N, P, and isotopes from the nearshore/offshore Lake Erie nutrient study (NOLENS).

C.M. Pennuto^{1,2}, A. Pérez-Fuentetaja^{1,2}, A. Karatayev^{1,2}, L. Burlakova^{1,2}, G. Matisoff³, D. Bade⁴, J. Conroy⁵, E.A. Marschall⁵, and J. Kramer⁶.

¹Biology Department, Buffalo State College, Buffalo, NY
²Great Lakes Center, Buffalo State College, Buffalo, NY
³Dept of Geological Sciences, Case Western Reserve University, Cleveland, OH
⁴Biology Department, Kent State University, Kent, OH
⁵Biology Department, The Ohio State University, Columbus, OH
⁶National Center for Water Quality Research, Heidelberg University, Tiffin, OH

Sampling approach

- NS-to-OS transects bracketing major tribs to C & E basins...also allowed coordination with other trib/watershed groups
- NS: R/V J.J. Freidhoff/whalers; OS: R/V Lake Guardian
- fixed stations (2, 5, 10, 20 m), June and late Aug/early Sept sampling
- quantify water column and benthic P pools...bacterial, phytoplankton, 3 zooplankton sizes, *Dreissena* mussels, dominant infaunal/epifaunal, *Cladophora*, sediments (both mussel bed and non-mussel bed)
- estimate fluxes...bacterial and phytoplankton productivity, sedimentation
- link pools and fluxes via stable isotope analyses and hydrodynamic model of particle transport

Location

Benthic matrix P amounts

Location

Water column [TP]

Water column [chl a]

Water column algal P-limitation

δN¹⁵

Results summary

- Distinct NS-to-OS reductions in water column [TP] at all 3 locations, WC & E basin increase [TP] with season, but C decreased with season
- Algal abundance (chl a) matched [TP] in both seasons and across basins, declining NS to OS and increasing or decreasing with [TP]; generally declining west to east
- Algal and bacterial communities were P-limited in the C, but not the WC or E basins in fall
- WC basin plankton exhibits a slightly higher δN , suggesting either longer chains or a different basal resource
- The majority of organic particulate P resides in *Dreissena* tissues, but mussel abundance is very different in the basins and at different depths
- Sediments harbor the largest pool of P in the lake. Although C basin sediments have the highest [P] averaged across all depths, and the highest P pool, WC basin sediments have the highest OS [P]

Acknowledgments

GLNPO grant to CMP et al.

National Science Foundation

Collaborators: G. Matisoff

- D. Bade J. Kramer S. Karatyev A Perez-Fuentataja J. Conroy L. Burlakova Students: M. Hadjuk C. Janik
 - C. Varasco
 - C. Todd
 - K. James

NSF-URM grant to CMP for summer students

