Agricultural Land Management Practices in Ontario: Lake Erie Basin Watersheds


Scott Duff and Stewart Sweeney
Ontario Ministry of Agriculture, Food and
Rural Affairs
Guelph, Ontario

Ontario's Agricultural Land Management

Presentation Outline:

- > perspective on farming/ecosystem connections
- current agricultural land management practices in Ontario's Lake Erie Basin
- knowledge management of Ontario farming practices
 - > overview of selected data sources
- > a "new" agricultural resource inventory" ARI for Ontario

Ontario Agriculture: Ecosystem Connections

Agriculture in Ontario's Lake Erie Basin:

- ➤ has a long heritage predates European settlement
- was a main driver for urban placement and growth
- ➤ has become diverse: farm size, field size, commodities
- is distributed throughout this region; it is "here to stay"
- ➤ has land management practices that have modified ecosystem form and function
- > has a critical role to play in ecosystem futures



Ontario's Agricultural Land Management

- Currently in Ontario's Lake Erie Basin watersheds:
 - > much of the original forest cover was cleared; some watersheds (particularly in the SW) have less than 2% cover
 - ➤ substantial artificial drainage network has been established throughout this region; this network includes systematic and random field tiles & municipal drains

Ontario's Agricultural Land Management

- Currently in Ontario's Lake Erie Basin watersheds:
 - > tillage systems vary between farms: no-till to conventional
 - ➤ corn-beans-wheat rotation dominates cropping systems; edible beans, small grains and alfalfa are also prominent; high-value horticultural crops in specific areas (ex. Leamington)
 - > nutrient applications: manure, fertilizers and biosolids

Knowledge Management: Farm Practices

- Database sources have evolved through time...
 - > various historical "atlases" of agriculture in Ontario; soils, crops, livestock
 - > agricultural census data; every 5 years; 2006 is most recent
 - ➤ government program information; stewardship efforts (PLUARG, SWEEP, Land Stewardship, EFP, etc.) and nutrient management planning (NMA 2002); no GIS layers available
 - government agricultural land use GIS databases:
 - > OMNR-SOLRIS
 - ➤ OMAFRA agricultural resource inventory (ARI) 1983
 - "new" OMAFRA ARI being developed

Government Agricultural Census

- Statistics Canada Census of Agriculture
 - > "snapshots"; census survey every 5 years
 - ➤ generally aggregated by County; also quaternary level watershed (OMAFRA has 2001 & 2006); doesn't track individual farms and fields
 - > quantitative cropping, tillage, livestock and nutrient information
 - ➤ opportunities to track some farm practice "trends" over time; coarse GIS-layer spatial resolution (only at county/quaternary watershed level)

Government Stewardship Programs

Environmental Farm Plan (EFP)

- ➤ foundation for agri-environmental education, risk assessment and programming I Ontario
- ➤on-farm cost-share implementation projects
- >plans and information on project locations, etc. are confidential;
- ➤ aggregate practice data available by watershed (ex. Grand) and county


Government Nutrient Management Programs

- Nutrient Management Act (NMA 2002)
 - > OMAFRA & OMOE responsible for different parts
 - Plans & Strategies; on-farm documents required
 - ➤ farms > 300 NU; expanding farms > 5NU
 - > commonly "triggered" by building permit process
 - > most Plan & Strategy details are confidential; however "Records of Approval" are available publicly
 - no GIS layer of farm practices associated with NMA
 - ➤ Under development

OMAFRA Agricultural Resource Inventory (1983)

- > one-time "windshield survey" activity (completed in 1983); pre-dated digital GIS; project not continued
- > aggregated "cropping systems" approach for "farm blocks"; not by individual field
- no tillage, nutrient or livestock information
- gives a "snapshot" of cropping patterns at that time
- maps subsequently digitized; GIS layer developed

OMNR-SOLRIS GIS Layer


- was not differentiated just called "agriculture"
 - no individual farms or fields
 - > no tillage, nutrient or livestock information
 - no value/understanding of cropping patterns
- ➤ However, <u>updates are coming</u>; agricultural activity based on remote sensing (sporadic satellite) imagery classes = "perennial, annual, mixed, idle"
 - gives limited land management practice information

- "New" OMAFRA Agricultural Resource Inventory
 - Digital imagery coverages
 - > 30cm X 30cm SWOOP 2006
 - > 20cm X 20cm GTA 2002
 - > seamless digital framework; all landscape features
 - ➤ farmstead, farm field, fencerow, roadway, ditch, and riparian and rough land areas
 - builds on OMNR-SOLRIS "woodlands", "wetlands" and "urban" layers

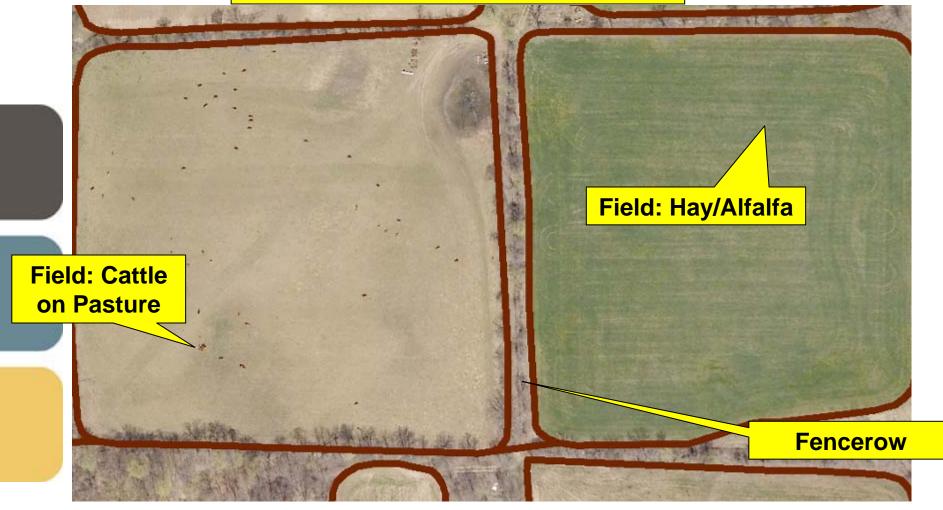
- "New" OMAFRA Agricultural Resource Inventory
 - ➤ direct "windshield survey" observations for cropping season; build GIS layer for census period
 - crops, tillage, nutrient and livestock information
 - > on-going effort needed to capture cropping and tillage patterns (trends & change detection) over time
 - ➤ serve as "ground truth" for remote sensing calibrations; plan to use high resolution imagery for both retrospective and future mapping

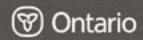

- "New" OMAFRA Agricultural Resource Inventory
 - Farm field-specific ARI attributes help to better understand Farm Environmental Stewardship
 - > crop rotation patterns; crop selection responses to market drivers (ex. Winter Wheat planted in Fall 2007)
 - ➤ tillage system practices in relation to soil erosion and runoff management
 - crop-specific nutrient application distribution
 - crop-specific pest-management practice distribution
 - crop-specific water budget/management needs

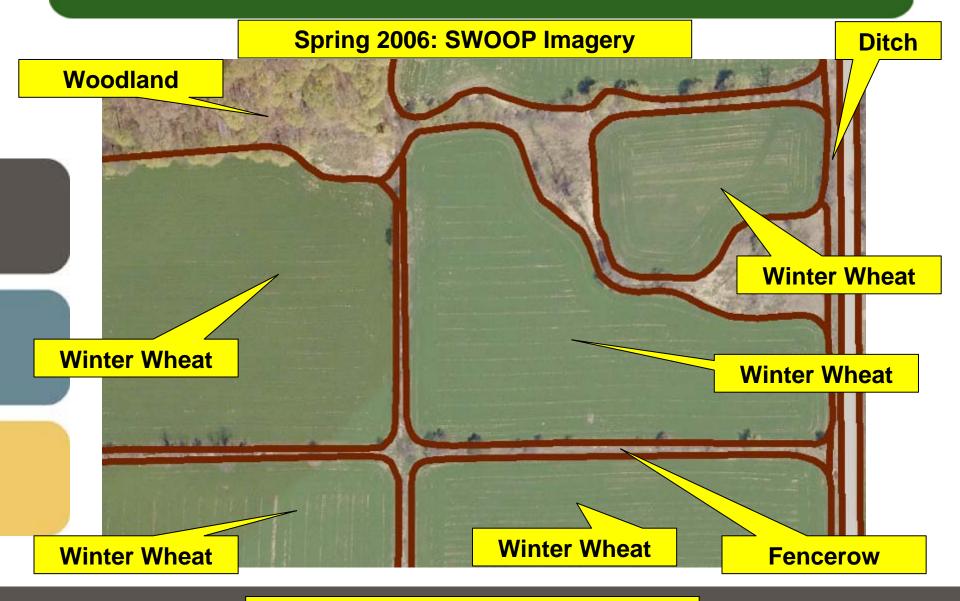
• "New" OMAFRA Agricultural Resource Inventory

ARI attributes for farm fields include:

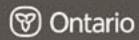
- > type of crop (pasture, hay, field or horticultural crop, etc.), crop residue (previous season(s)) and planting information (direction, row spacing, etc.); leads to crop rotation patterns
- > tillage system (type: conventional; conservation; no-till; etc) and direction; also leads to stewardship practices
- ➤ **nutrient applications** (or stocking density on pastures); mapped only where directly observed; will give very limited but useful information on practices

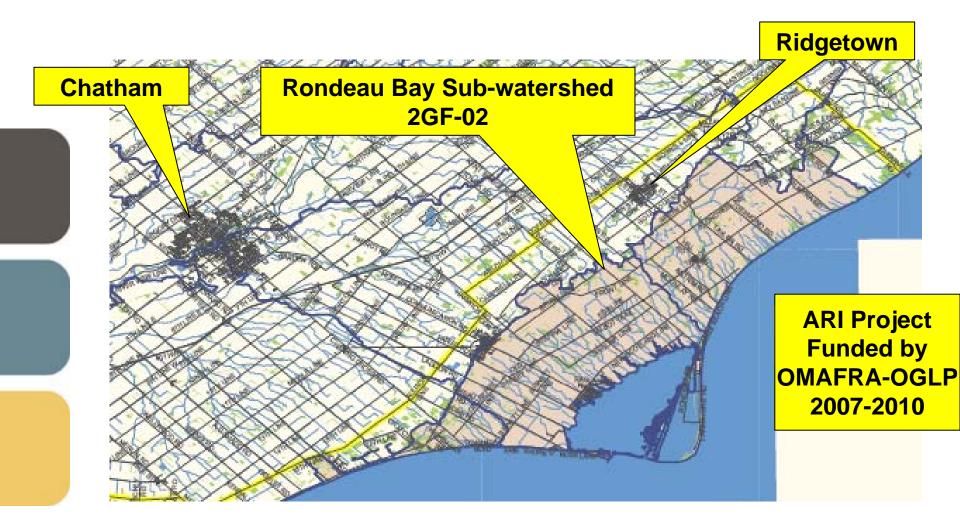

Lake Erie Basin Watershed ARI Pilots **Fairchild Creek** Cambridge **Sub-watershed ARI Project Funded by OMAFRA-OGLP** 2007-2010 **Brantford** Ontario Ministry of Agriculture, Food and Rural Affairs


Digitized Polygons: Example from Fairchild Creek Sub-watershed



Spring 2006: SWOOP Imagery




Digitized Polygons: Example from Fairchild Creek Sub-watershed

Digitized Polygons: Example from Fairchild Creek Sub-watershed

Ontario's Agricultural Land Management Practices

Some thoughts on land side needs

Data: watershed based land use, practice use, better resolution DEM

Contribution areas better defined: particulate and dissolved

Role of Nitrogen

BMP role and effectiveness, particularly related to DRP

Climate effect: more intense events

Soil test data

Economics of proposed management actions

Thank You

