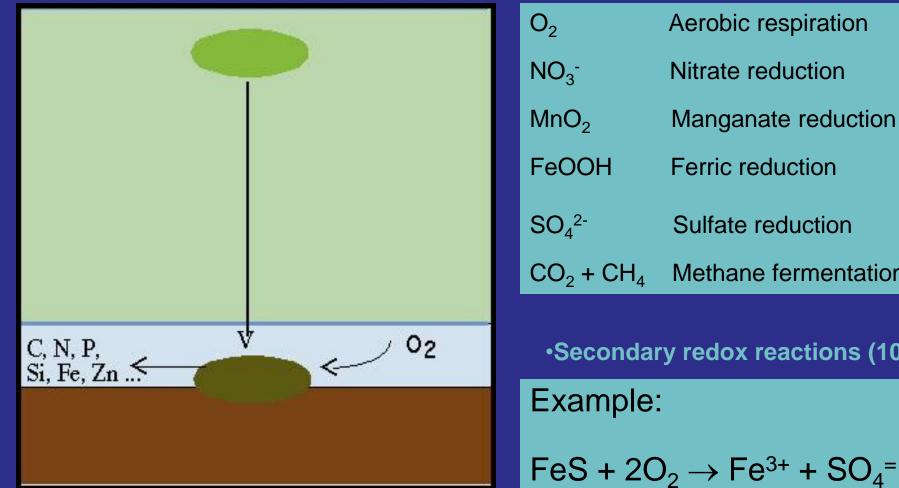
# **Oxygen Dynamics in Lake Erie**

**Gerald Matisoff** 

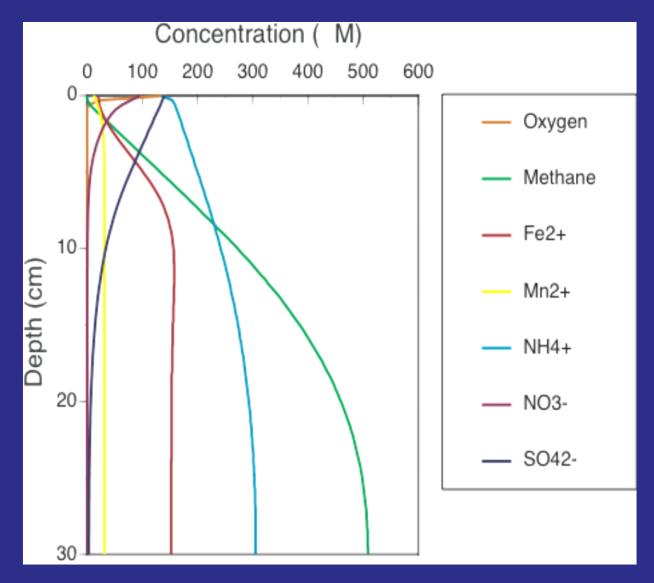

### Lake Erie Millennium Network April 26-29, 2010



# **Oxygen Dynamics in Lake Erie**

- \* Biogeochemical modeling of SOD, nutrient dynamics (Matisoff and Small)
- \* Effects of mayflies, chironomids on SOD (Edwards, Soster, Matisoff and Schloesser, 2009)
- \* Effects of storms, tributary flows (Conroy, Boegman, Zhang, Edwards, and Culver, ms)
- \* ECOFORE (DePinto et al.)

# **Biogeochemical Model for Organic Matter Oxidation**

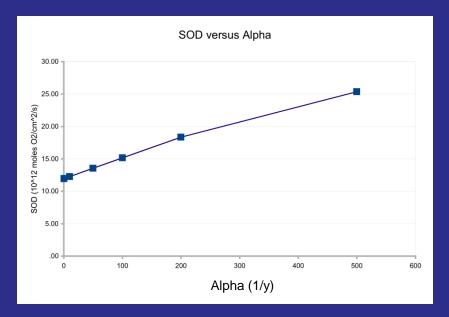



#### Primary redox reactions (6)

| O <sub>2</sub>    | Aerobic respiration  |
|-------------------|----------------------|
| NO <sub>3</sub> - | Nitrate reduction    |
| MnO <sub>2</sub>  | Manganate reduction  |
| FeOOH             | Ferric reduction     |
| SO42-             | Sulfate reduction    |
| $CO_2 + CH_4$     | Methane fermentation |

Secondary redox reactions (10)

### **Model Results**




Matisoff and Small

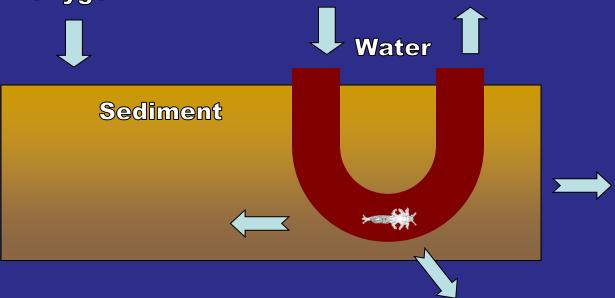
### **Model Results**

| Process                    | % SOD |
|----------------------------|-------|
| Aerobic respiration        | 48    |
| Nitrification              | 0.7   |
| Mn <sup>2+</sup> oxidation | 12    |
| Fe <sup>2+</sup> oxidation | 26    |
| Secondary reactions        | small |

#### Bioirrigation increases SOD ~2X

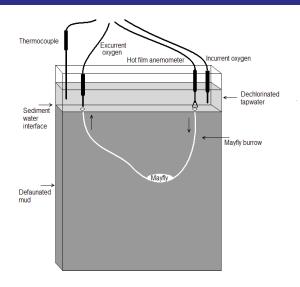


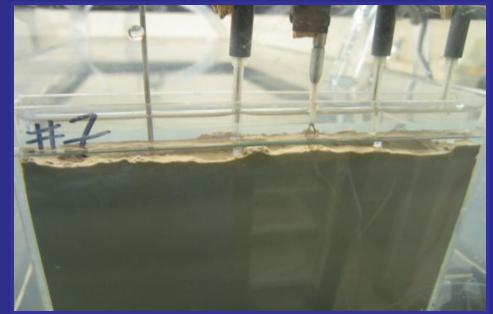
#### Matisoff and Small

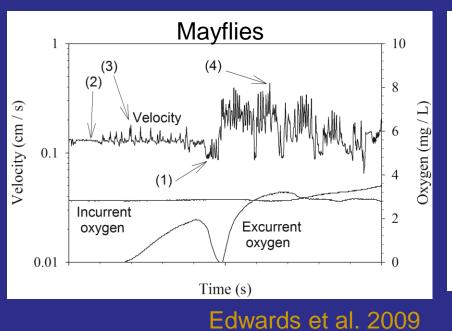

### **Effects of Bioirrigation on SOD**

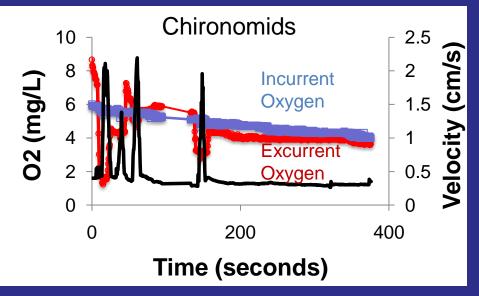


Mayflies





Oxygen





Chironomids

### **Bioirrigation and SOD**





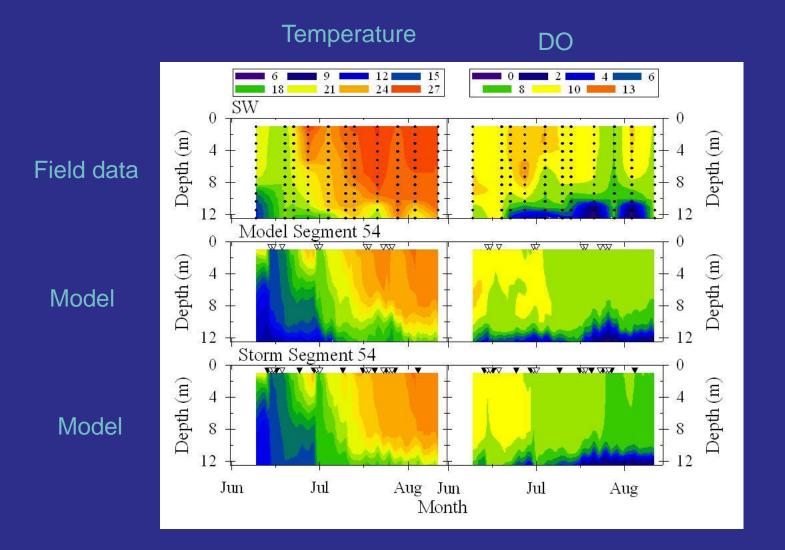




#### Edwards et al.

### **Chironomus versus Hexagenia**

|   | Incubation  | Large      |        | Small      |        |
|---|-------------|------------|--------|------------|--------|
|   | Temperature | Chironomid | Mayfly | Chironomid | Mayfly |
|   | 4°C         | 64.8       | 240.7  | 34.6       | 192.1  |
| Ď | 25°C        | 7.4        | 58.0   | -          | 21.7*  |


|   | Incubation  | Mayfly  |        | Chironomid |            |
|---|-------------|---------|--------|------------|------------|
| - | Temperature | Control | mayfly | Control    | chironomid |
|   | 4°C         | 131.5   | 1120   | 17.6       | 52.3       |
| Ñ | 25°C        | -       | 233    | 18.4       | 46.7       |

\*mg/microcosm/month

# Impacts of Bioirrigation on Oxygen Demand

| Study                                                     | Areal Oxygen Demand<br>(g/m2/month) |         | % HVOD<br>(rel to EPA) |  |
|-----------------------------------------------------------|-------------------------------------|---------|------------------------|--|
|                                                           | WB                                  | СВ      |                        |  |
| EPA depletion rates                                       |                                     | 7.0     | 100                    |  |
| Matisoff and Neeson (2005)                                | 7.6                                 | 6.9     | 99                     |  |
| Smith and Matisoff (2008)                                 |                                     | 3.0-6.5 | 43-93                  |  |
| Edwards et al. (2009) (Mayfly Demand)                     | 2.4-20.8                            |         |                        |  |
| Edwards et al. (ms) (Chironomid Demand)<br>(low estimate) |                                     | 5.2     | 74                     |  |

### Effects of winds, storms on HOD



Conroy et al

# Effects of winds, storms on HOD

With more storms:

- \* wind-induced periods of entrainment became more frequent
- \* the hypolimnion was warmer
- thermal stratification occurred one month later whereas autumnal turnover occurred at least one week earlier shortening the duration of stratification by 1–2 months
- \* HOD rates increased 12%

# Has Oxygen Demand Changed?

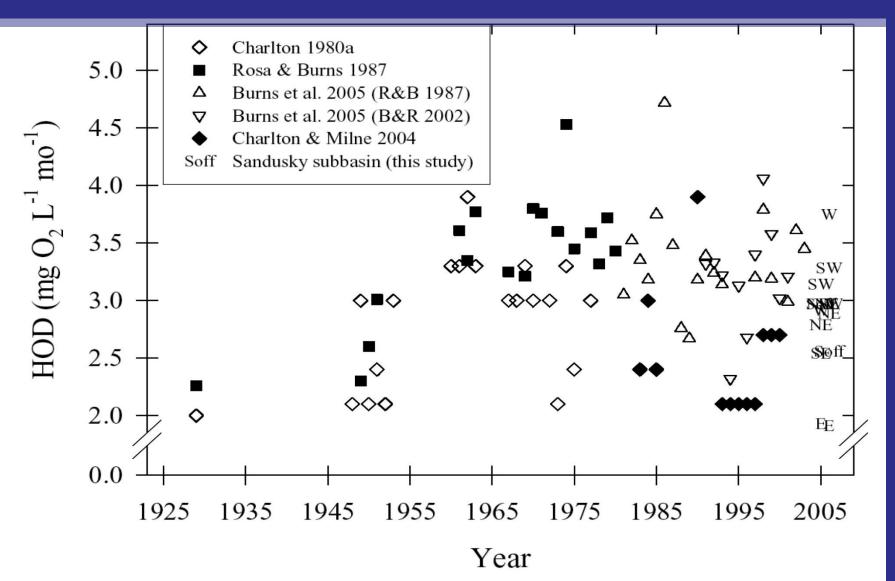

| $\frac{\text{SOD}}{(\text{g O}_2/\text{m}^2/\text{d})}$ | SOD $(10^{-12} \text{ moles O}_2/\text{cm}^2/\text{s})$ | Method                                     | Reference                    |
|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|------------------------------|
| $0.28^1$ and $0.36^1$                                   | 10.85-13.0                                              | _                                          | Blanton and Winkhofer (1972) |
| $0.360^{1}$                                             | 13.0                                                    | chamber experiments                        | Lucas and Thomas (1972)      |
| 0.431                                                   | 15.6                                                    |                                            | Lassenby (1979)              |
| $0.290^{1}$                                             | 10.5                                                    | modeling                                   | DiToro and Connolly (1980)   |
| $0.888^{1}$                                             | 32.1                                                    | dark chamber                               | Herdendorf (1980)            |
| $0.3 - 0.4^{1}$                                         | 10.9-14.5                                               | dome chamber experiment                    | Snodgrass (1987)             |
| 0.229                                                   | 8.29                                                    | O2 diffusion model                         | Matisoff and Neeson (2005)   |
| 0.0598                                                  | 2.16                                                    | flow-through experiment biocide (0–5 cm)   | this work                    |
| 0.112                                                   | 4.04                                                    | flow-through experiment untreated (0–5 cm) | this work                    |
| 0.128                                                   | 4.63                                                    | flow-through experiment untreated (0–1 cm) | this work                    |
| 0.103                                                   | 3.47                                                    | BRNS model (0–5 cm)                        | this work                    |
| 0.218                                                   | 7.87                                                    | BRNS model (0–10 cm)                       | this work                    |
| 0.204                                                   | 7.40                                                    | whole core incubation (average)            | this work                    |

 TABLE 1. Estimates of the sediment oxygen demand (SOD) in Lake Erie.

<sup>1</sup> Reported by Snodgrass (1987)

#### Smith and Matisoff 2008

### Has Oxygen Demand Changed?



Conroy et al.

### Conclusions

- Biogeochemical modeling needs calibration; can calculate fluxes, SOD, impacts of benthos
- Biogeochemical modeling results indicate that aerobic respiration ~ ½ SOD; bioirrigation increases SOD ~ 2X
- \* Mayflies, chironomids are bioirrigators, increase BOD, SOD
- \* BOD, SOD effects of mayflies > chironomids
- \* Effects of BOD, SOD of mayflies, chironomids may be significant fraction of HOD
- \* With more storms
  - the hypolimnion was warmer
  - - HOD rates increased
- \* No evidence for change in SOD with time (but lag expected to be long)

### **Future Research Needs**

- \* Biogeochemical model calibration data set
- \* Use model to predict
  - internal nutrient loadings (esp P)
- system response times to changes in depositional fluxes
  - effects of changing macrobenthic community
- Comparison/re-evaluation of SOD/HOD measurement techniques
- \* Better quantification of effects of benthos on HOD
- \* Link sediment model with hydrodynamic model (ECOFORE, Conroy et al.)