On Euclidean Distance Matrices and Spherical Configurations.

A.Y. Alfakih

Dept of Math and Statistics
University of Windsor
DIMACS Workshop on Optimization in Distance Geometry June 26-28, 2019

Outline

- Survey of EDMs:
- Characterizations.
- Properties.
- Classes of EDMs: Spherical and Nonspherical.
- EDM Inverse Eigenvalue Problem.
- Spherical Configurations
- Yielding and Nonyielding Entries.
- Unit Spherical EDMs which differ in 1 entry.
- Two-Distance Sets.

Definition

- An $n \times n$ matrix D is an EDM if there exist points p^{1}, \ldots, p^{n} in some Euclidean space such that:

$$
d_{i j}=\left\|p^{i}-p^{j}\right\|^{2} \text { for all } i, j=1, \ldots, n .
$$

Definition

- An $n \times n$ matrix D is an EDM if there exist points p^{1}, \ldots, p^{n} in some Euclidean space such that:

$$
d_{i j}=\left\|p^{i}-p^{j}\right\|^{2} \text { for all } i, j=1, \ldots, n
$$

- The dimension of the affine span of the generating points of an EDM D is called the embedding dimension of D.

Definition

- An $n \times n$ matrix D is an EDM if there exist points p^{1}, \ldots, p^{n} in some Euclidean space such that:

$$
d_{i j}=\left\|p^{i}-p^{j}\right\|^{2} \text { for all } i, j=1, \ldots, n .
$$

- The dimension of the affine span of the generating points of an EDM D is called the embedding dimension of D.
- An EDM D is spherical if its generating points lie on a hypersphere. Otherwise, it is nonspherical.

Important Vectors in EDM Theory

- e the vector of all 1 's in \mathbb{R}^{n} and $V: V^{T} e=0$ and $V^{T} V=I_{n-1}$.

Important Vectors in EDM Theory

- e the vector of all 1 's in \mathbb{R}^{n} and $V: V^{T} e=0$ and $V^{T} V=I_{n-1}$.
- w where $D w=e$. Some times we set $w=D^{\dagger} e$.

Important Vectors in EDM Theory

- e the vector of all 1 's in \mathbb{R}^{n} and $V: V^{T} e=0$ and $V^{T} V=I_{n-1}$.
- w where $D w=e$. Some times we set $w=D^{\dagger} e$.
- s where $e^{T} s=1$. Vector s fixes the origin. Two important choices: $s=e / n$ and $s=2 w$.

Characterizing EDMs

- Theorem [Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is an EDM iff D is negative semidefinite on e^{\perp}.

Characterizing EDMs

- Theorem [Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is an EDM iff D is negative semidefinite on e^{\perp}.
- Let $e^{T} s=1$. This theorem can be re-stated as [Gower '85] : Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$
\mathcal{T}(D)=-\frac{1}{2}\left(I-e s^{T}\right) D\left(I-s e^{T}\right) \succeq 0 .
$$

Moreover, the embedding dimension of $D=\operatorname{rank} \mathcal{T}(D)$.

Characterizing EDMs

- Theorem [Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is an EDM iff D is negative semidefinite on e^{\perp}.
- Let $e^{T} s=1$. This theorem can be re-stated as [Gower '85] : Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$
\mathcal{T}(D)=-\frac{1}{2}\left(I-e s^{T}\right) D\left(I-s e^{T}\right) \succeq 0
$$

Moreover, the embedding dimension of $D=\operatorname{rank} \mathcal{T}(D)$.

- $B=\mathcal{T}(D)$ is the Gram matrix of the generating points of D. Note that $B s=0$.

Characterizing EDMs

- Theorem [Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is an EDM iff D is negative semidefinite on e^{\perp}.
- Let $e^{T} s=1$. This theorem can be re-stated as [Gower '85] : Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$
\mathcal{T}(D)=-\frac{1}{2}\left(I-e s^{T}\right) D\left(I-s e^{T}\right) \succeq 0 .
$$

Moreover, the embedding dimension of $D=\operatorname{rank} \mathcal{T}(D)$.

- $B=\mathcal{T}(D)$ is the Gram matrix of the generating points of D. Note that $B s=0$.
- Given B, generating points of D are given by the rows of P, where $B=P P^{\top}$.

Proof

Define:

$$
\text { - } \begin{aligned}
& S_{s}^{n}=\{A: A \text { is sym, } A s=0\} \\
& S_{h}^{n}=\{A: A \text { is sym, } \operatorname{diag}(A)=0\}
\end{aligned}
$$

Proof

Define:

$$
\begin{aligned}
& S_{s}^{n}=\{A: A \text { is } \operatorname{sym}, A s=0\} \\
& S_{h}^{n}=\{A: A \text { is } \operatorname{sym}, \operatorname{diag}(A)=0\} . \\
& \mathcal{T}: S_{h}^{n} \rightarrow S_{s}^{n}: \mathcal{T}(D)=-\frac{1}{2}\left(I-e s^{T}\right) D\left(I-s e^{T}\right) \\
& \mathcal{K}: S_{s}^{n} \rightarrow S_{h}^{n}: \mathcal{K}(B)=\operatorname{diag}(B) e^{T}+e(\operatorname{diag}(B))^{T}-2 B .
\end{aligned}
$$

Proof

Define:

$$
\Rightarrow \begin{aligned}
& S_{s}^{n}=\{A: A \text { is sym, } A s=0\} \\
& S_{h}^{n}=\{A: A \text { is sym, } \operatorname{diag}(A)=0\}
\end{aligned}
$$

$$
\mathcal{T}: S_{h}^{n} \rightarrow S_{s}^{n}: \mathcal{T}(D)=-\frac{1}{2}\left(I-e s^{T}\right) D\left(I-s e^{T}\right)
$$

$$
\mathcal{K}: S_{s}^{n} \rightarrow S_{h}^{n}: \mathcal{K}(B)=\operatorname{diag}(B) e^{T}+e(\operatorname{diag}(B))^{T}-2 B .
$$

- Theorem [Critchley '88]:

$$
\left.\mathcal{T}\right|_{S_{h}^{n}}=\left(\left.\mathcal{K}\right|_{S_{s}^{n}}\right)^{-1} \text { and }\left.\mathcal{K}\right|_{S_{s}^{n}}=\left(\left.\mathcal{T}\right|_{S_{h}^{n}}\right)^{-1}
$$

Proof

Define:

- $\begin{aligned} S_{s}^{n} & =\{A: A \text { is sym, } A s=0\} \\ S_{h}^{n} & =\{A: A \text { is sym, } \operatorname{diag}(A)=0\} .\end{aligned}$
$\mathcal{T}: S_{h}^{n} \rightarrow S_{s}^{n}: \mathcal{T}(D)=-\frac{1}{2}\left(I-e s^{T}\right) D\left(I-s e^{T}\right)$
$\mathcal{K}: S_{s}^{n} \rightarrow S_{h}^{n}: \mathcal{K}(B)=\operatorname{diag}(B) e^{T}+e(\operatorname{diag}(B))^{T}-2 B$.
- Theorem [Critchley '88]:

$$
\left.\mathcal{T}\right|_{S_{h}^{n}}=\left(\left.\mathcal{K}\right|_{S_{s}^{n}}\right)^{-1} \text { and }\left.\mathcal{K}\right|_{S_{s}^{n}}=\left(\left.\mathcal{T}\right|_{S_{h}^{n}}\right)^{-1}
$$

- $d_{i j}=\left\|p^{i}-p^{j}\right\|^{2}=B_{i i}+B_{j j}-2 B_{i j}$, where $B=P P^{T}$. Thus $D=\mathcal{K}(B)$ and $D \in S_{h}^{n}$ is an EDM iff $B=\mathcal{T}(D) \succeq 0$.

Projected Gram Matrices

- Set $s=e / n$ and let $J=I-e e^{T} / n$. Hence $B=-J D J / 2$ and $B e=0$.

Projected Gram Matrices

- Set $s=e / n$ and let $J=I-e e^{T} / n$. Hence $B=-J D J / 2$ and $B e=0$.
- $J=V V^{T}$, where $V^{T} e=0$ and $V^{T} V=I_{n-1}$.

Projected Gram Matrices

- Set $s=e / n$ and let $J=I-e e^{T} / n$. Hence $B=-J D J / 2$ and $B e=0$.
- $J=V V^{T}$, where $V^{T} e=0$ and $V^{T} V=I_{n-1}$.
- $F=\{B \succeq 0: B e=0\}$ is a face of the PSD cone.
$F=\left\{B=V X V^{T}, X \succeq 0\right\}$ is isomorphic to PSD cone of order $n-1$.

Projected Gram Matrices

- Set $s=e / n$ and let $J=I-e e^{T} / n$. Hence $B=-J D J / 2$ and $B e=0$.
- $J=V V^{T}$, where $V^{T} e=0$ and $V^{T} V=I_{n-1}$.
- $F=\{B \succeq 0: B e=0\}$ is a face of the PSD cone.
$F=\left\{B=V X V^{T}, X \succeq 0\right\}$ is isomorphic to PSD cone of order $n-1$.
- $X=V^{T} B V$ is called the projected Gram matrix. Moreover, $X \succeq 0$ and of rank r iff $B \succeq 0$ and of rank r.

Projected Gram Matrices

- Set $s=e / n$ and let $J=I-e e^{T} / n$. Hence $B=-J D J / 2$ and $B e=0$.
- $J=V V^{T}$, where $V^{T} e=0$ and $V^{T} V=I_{n-1}$.
- $F=\{B \succeq 0: B e=0\}$ is a face of the PSD cone.
$F=\left\{B=V X V^{T}, X \succeq 0\right\}$ is isomorphic to PSD cone of order $n-1$.
- $X=V^{T} B V$ is called the projected Gram matrix. Moreover, $X \succeq 0$ and of rank r iff $B \succeq 0$ and of rank r.
- Define [A. , Khandani and Wolkowicz '99]:
$\mathcal{K}_{V}(X)=\mathcal{K}\left(V X V^{T}\right)$ and
$\mathcal{T}_{V}(D)=V^{\top} \mathcal{T}(D) V=-V^{\top} D V / 2$. Then the cone of EDMs of order n is the image of the PSD cone of order $n-1$ under \mathcal{K}_{V}.

Restatement of the Basic Characterization

- Theorem [AlHomidan and Fletcher '95, A. et al '99] Let D be a real symmetric matrix with zero diagonal. Then D is an EDM iff

$$
X=\mathcal{T}_{V}(D)=-\frac{1}{2} V^{T} D V \succeq 0
$$

Moreover, the embedding dimension of $D=\operatorname{rank} X$.

Restatement of the Basic Characterization

- Theorem [AlHomidan and Fletcher '95, A. et al '99] Let D be a real symmetric matrix with zero diagonal. Then D is an EDM iff

$$
X=\mathcal{T}_{V}(D)=-\frac{1}{2} V^{T} D V \succeq 0
$$

Moreover, the embedding dimension of $D=\operatorname{rank} X$.

- Let $U^{T}=\left[\begin{array}{ll}-e_{n-1} & I_{n-1}\end{array}\right]$. Then

Theorem [AlHomidan and Wolkowicz '05] Let
$D=\left[\begin{array}{cc}0 & d^{T} \\ d & \bar{D}\end{array}\right]$ be an $n \times n$ real symmetric matrix with zero diagonal. Then D is an EDM iff

$$
e d^{T}+d e^{T}-\bar{D} \succeq 0
$$

- This is equivalent to setting $s=e^{1}$, i.e., $p^{1}=0$.

Characterization of $0-1$ EDMs

- Theorem [A. '18] Let A be the adjacency matrix of a simple graph G. Then A is an EDM if and only if G is a complete multipartite graph.

EDM Completions

- Let A be a symmetric partial matrix with only some entries specified. Question: How to choose the unspecified entries to make A an EDM?

EDM Completions

- Let A be a symmetric partial matrix with only some entries specified. Question: How to choose the unspecified entries to make A an EDM?
- Let H be the adjacency matrix of the graph of the specified entries of A. Then

$$
\begin{array}{lc}
\min & 0 \\
\text { subject to } & H \circ \mathcal{K}_{V}(X)=H \circ A, \\
& X \succeq 0 .
\end{array}
$$

EDM Completions

- Let A be a symmetric partial matrix with only some entries specified. Question: How to choose the unspecified entries to make A an EDM?
- Let H be the adjacency matrix of the graph of the specified entries of A. Then

$$
\begin{array}{ll}
\min & 0 \\
\text { subject to } & H \circ \mathcal{K}_{V}(X)=H \circ A, \\
& X \succeq 0 .
\end{array}
$$

Salter condition may not hold.

- [A. , Khandani and Wolkowicz '99]

$$
\begin{array}{lc}
\min & \left\|H \circ \mathcal{K}_{V}\left(\mathcal{T}_{V}(A)-X\right)\right\|_{F}^{2} \\
\text { subject to } & X \succeq 0 .
\end{array}
$$

Other Characterizations

- Theorem [Crouzeix and Ferland '82] Let D be a real symmetric matrix with zero diagonal. Assume that D has exactly one positive eigenvalue. Then D is an EDM iff there exists $w \in \mathbb{R}^{n}$ such that $D w=e$ and $e^{T} w \geq 0$.

Other Characterizations

- Theorem [Crouzeix and Ferland '82] Let D be a real symmetric matrix with zero diagonal. Assume that D has exactly one positive eigenvalue. Then D is an EDM iff there exists $w \in \mathbb{R}^{n}$ such that $D w=e$ and $e^{T} w \geq 0$.
- Whether $e^{T} w=0$ or $e^{T} w>0$ has geometrical significance as will be seen later.

Cayley-Menger Matrix

- Let D be an EDM. The Cayley-Menger matrix of D is

$$
M=\left[\begin{array}{cc}
0 & e^{T} \\
e & D
\end{array}\right] .
$$

Cayley-Menger Matrix

- Let D be an EDM. The Cayley-Menger matrix of D is

$$
M=\left[\begin{array}{cc}
0 & e^{T} \\
e & D
\end{array}\right]
$$

- Theorem [Hayden and Wells '88, Fiedler '94] Let D be a real sym matrix with zero diagonal. Then D is an EDM iff its Cayley-Menger matrix M has exactly one positive eigenvalue, in which case, rank $M=r+2$, where r is the embedding dimension of D.

Cayley-Menger Matrix

- Let D be an EDM. The Cayley-Menger matrix of D is
$M=\left[\begin{array}{ll}0 & e^{T} \\ e & D\end{array}\right]$.
- Theorem [Hayden and Wells '88, Fiedler '94] Let D be a real sym matrix with zero diagonal. Then D is an EDM iff its Cayley-Menger matrix M has exactly one positive eigenvalue, in which case, rank $M=r+2$, where r is the embedding dimension of D.
- Theorem [A.'19] Let M be the Cayley-Menger matrix of an EDM D. Then:
D is spherical of radius $\rho \leq 1$ iff M is an EDM.
D is spherical of radius $\rho=1$ iff M is a nonspherical EDM.

Cayley-Menger Matrix Cont'd

- There is another characterization of EDMs [Blumenthal '53] in terms of the leading principal minors of the Cayley-Menger matrix.

Cayley-Menger Matrix Cont'd

- There is another characterization of EDMs [Blumenthal '53] in terms of the leading principal minors of the Cayley-Menger matrix.
- Let V denote the volume of the simplex defined by p^{1}, \ldots, p^{n}. Then

$$
\begin{aligned}
V^{2} & =\frac{(-1)^{n}}{2^{n-1}((n-1)!)^{2}} \operatorname{det}\left[\begin{array}{cc}
0 & e^{T} \\
e & D
\end{array}\right] \\
& =\frac{n}{((n-1)!)^{2}} \operatorname{det}\left(X=\mathcal{T}_{V}(D)\right)
\end{aligned}
$$

Gale Transform

- The Gale space of D is

$$
\operatorname{gal}(D)=\operatorname{null}\left(\left[\begin{array}{c}
P^{T} \\
e^{T}
\end{array}\right]\right)=\operatorname{null}\left(\left[\begin{array}{c}
B \\
e^{T}
\end{array}\right]\right)
$$

Gale Transform

- The Gale space of D is
$\operatorname{gal}(D)=\operatorname{null}\left(\left[\begin{array}{c}P^{T} \\ e^{T}\end{array}\right]\right)=\operatorname{null}\left(\left[\begin{array}{c}B \\ e^{T}\end{array}\right]\right)$.
- Let Z be the $n \times(n-r-1)$ matrix whose columns form a basis of $\operatorname{gal}(D)$.

Gale Transform

- The Gale space of D is
$\operatorname{gal}(D)=\operatorname{null}\left(\left[\begin{array}{c}P^{T} \\ e^{T}\end{array}\right]\right)=\operatorname{null}\left(\left[\begin{array}{c}B \\ e^{T}\end{array}\right]\right)$.
- Let Z be the $n \times(n-r-1)$ matrix whose columns form a basis of $\operatorname{gal}(D)$.
- The columns of Z encode the affine dependency of p^{1}, \ldots, p^{n}.

Gale Transform

- The Gale space of D is
$\operatorname{gal}(D)=\operatorname{null}\left(\left[\begin{array}{c}P^{T} \\ e^{T}\end{array}\right]\right)=\operatorname{null}\left(\left[\begin{array}{c}B \\ e^{T}\end{array}\right]\right)$.
- Let Z be the $n \times(n-r-1)$ matrix whose columns form a basis of $\operatorname{gal}(D)$.
- The columns of Z encode the affine dependency of p^{1}, \ldots, p^{n}.
- Let $z^{i^{T}}$ denote the ith row of $Z . z^{i}$ is Gale Transform of p^{i}.

Properties of EDMs

Let D be an $n \times n$ EDM of embedding dimension r. Then:

- D has exactly one positive eigenvalue.

Properties of EDMs

Let D be an $n \times n$ EDM of embedding dimension r. Then:

- D has exactly one positive eigenvalue.
- $\operatorname{null}(D) \subseteq \operatorname{gal}(D)$.

Properties of EDMs

Let D be an $n \times n$ EDM of embedding dimension r. Then:

- D has exactly one positive eigenvalue.
- $\operatorname{null}(D) \subseteq \operatorname{gal}(D)$.
- $e \in \operatorname{col}(D), D w=e$ implies that $e^{T} w \geq 0$.

Properties of EDMs

Let D be an $n \times n$ EDM of embedding dimension r. Then:

- D has exactly one positive eigenvalue.
- $\operatorname{null}(D) \subseteq \operatorname{gal}(D)$.
- $e \in \operatorname{col}(D), D w=e$ implies that $e^{T} w \geq 0$.
- $\operatorname{rank}(D)=r+1$ or $r+2$ independent of n.

Spherical EDMs

Let D be an EDM of embedding dimension r. If $r=n-1$, then D is spherical. Otherwise, if $r \leq n-2$, then the following are equivalent:

Spherical EDMs

Let D be an EDM of embedding dimension r. If $r=n-1$, then D is spherical. Otherwise, if $r \leq n-2$, then the following are equivalent:

- D is spherical
- $\operatorname{null}(D)=\operatorname{gal}(D)$, i.e., $D Z=0$. [A. and Wolkowicz '02].

Spherical EDMs

Let D be an EDM of embedding dimension r. If $r=n-1$, then D is spherical. Otherwise, if $r \leq n-2$, then the following are equivalent:

- D is spherical
- $\operatorname{null}(D)=\operatorname{gal}(D)$, i.e., $D Z=0$. [A. and Wolkowicz '02].
- $\operatorname{rank}(D)=r+1$. [Gower '85].

Spherical EDMs

Let D be an EDM of embedding dimension r. If $r=n-1$, then D is spherical. Otherwise, if $r \leq n-2$, then the following are equivalent:

- D is spherical
- $\operatorname{null}(D)=\operatorname{gal}(D)$, i.e., $D Z=0$. [A. and Wolkowicz '02].
- $\operatorname{rank}(D)=r+1$. [Gower '85].
- \exists scalar β : β ee ${ }^{T}-D \succeq 0$ [Neumaier '81, Tarazaga et al '96] Moreover, $\beta_{\text {min }}=2 \rho^{2}$.

Spherical EDMs

Let D be an EDM of embedding dimension r. If $r=n-1$, then D is spherical. Otherwise, if $r \leq n-2$, then the following are equivalent:

- D is spherical
- $\operatorname{null}(D)=\operatorname{gal}(D)$, i.e., $D Z=0$. [A. and Wolkowicz '02].
- $\operatorname{rank}(D)=r+1$. [Gower '85].
- \exists scalar β : β ee ${ }^{T}-D \succeq 0$ [Neumaier '81, Tarazaga et al '96] Moreover, $\beta_{\text {min }}=2 \rho^{2}$.
- $e^{T} w>0$, where $D w=e . \rho^{2}=1 /\left(2 e^{T} w\right)$. [Gower '82 '85].

Spherical EDMs

Let D be an EDM of embedding dimension r. If $r=n-1$, then D is spherical. Otherwise, if $r \leq n-2$, then the following are equivalent:

- D is spherical
- $\operatorname{null}(D)=\operatorname{gal}(D)$, i.e., $D Z=0$. [A. and Wolkowicz '02].
- $\operatorname{rank}(D)=r+1$. [Gower '85].
- \exists scalar β : β ee ${ }^{T}-D \succeq 0$ [Neumaier '81, Tarazaga et al '96] Moreover, $\beta_{\text {min }}=2 \rho^{2}$.
- $e^{T} w>0$, where $D w=e . \rho^{2}=1 /\left(2 e^{T} w\right)$. [Gower '82 '85].
- $\exists a: P a=J \operatorname{diag}(B) / 2$ where $B=-J D J / 2$. a is center of sphere and $\rho^{2}=a^{T} a+e^{T} D e /\left(2 n^{2}\right)$ [Tarazaga et al '96].

The Geometry of EDMs

- The set of spherical EDMs is convex [Tarazaga '05].

The Geometry of EDMs

- The set of spherical EDMs is convex [Tarazaga '05].
- The EDM cone is the closure of the set of spherical EDMs.

The Geometry of EDMs

- The set of spherical EDMs is convex [Tarazaga '05].
- The EDM cone is the closure of the set of spherical EDMs.
- The interior of the EDM cone is made up of spherical EDMs, while its boundary is made up of both spherical and nonspherical EDMs.

Examples of Spherical EDMs: 1- Regular EDMs

- A spherical EDM is regular if its generating points lie on a sphere centered at the centroid of these points.

Examples of Spherical EDMs: 1- Regular EDMs

- A spherical EDM is regular if its generating points lie on a sphere centered at the centroid of these points.
- Theorem [Hayden and Tarazaga '93] Let D be an $n \times n$ EDM. The D is regular iff $\left(e^{T} D e / n, e\right)$ is the Perron eigenpair of D.

Examples of Spherical EDMs: 1- Regular EDMs

- A spherical EDM is regular if its generating points lie on a sphere centered at the centroid of these points.
- Theorem [Hayden and Tarazaga '93] Let D be an $n \times n$ EDM. The D is regular iff $\left(e^{T} D e / n, e\right)$ is the Perron eigenpair of D.
- Theorem [A. '18] Let D be an $n \times n$ EDM and let $\lambda>-\alpha_{1}>\cdots>-\alpha_{k}$ be the distinct eigenvalues of D. Then \exists polynomial $f(D): f(D)=e e^{T}$ iff D is regular, in which case

$$
f(D)=n \frac{\prod_{i=1}^{k}\left(D+\alpha_{i} I\right)}{\prod_{i=1}^{k}\left(e^{T} D e / n+\alpha_{i}\right)}
$$

$f(D)$ is called the Hoffman polynomial of D.

2- Cell Matrices

- D is a cell matrix if for each $i \neq j, d_{i j}=c_{i}+c_{j}$ for some $c \geq 0$. They model hub and spoke or star topology.

2- Cell Matrices

- D is a cell matrix if for each $i \neq j, d_{i j}=c_{i}+c_{j}$ for some $c \geq 0$. They model hub and spoke or star topology.
- Theorem [Jaklic and Modic '10] Cell matrices are spherical EDMs.

2- Cell Matrices

- D is a cell matrix if for each $i \neq j, d_{i j}=c_{i}+c_{j}$ for some $c \geq 0$. They model hub and spoke or star topology.
- Theorem [Jaklic and Modic '10] Cell matrices are spherical EDMs.
- Let s denote the number of 0 entries of $c \in \mathbb{R}^{n}, c \geq 0$. Then the embedding dimension of D is

$$
r= \begin{cases}n-1 & \text { if } s=0 \text { or } s=1 \\ n-s & \text { otherwise }\end{cases}
$$

3-Manhattan Distance Matrices on Grids

Consider a rectangular grid of unit squares with m row and n columns. Let $d_{i j, k l}=|i-k|+|j-I|$.

3-Manhattan Distance Matrices on Grids

Consider a rectangular grid of unit squares with m row and n columns. Let $d_{i j, k l}=|i-k|+|j-I|$.

- $D=E_{m} \otimes G_{n}+G_{m} \otimes E_{n}$, where G_{n} and G_{m} are rectangular grids of 1 row and 1 column respectively.

3-Manhattan Distance Matrices on Grids

Consider a rectangular grid of unit squares with m row and n columns. Let $d_{i j, k l}=|i-k|+|j-I|$.

- $D=E_{m} \otimes G_{n}+G_{m} \otimes E_{n}$, where G_{n} and G_{m} are rectangular grids of 1 row and 1 column respectively.
- Theorem [A.] D is a spherical EDM with $\rho^{2}=(n+m-2) / 4$.

3-Manhattan Distance Matrices on Grids

Consider a rectangular grid of unit squares with m row and n columns. Let $d_{i j, k l}=|i-k|+|j-I|$.

- $D=E_{m} \otimes G_{n}+G_{m} \otimes E_{n}$, where G_{n} and G_{m} are rectangular grids of 1 row and 1 column respectively.
- Theorem [A.] D is a spherical EDM with $\rho^{2}=(n+m-2) / 4$.
- QAP library (Nugent): [Mettlemann and Peng '10] $\frac{1}{2}(n+m-2) e e^{T}-D \succeq 0$.

4-Hamming Distance Matrices on the Cube

- The vertices p^{i} 's of the Hypercube Q_{r} are all points in \mathbb{R}^{r} whose entries are 0 or 1 .

4-Hamming Distance Matrices on the Cube

- The vertices p^{i} 's of the Hypercube Q_{r} are all points in \mathbb{R}^{r} whose entries are 0 or 1 .
- Let $d_{i j}=\sum_{k=1}^{r}\left|p_{k}^{i}-p_{k}^{j}\right|$.

4-Hamming Distance Matrices on the Cube

- The vertices p^{i} 's of the Hypercube Q_{r} are all points in \mathbb{R}^{r} whose entries are 0 or 1 .
- Let $d_{i j}=\sum_{k=1}^{r}\left|p_{k}^{i}-p_{k}^{j}\right|$.
- D is a regular EDM of embedding dimension r and of radius $\rho=\sqrt{r} / 2$.

4-Hamming Distance Matrices on the Cube

- The vertices p^{i} 's of the Hypercube Q_{r} are all points in \mathbb{R}^{r} whose entries are 0 or 1 .
- Let $d_{i j}=\sum_{k=1}^{r}\left|p_{k}^{i}-p_{k}^{j}\right|$.
- D is a regular EDM of embedding dimension r and of radius $\rho=\sqrt{r} / 2$.
- Theorem [Graham and Winkler '85] Let p^{1}, \ldots, p^{r+1} of Q_{r} form a simplex. Then the det of the submatrix of D induced by these points is:

$$
(-1)^{r} r 2^{r-1}
$$

5-Distance Matrices of Trees

- For a tree T on n nodes, let $d_{i j}=$ the number of edges in the path between nodes i and j.

5-Distance Matrices of Trees

- For a tree T on n nodes, let $d_{i j}=$ the number of edges in the path between nodes i and j.
- Theorem [Graham and Pollak '71] D has exactly one positive and $n-1$ negative eigenvalues. Moreover,

$$
\operatorname{det} D=(-1)^{n-1}(n-1) 2^{n-2}
$$

5-Distance Matrices of Trees

- For a tree T on n nodes, let $d_{i j}=$ the number of edges in the path between nodes i and j.
- Theorem [Graham and Pollak '71] D has exactly one positive and $n-1$ negative eigenvalues. Moreover,

$$
\operatorname{det} D=(-1)^{n-1}(n-1) 2^{n-2}
$$

- Theorem [Graham and Lovász '78] Let L denote the Laplacian of tree T. Then

$$
D^{-1}=-\frac{1}{2} L+\frac{1}{2(n-1)}(2 e-\operatorname{deg})(2 e-\operatorname{deg})^{T} .
$$

5-Distance Matrices of Trees

- For a tree T on n nodes, let $d_{i j}=$ the number of edges in the path between nodes i and j.
- Theorem [Graham and Pollak '71] D has exactly one positive and $n-1$ negative eigenvalues. Moreover,

$$
\operatorname{det} D=(-1)^{n-1}(n-1) 2^{n-2}
$$

- Theorem [Graham and Lovász '78] Let L denote the Laplacian of tree T. Then

$$
D^{-1}=-\frac{1}{2} L+\frac{1}{2(n-1)}(2 e-\operatorname{deg})(2 e-\operatorname{deg})^{T} .
$$

- Theorem D is a spherical EDM of radius $\rho=\sqrt{n-1} / 2$.

6-Resistance Distance Matrices of Electrical Networks

Consider a graph G where each edge is a unit resistor.

6-Resistance Distance Matrices of Electrical Networks

Consider a graph G where each edge is a unit resistor.

- The terminals of a battery are attached to nodes s and t. What is the effective resistance $\Omega_{s t}$?

6-Resistance Distance Matrices of Electrical Networks

Consider a graph G where each edge is a unit resistor.

- The terminals of a battery are attached to nodes s and t. What is the effective resistance $\Omega_{s t}$?
- Let L denote the Laplacian of G. Then

$$
\Omega=\mathcal{K}\left(L^{\dagger}\right)=\operatorname{diag}\left(L^{\dagger}\right) e^{T}+e\left(\operatorname{diag}\left(L^{\dagger}\right)\right)^{T}-2 L^{\dagger} .
$$

Ω is a spherical EDM since embedding $\operatorname{dim}=n-1$.

Nonspherical EDMs

Let D be an EDM of embedding dimension r, where $r \leq n-2$. Then the following are equivalent:

Nonspherical EDMs

Let D be an EDM of embedding dimension r, where $r \leq n-2$.
Then the following are equivalent:

- D is nonspherical

Nonspherical EDMs

Let D be an EDM of embedding dimension r, where $r \leq n-2$. Then the following are equivalent:

- D is nonspherical
- $D Z=e \xi^{T}, \xi \neq 0$. [A. and Wolkowicz '02].

Nonspherical EDMs

Let D be an EDM of embedding dimension r, where $r \leq n-2$. Then the following are equivalent:

- D is nonspherical
- $D Z=e \xi^{T}, \xi \neq 0$. [A. and Wolkowicz '02].
- $\operatorname{rank}(D)=r+2$. [Gower '85].

Nonspherical EDMs

Let D be an EDM of embedding dimension r, where $r \leq n-2$. Then the following are equivalent:

- D is nonspherical
- $D Z=e \xi^{T}, \xi \neq 0$. [A. and Wolkowicz '02].
- $\operatorname{rank}(D)=r+2$. [Gower '85].
- $e^{T} w=0$, where $D w=e$. [Gower '82 '85].

EDM Inverse Eigenvalue Problem

- Given $\lambda_{1}>0 \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, where $\sum_{i=1}^{n} \lambda_{i}=0$. Does there exist an EDM whose eigenvalues are these λ_{i} 's?

EDM Inverse Eigenvalue Problem

- Given $\lambda_{1}>0 \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, where $\sum_{i=1}^{n} \lambda_{i}=0$. Does there exist an EDM whose eigenvalues are these λ_{i} 's?
- This problem is mainly open. It has an elegant solution for all n such that a Hadamard matrix H_{n} exists.

EDM Inverse Eigenvalue Problem

- Given $\lambda_{1}>0 \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, where $\sum_{i=1}^{n} \lambda_{i}=0$. Does there exist an EDM whose eigenvalues are these λ_{i} 's?
- This problem is mainly open. It has an elegant solution for all n such that a Hadamard matrix H_{n} exists.
- A Hadamard matrix H_{n} is a $(1,-1)$ matrix satisfying $H_{n}^{\top} H_{n}=n l$.

EDM Inverse Eigenvalue Problem

- Given $\lambda_{1}>0 \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, where $\sum_{i=1}^{n} \lambda_{i}=0$. Does there exist an EDM whose eigenvalues are these λ_{i} 's?
- This problem is mainly open. It has an elegant solution for all n such that a Hadamard matrix H_{n} exists.
- A Hadamard matrix H_{n} is a $(1,-1)$ matrix satisfying $H_{n}^{\top} H_{n}=n l$.
- Theorem [Hayden et al '99] Given such λ_{i} 's, let $\Lambda=$ $\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then $D=H \wedge H^{T} / n$ is a regular EDM, where $H=[e \bar{H}]$ is a Hadamard matrix.

EDM Inverse Eigenvalue Problem

- Given $\lambda_{1}>0 \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, where $\sum_{i=1}^{n} \lambda_{i}=0$. Does there exist an EDM whose eigenvalues are these λ_{i} 's?
- This problem is mainly open. It has an elegant solution for all n such that a Hadamard matrix H_{n} exists.
- A Hadamard matrix H_{n} is a $(1,-1)$ matrix satisfying $H_{n}^{\top} H_{n}=n l$.
- Theorem [Hayden et al '99] Given such λ_{i} 's, let $\Lambda=$ $\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then $D=H \wedge H^{\top} / n$ is a regular EDM, where $H=[e \bar{H}]$ is a Hadamard matrix.
- It is an open conjecture that there exists H_{n} for all $n=4 k$. The smallest n in doubt is $n=668$.

Yielding Entries of an EDM

- Let D be an EDM and let $E^{k l}$ be the matrix with 1 's in (k, I) th and (I, k) th positions and 0 's elsewhere.
- Let $I_{k l} \leq 0$ and $u_{k l} \geq 0$ such that $D+t E^{k l}$ is EDM iff $I_{k l} \leq t \leq u_{k l}$.

Yielding Entries of an EDM

- Let D be an EDM and let $E^{k l}$ be the matrix with 1 's in (k, I) th and (I, k) th positions and 0 's elsewhere.
- Let $I_{k l} \leq 0$ and $u_{k l} \geq 0$ such that $D+t E^{k l}$ is EDM iff $I_{k l} \leq t \leq u_{k l}$.
- The interval $\left[I_{k l}, u_{k l}\right]$ is called the yielding interval of entry $d_{k l}$

Yielding Entries of an EDM

- Let D be an EDM and let $E^{k l}$ be the matrix with 1 's in (k, I) th and (I, k) th positions and 0 's elsewhere.
- Let $I_{k l} \leq 0$ and $u_{k l} \geq 0$ such that $D+t E^{k l}$ is EDM iff $I_{k l} \leq t \leq u_{k l}$.
- The interval $\left[I_{k l}, u_{k l}\right]$ is called the yielding interval of entry $d_{k l}$
- Entry $d_{k l}$ is unyielding if $I_{k l}=u_{k l}=0$ and yielding otherwise.

Characterization of Yielding Entries

- Vectors x and y are parallel if $\exists c \neq 0$ such that $x=c y$.

Characterization of Yielding Entries

- Vectors x and y are parallel if $\exists c \neq 0$ such that $x=c y$.
- Theorem [A. '18] Let D be an $n \times n$ EDM of embedding dimension $r=n-1$. Then every entry of D is yielding.

Characterization of Yielding Entries

- Vectors x and y are parallel if $\exists c \neq 0$ such that $x=c y$.
- Theorem [A. '18] Let D be an $n \times n$ EDM of embedding dimension $r=n-1$. Then every entry of D is yielding.
- Theorem [A. '18] Let D be an $n \times n$ EDM of embedding dimension $r \leq n-2$. Let z^{1}, \ldots, z^{n} be Gale transforms of the generating points of D. Then entry $d_{k l}$ is yielding iff z^{k} is parallel to z^{\prime}.

Characterization of Yielding Entries

- Vectors x and y are parallel if $\exists c \neq 0$ such that $x=c y$.
- Theorem [A. '18] Let D be an $n \times n$ EDM of embedding dimension $r=n-1$. Then every entry of D is yielding.
- Theorem [A. '18] Let D be an $n \times n$ EDM of embedding dimension $r \leq n-2$. Let z^{1}, \ldots, z^{n} be Gale transforms of the generating points of D. Then entry $d_{k l}$ is yielding iff z^{k} is parallel to z^{\prime}.
- D is in general position in \mathbb{R}^{r} if every $r+1$ of its generating points are affinely independent.

Characterization of Yielding Entries

- Vectors x and y are parallel if $\exists c \neq 0$ such that $x=c y$.
- Theorem [A. '18] Let D be an $n \times n$ EDM of embedding dimension $r=n-1$. Then every entry of D is yielding.
- Theorem [A. '18] Let D be an $n \times n$ EDM of embedding dimension $r \leq n-2$. Let z^{1}, \ldots, z^{n} be Gale transforms of the generating points of D. Then entry $d_{k l}$ is yielding iff z^{k} is parallel to z^{\prime}.
- D is in general position in \mathbb{R}^{r} if every $r+1$ of its generating points are affinely independent.
- Corollary [A. '18] Let D be an EDM of embedding dimension $r=n-2$. If D is in general position, then every entry of D is yielding.

Determining Yielding Intervals

- Let $B=-J D J / 2=P P^{\top}$, then $B^{\dagger}=P\left(P^{\top} P\right)^{-2} P^{\top}$. Let $B^{\dagger}=S S^{T}$, i.e., $S=P\left(P^{T} P\right)^{-1}$. Let $s^{i^{T}}$ denote the ith row of S.

Determining Yielding Intervals

- Let $B=-J D J / 2=P P^{T}$, then $B^{\dagger}=P\left(P^{T} P\right)^{-2} P^{T}$. Let $B^{\dagger}=S S^{T}$, i.e., $S=P\left(P^{T} P\right)^{-1}$. Let $s^{i^{T}}$ denote the i th row of S.
- Define:

$$
\underline{\theta}=\frac{2}{\left(s^{k}\right)^{T} s^{\prime}-\left\|s^{k}\right\|\left\|s^{\prime}\right\|} \text { and } \bar{\theta}=\frac{2}{\left(s^{k}\right)^{T} s^{\prime}+\left\|s^{k}\right\|\left\|s^{\prime}\right\|}
$$

Determining Yielding Intervals

- Let $B=-J D J / 2=P P^{\top}$, then $B^{\dagger}=P\left(P^{\top} P\right)^{-2} P^{\top}$. Let $B^{\dagger}=S S^{T}$, i.e., $S=P\left(P^{T} P\right)^{-1}$. Let $s^{i^{T}}$ denote the i th row of S.
- Define:

$$
\underline{\theta}=\frac{2}{\left(s^{k}\right)^{T} s^{\prime}-\left\|s^{k}\right\|\left\|s^{\prime}\right\|} \text { and } \bar{\theta}=\frac{2}{\left(s^{k}\right)^{T} s^{\prime}+\left\|s^{k}\right\|\left\|s^{\prime}\right\|}
$$

- Theorem [A. '19] Let D be an $n \times n$ EDM of embedding dimension r and let $B=-J D J / 2$. Assume that $d_{k l}$ is yielding. If $r=n-1$ or if $r \leq n-2$ and $z^{k}=z^{\prime}=0$. Then the yielding interval of $d_{k l}$ is

$$
\left[I_{k l}, u_{k k}\right]=[\underline{\theta}, \bar{\theta}] .
$$

Determining Yielding Intervals

- Define:

$$
\theta_{c}=\frac{-4 c}{\left\|s^{k}-c s^{\prime}\right\|^{2}}
$$

Determining Yielding Intervals

- Define:

$$
\theta_{c}=\frac{-4 c}{\left\|s^{k}-c s^{\prime}\right\|^{2}}
$$

- Theorem [A. '19] Let D be an $n \times n$ EDM of embedding dimension r and let $B=-J D J / 2$. Assume that $d_{k l}$ is yielding. If $r \leq n-2$ and $z^{k}=c z^{\prime} \neq 0$. Then the yielding interval of $d_{k l}$ is

$$
\left[I_{k l}, u_{k l}\right]= \begin{cases}{\left[\theta_{c}, 0\right]} & \text { if } c>0 \\ {\left[0, \theta_{c}\right]} & \text { if } c<0\end{cases}
$$

Example

$$
D=\left[\begin{array}{llll}
0 & 2 & 4 & 2 \\
2 & 0 & 2 & 4 \\
4 & 2 & 0 & 2 \\
2 & 4 & 2 & 0
\end{array}\right]
$$

- $z^{1}=z^{3}=1$ and $z^{2}=z^{4}=-1 . w_{1}=w_{2}=w_{3}=w_{4}=1 / 8$.

Example

$$
\begin{aligned}
& D=\left[\begin{array}{llll}
0 & 2 & 4 & 2 \\
2 & 0 & 2 & 4 \\
4 & 2 & 0 & 2 \\
2 & 4 & 2 & 0
\end{array}\right] \\
& \text { - } z^{1}=z^{3}=1 \text { and } z^{2}=z^{4}=-1 . w_{1}=w_{2}=w_{3}=w_{4}=1 / 8 . \\
& \text { Yielding interval for } d_{13} \text { is }\left[\theta_{c}=-4,0\right] .
\end{aligned}
$$

Example

$$
D=\left[\begin{array}{llll}
0 & 2 & 4 & 2 \\
2 & 0 & 2 & 4 \\
4 & 2 & 0 & 2 \\
2 & 4 & 2 & 0
\end{array}\right] \quad p^{4}
$$

- $z^{1}=z^{3}=1$ and $z^{2}=z^{4}=-1 . w_{1}=w_{2}=w_{3}=w_{4}=1 / 8$.
- Yielding interval for d_{13} is $\left[\theta_{c}=-4,0\right]$.
- Yielding interval for d_{12} is $\left[0, \theta_{c}=8\right]$.

Unit Spherical EDMs

Let D be a spherical EDM of $\rho=1$. Define:
$T_{k l}^{\leq}=\left\{t \in\left[I_{k l}, u_{k l}\right]: D+t E^{k l}\right.$ is a spherical EDM of $\left.\rho \leq 1\right\}$.

- Define:

$$
\tilde{Z}=\left\{\begin{array}{cl}
w & \text { if } r=n-1 \\
{\left[\begin{array}{ll}
w & Z
\end{array}\right]} & \text { if } r \leq n-2
\end{array}\right.
$$

Unit Spherical EDMs

Let D be a spherical EDM of $\rho=1$. Define:
$T_{k l}^{\leq}=\left\{t \in\left[I_{k l}, u_{k l}\right]: D+t E^{k l}\right.$ is a spherical EDM of $\left.\rho \leq 1\right\}$.

- Define:

$$
\tilde{Z}=\left\{\begin{array}{cl}
w & \text { if } r=n-1 \\
{\left[\begin{array}{ll}
w & Z
\end{array}\right]} & \text { if } r \leq n-2
\end{array}\right.
$$

- Theorem [A. '19] Let $\underset{\sim}{D}$ be a unit spherical EDM and let \tilde{z}^{i} denote the ith row of \tilde{Z}. Then $T_{\overline{k l}}^{\leq}=\{0\}$ iff \tilde{z}^{k} is not parallel to \tilde{z}^{\prime}. i.e., $\nexists c \neq 0: w_{k}=c w_{l}$ and $z^{k}=c z^{\prime}$.

Previous Example

$$
D=\left[\begin{array}{llll}
0 & 2 & 4 & 2 \\
2 & 0 & 2 & 4 \\
4 & 2 & 0 & 2 \\
2 & 4 & 2 & 0
\end{array}\right]
$$

- $z^{1}=z^{3}=1$ and $z^{2}=z^{4}=-1 . w_{1}=w_{2}=w_{3}=w_{4}=1 / 8$.
- $\left[I_{13}, u_{13}\right]=\left[\theta_{c}=-4,0\right]$ and $\left[I_{12}, u_{12}\right]=\left[0, \theta_{c}=8\right]$.

Previous Example

$$
D=\left[\begin{array}{llll}
0 & 2 & 4 & 2 \\
2 & 0 & 2 & 4 \\
4 & 2 & 0 & 2 \\
2 & 4 & 2 & 0
\end{array}\right]
$$

- $z^{1}=z^{3}=1$ and $z^{2}=z^{4}=-1 . w_{1}=w_{2}=w_{3}=w_{4}=1 / 8$.
- $\left[I_{13}, u_{13}\right]=\left[\theta_{c}=-4,0\right]$ and $\left[I_{12}, u_{12}\right]=\left[0, \theta_{c}=8\right]$.
- $\tilde{z}^{1}=\tilde{z}^{3}=\left[\begin{array}{c}1 / 8 \\ 1\end{array}\right]$ and $\tilde{z}^{2}=\left[\begin{array}{c}1 / 8 \\ -1\end{array}\right]$.
- $T_{12}^{\leq}=\{0\}$ and $T_{13}^{\leq}=\left[I_{13}, u_{13}\right]$.
- If \tilde{z}^{k} is parallel to \tilde{z}^{\prime}, then $T_{k l}^{\leq}$may or may not be equal to $\left[I_{k l}, u_{k l}\right]$. Moreover, $T_{\overline{k l}}^{\leq}$can be expressed in terms of $\underline{\theta}, \bar{\theta}$ or θ_{c} and 0 .
- If \tilde{z}^{k} is parallel to \tilde{z}^{\prime}, then $T_{k l}^{\leq}$may or may not be equal to $\left[I_{k l}, u_{k l}\right]$. Moreover, $T_{k l}^{\leq}$can be expressed in terms of $\underline{\theta}, \bar{\theta}$ or θ_{c} and 0 .
- $T_{k l}^{=}=\left\{t \in T_{k l}^{\leq}: D+t E^{k l}\right.$ is a spherical EDM of $\left.\rho=1\right\}$.
- If \tilde{z}^{k} is parallel to \tilde{z}^{\prime}, then $T_{k l}^{\leq}$may or may not be equal to $\left[I_{k l}, u_{k l}\right]$. Moreover, $T_{k l}^{\leq}$can be expressed in terms of $\underline{\theta}, \bar{\theta}$ or θ_{c} and 0 .
- $T_{k l}^{=}=\left\{t \in T_{k l}^{\leq}: D+t E^{k l}\right.$ is a spherical EDM of $\left.\rho=1\right\}$.
- Theorem [A. '19] Let D be a unit spherical EDM of embedding dimension r and assume that $\tilde{z}^{k}=c \tilde{z}^{\prime}$ for some $c \neq 0$.

1. If $w_{k}=w_{l}=0$, or $w_{k} \neq 0$ and $z^{k} \neq 0$, then $T_{k l}^{=}=T_{k l}^{\leq}$.
2. Otherwise, if $w_{k}=c w_{l} \neq 0$ and either $r=n-1$ or $z^{k}=z^{\prime}=0$, then

$$
T_{k l}^{=}= \begin{cases}\{0\} & \text { if }\left\|s^{k}\right\|^{2}=c^{2}\left\|s^{\prime}\right\|^{2} \\ \left\{0, \theta_{c}\right\} & \text { otherwise }\end{cases}
$$

Example

$$
D=\left[\begin{array}{lll}
0 & 1 & 3 \\
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right]
$$

- $w_{1}=w_{3}=1 / 2, w_{2}=-1 / 2$.

Example

$$
D=\left[\begin{array}{lll}
0 & 1 & 3 \\
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right]
$$

- $w_{1}=w_{3}=1 / 2, w_{2}=-1 / 2$.
- For $d_{13}, T_{13}^{\leq}=\left[\theta_{c}=-3,0\right]$, while $T_{13}^{=}=\{0\}$.

Example

$$
D=\left[\begin{array}{lll}
0 & 1 & 3 \\
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right]
$$

- $w_{1}=w_{3}=1 / 2, w_{2}=-1 / 2$.
- For $d_{13}, T_{13}^{\leq}=\left[\theta_{c}=-3,0\right]$, while $T_{13}^{=}=\{0\}$.
- For $d_{12}, T_{12}^{\leq}=\left[0, \theta_{c}=3\right]$, while $T_{12}^{=}=\{0,3\}$.

Spherical Two-Distance Sets

- A two-distance set is a configuration whose inter-point distances assume only two values. i.e., if the entries of its EDM D take only two values, say $\alpha<\beta$.

Spherical Two-Distance Sets

- A two-distance set is a configuration whose inter-point distances assume only two values. i.e., if the entries of its EDM D take only two values, say $\alpha<\beta$.
- Question 1: For any graph G, which is not complete or null, does there exist a configuration on a unit sphere such that:

$$
\left\|p^{i}-p^{j}\right\|^{2}= \begin{cases}\alpha=2 & \text { if }\{i, j\} \in E(G) \\ \beta>2 & \text { otherwise }\end{cases}
$$

Spherical Two-Distance Sets

- A two-distance set is a configuration whose inter-point distances assume only two values. i.e., if the entries of its EDM D take only two values, say $\alpha<\beta$.
- Question 1: For any graph G, which is not complete or null, does there exist a configuration on a unit sphere such that:

$$
\left\|p^{i}-p^{j}\right\|^{2}= \begin{cases}\alpha=2 & \text { if }\{i, j\} \in E(G) \\ \beta>2 & \text { otherwise }\end{cases}
$$

- Question 2: Can two different graphs have the same β ?

Spherical Two-Distance Sets

- A two-distance set is a configuration whose inter-point distances assume only two values. i.e., if the entries of its EDM D take only two values, say $\alpha<\beta$.
- Question 1: For any graph G, which is not complete or null, does there exist a configuration on a unit sphere such that:

$$
\left\|p^{i}-p^{j}\right\|^{2}= \begin{cases}\alpha=2 & \text { if }\{i, j\} \in E(G) \\ \beta>2 & \text { otherwise }\end{cases}
$$

- Question 2: Can two different graphs have the same β ?
- Musin '18 proved that the answer to Question 1 is yes and the configuration is unique. However, his proof is not constructive.
- Let A and \bar{A} denote, respectively, the adjacency matrices of G and its complement \bar{G}. Then
Q1: Does there exist a unit spherical EDM D such that $D=2 A+(2+2 \delta) \bar{A}$ for some $\delta>0$.
- Let A and \bar{A} denote, respectively, the adjacency matrices of G and its complement \bar{G}. Then
Q1: Does there exist a unit spherical EDM D such that $D=2 A+(2+2 \delta) \bar{A}$ for some $\delta>0$.
- Theorem [A. '19]: Let $\lambda_{1}(\bar{A})$ denote the largest eigenvalue of \bar{A}. Then

$$
\delta=\frac{1}{\lambda_{1}(\bar{A})}
$$

- Let A and \bar{A} denote, respectively, the adjacency matrices of G and its complement \bar{G}. Then
Q1: Does there exist a unit spherical EDM D such that $D=2 A+(2+2 \delta) \bar{A}$ for some $\delta>0$.
- Theorem [A. '19]: Let $\lambda_{1}(\bar{A})$ denote the largest eigenvalue of \bar{A}. Then

$$
\delta=\frac{1}{\lambda_{1}(\bar{A})}
$$

- The answer to Q2: graphs G_{1} and G_{2} have the same β iff $\lambda_{1}\left(\bar{A}_{1}\right)=\lambda_{1}\left(\bar{A}_{2}\right)$.
- Let A and \bar{A} denote, respectively, the adjacency matrices of G and its complement \bar{G}. Then
Q1: Does there exist a unit spherical EDM D such that $D=2 A+(2+2 \delta) \bar{A}$ for some $\delta>0$.
- Theorem [A. '19]: Let $\lambda_{1}(\bar{A})$ denote the largest eigenvalue of \bar{A}. Then

$$
\delta=\frac{1}{\lambda_{1}(\bar{A})}
$$

- The answer to Q2: graphs G_{1} and G_{2} have the same β iff $\lambda_{1}\left(\bar{A}_{1}\right)=\lambda_{1}\left(\bar{A}_{2}\right)$.
- Example: graphs $G_{n}=\overline{C_{n}}$ all have $\lambda_{1}(\bar{A})=2$. Hence, they have the same $\beta=3$.

Proof:

- For a unit spherical EDM D, let $s=2 w$, then $e^{T} s=1$. Let B denote the Gram matrix such that $B w=0$. Then $2 B=2 e e^{T}-D$.

Proof:

- For a unit spherical EDM D, let $s=2 w$, then $e^{T} s=1$. Let B denote the Gram matrix such that $B w=0$. Then $2 B=2 e e^{T}-D$.
- Now for $D=2 A+(2+2 \delta) \bar{A}$, we have $B=I-\delta \bar{A}$. Hence, we need to find δ such that

$$
I-\delta \bar{A} \succeq 0 \text { and } B w=w-\delta \bar{A} w=0
$$

Proof:

- For a unit spherical EDM D, let $s=2 w$, then $e^{T} s=1$. Let B denote the Gram matrix such that $B w=0$. Then $2 B=2 e e^{T}-D$.
- Now for $D=2 A+(2+2 \delta) \bar{A}$, we have $B=I-\delta \bar{A}$. Hence, we need to find δ such that

$$
I-\delta \bar{A} \succeq 0 \text { and } B w=w-\delta \bar{A} w=0
$$

- Hence,

$$
\delta \leq \frac{1}{\lambda_{1}(\bar{A})} \text { and } \delta \geq \frac{1}{\lambda_{1}(\bar{A})} .
$$

References:

1. A. Y. Alfakih, "Euclidean Distance Matrices and their Applications in Rigidity Theory". Springer (2018).
2. A. Y. Alfakih, "On Representations of Graphs as Two-Distance Sets". (to appear in discrete math).
3. A. Y. Alfakih, " On unit Spherical Euclidean distance matrices which differ in one entry". arXiv 1903.07458.
