

v

D is nonspherical
DZ = e, € #0. [A. and Wolkowicz '02].
rank(D)= r + 2. [Gower '85].

e"w =0, where Dw = e. [Gower '82 '85].

v

v

v
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EDM Inverse Eigenvalue Problem

» Given A\; > 0> Xy > -+ >\, where Y7, \; = 0. Does
there exist an EDM whose eigenvalues are these \;'s?

» This problem is mainly open. It has an elegant solution for all
n such that a Hadamard matrix H, exists.

» A Hadamard matrix H, is a (1, —1) matrix satisfying
HTH, = nl.

» Theorem [Hayden et al '99] Given such \;'s, let A =
Diag(A1,...,As). Then D = HAHT /nis a regular EDM,
where H = [e H] is a Hadamard matrix.

» |t is an open conjecture that there exists H, for all n = 4k.
The smallest n in doubt is n = 668.
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Yielding Entries of an EDM

» Let D be an EDM and let EX be the matrix with 1's in
(k, I)th and (/, k)th positions and 0's elsewhere.

» Let /iy < 0 and uy > 0 such that D + tEX is EDM iff
ha <t < ug.

» The interval [ly, uy] is called the yielding interval of entry dy

» Entry dy, is unyielding if [y, = uy = 0 and yielding otherwise.
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Characterization of Yielding Entries
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Characterization of Yielding Entries

» Vectors x and y are parallel if 3¢ # 0 such that x = cy.

» Theorem [A. '18] Let D be an n x n EDM of embedding
dimension r = n — 1. Then every entry of D is yielding.

» Theorem [A. '18] Let D be an n x n EDM of embedding
dimension r < n— 2. Let z!, ..., z" be Gale transforms of
the generating points of D. Then entry dy; is yielding iff z¥ is
parallel to z'.

» D is in general position in R" if every r + 1 of its generating
points are affinely independent.

» Corollary [A. 18] Let D be an EDM of embedding dimension
r=n—2. If D is in general position, then every entry of D
is yielding.
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Determining Yielding Intervals

> Let B=—JDJ/2 = PPT, then Bt = P(PTP)~2PT. Let
Bt = SST ie., §=P(PTP)=1. Let s’ denote the ith row
of S.

» Define:

2 — 2
and 0 =

0= :
(s)7s" = [Is I 1Is"ll (s)s" + [[s*|] [Is"]l

» Theorem [A. '19] Let D be an n x n EDM of embedding
dimension r and let B = —JDJ/2. Assume that dj is
yielding. f r=n—1orifr<n—2and zk =z = 0. Then
the yielding interval of dy; is

[/k/, Uk/]:[Q, 5]-
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Determining Yielding Intervals

» Define: 4
—4c

= ——— .
|Is* — cs'[|?

» Theorem [A. '19] Let D be an n x n EDM of embedding
dimension r and let B = —JDJ/2. Assume that dj is
yielding. If r < n—2 and zK = cz! # 0. Then the yielding
interval of dy is

[ [6e,0] ifc>o0,
Ut ] = { [0,6] ifc<0O.
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Example

p
0 2 4 2
2 0 2 4
P=14202 p' p?
2 4 20
p?
r =B =landZ2=2"=—-1. wy = wo = w3 = wy = 1/8.

» Yielding interval for di3is [0, = —4, 0].
» Yielding interval for dip is [0, 6. = 8].
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Unit Spherical EDMs

Let D be a spherical EDM of p = 1. Define:
TE, = {t € [ly, un] : D+ tE" is a spherical EDM of p < 1}.
» Define:
5 _ w ifr=n—1,
| [w Z] ifr<n-2.

> Theorem [A. '19] Let D be a unit spherical EDM and let 2’
denote the ith row of Z. Then T = {0} iff 2 is not
parallel to /. i.e., Ac#0: w, = cw; and z¥ = ¢z
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Previous Example

p
02 4 2
202 4
D=145 0> p* p
24 2 0
p?

r = =landZ2=2"'=-1. vy =wo, = w3 = wy = 1/8.

[/13,U13]: [9 = —4, O] and [/12,U12] = [0, QC = 8]

=3 {1/ }andfz—[l_/f}.
Té = {0} and T1_3 = [/13, U13].
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> If 2K is parallel to 2/, then T, may or may not be equal to
[li, uwi]. Moreover, Tkg, can be expressed in terms of 6, 0 or
0. and 0.
» T5 ={te TS : D+ tE¥ is a spherical EDM of p = 1}.
» Theorem [A. '19] Let D be a unit spherical EDM of
embedding dimension r and assume that ¥ = cZ' for some
c # 0.
1. f we =w; =0, or wg # 0 and z¥ # 0, then T = TE,.
2. Otherwise, if wy = cwy # 0 and either r=n—1 or
zk =z =0, then

- _ | 10} if [|s[|> = c?||s"]|?,
K {0,0.}  otherwise.
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Example

> W = W3 = 1/2, Wy = —1/2
» For diz, T5 =[6. = =3, 0], while T55 = {0}.
» For dip, T55 = [0, 6. = 3], while T;; = {0,3}.
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Spherical Two-Distance Sets

» A two-distance set is a configuration whose inter-point
distances assume only two values. i.e., if the entries of its
EDM D take only two values, say o < 3.

» Question 1: For any graph G, which is not complete or null,
does there exist a configuration on a unit sphere such that:

P =PI = { a=2 if{i,j} € E(G),

B >2 otherwise.

» Question 2: Can two different graphs have the same 57

» Musin '18 proved that the answer to Question 1 is yes and
the configuration is unique. However, his proof is not
constructive.
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» Let A and A denote, respectively, the adjacency matrices of
G and its complement G. Then
Q1: Does there exist a unit spherical EDM D such that
D =2A+(2+25)A for some § > 0.

> Theorem [A. '19]: Let A;(A) denote the largest eigenvalue of

A. Then
1

=Ny

» The answer to Q2: graphs G; and G, have the same f3 iff
A1(A1) = A1 (A2).

» Example: graphs G, = C, all have \;(A) = 2. Hence, they
have the same 3 = 3.



Proof:

» For a unit spherical EDM D, let s = 2w, then e’s = 1. Let
B denote the Gram matrix such that Bw = 0. Then
2B =2ee’ — D.



Proof:

» For a unit spherical EDM D, let s = 2w, then e’s = 1. Let
B denote the Gram matrix such that Bw = 0. Then
2B =2ee’ — D.

» Now for D =2A+ (2 + 25)/_\, we have B = | — §A. Hence,
we need to find § such that

| —6A>0and Bw = w — §Aw = 0.



Proof:

» For a unit spherical EDM D, let s = 2w, then e’s = 1. Let
B denote the Gram matrix such that Bw = 0. Then
2B =2ee’ — D.

» Now for D =2A+ (2 + 25)/_\, we have B = | — §A. Hence,
we need to find § such that

| —6A>0and Bw = w — §Aw = 0.

» Hence,
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