DOMINANCE OF EXOTIC INVERTEBRATES CHANGES THE LAKE ERIE BENTHIC COMMUNITY

www.buffalostate.edu/greatlakescenter

Buffalo State State University of New York

Lyubov Burlakova Research scientist

Christopher Pennuto Associate Professor

Caleb Basiliko Research Fleet Manager

Methods:

 This study was funded by U.S. EPA and was a part of "The Nearshore and Offshore Lake Erie Nutrient Study"

- 125 benthic samples were collected in June 2009, including nearshore (6 transects, petite Ponar and airlift) and offshore (22 EPA sites, Ponar).
- Washed through a 500 µm mesh and fixed with formalin
- Identified to the lowest possible level, counted, blotted dry on absorbent paper and weighted (total wet mass)
- We compared our data with 1979 sampling (Dermott 1997), using a similar, common level of taxonomic resolution

Benthic Diversity in the Lake Erie in 2009:

- 48 species and higher taxa were found in the samples, including 9 invaders
- Invaders were overrepresented by molluscs and crustaceans, and absent in the most diverse group of benthic invertebrates - insects

Taxon richness	Total	Invaders	% Invaders
Insects	21	0	0
Molluscs	19	7	36
Crustaceans	3	1	33
Hirudinea	2	0	0
Other	3	1	33
TOTAL	48	9	19

Density of Lake Erie Benthos in 2009 (Lake Guardian samples only):

- Exotic invertebrates formed from 10 to 67% of total benthic density
- The role of invaders varied among lake basins, being the highest in the Western and lowest in the Central Basin

	Eastern basin		Central basin		Western basin	
	All	% of	All	% of	All	% of
Class	species	invaders	species	invaders	species	invaders
Bivalvia	904	>99	507	32	1561	89
Gastropoda	1	40	6	19	155	4
Oligochaeta	327	0	1186	0	198	9
Insecta	224	0	493	0	310	0
Crustacea	6	46	97	70	319	100
Hirudinea	3	0	6	0	23	0
TOTAL	1465	62	2295	10	2565	67

Invaders in Lake Erie Benthos in 2009:

- Invasive species formed from 79 to 99.9% of the total wet biomass
- The role of invaders was larger in biomass than in the density, indicating that invaders generally have higher body mass than native species, and therefore may be more important in the functioning of the ecosystem

	Eastern basin		Central	Central basin		Western basin		Lakewide	
	All	% of	All	% of	All	% of	All	%	
Parameters	species	invaders	species	invaders	species	invaders	species	invaders	
Density, m ⁻²	1465	62	2295	10	2565	67	2108	45	
Biomass, g m ⁻²	751	99.9	97	86	163	79	337	95	

Cluster Analysis of Benthic Communities in Different Basins in 2009 Lake Guardian samples only (by density):

Lake Erie benthic communities were significantly different in all lake basins

black lines – clusters are significant at P < 0.02 (SIMPROF test)

Multi-Dimensional Scaling Plot of Differences in the Benthic Communities in Different Basins in 2009 (density):

Benthic communities were significantly different (P= 0.001, ANOSIM) in all basins, regardless of the presence of quagga mussels

Lake Guardian samples only

Density (m⁻²) of Zoobenthos in the Lake Erie in 2009:

- Exotic molluscs and crustaceans were found in the nearshore zones, while only molluscs were found among exotics in the offshore
- Invasive species formed from 40 to 47% of the total density in the nearshore zone and from 2 to 75% in the offshore zone
- The role of invaders varied among lake basins

Nearshore

Offshore

	Easterr	n basin	Central basin		
Class	All	% of	All	% of	
	species	invaders	species	invaders	
Bivalvia	660	>99	402	100	
Gastropoda	1	0	0	0	
Oligochaeta	402	0	226	0	
Insecta	320	0	680	0	
Crustacea	12	46	204	100	
Hirudinea	4	0	0	0	
TOTAL	1399	47	1512	40	

	Eastern	basin	Central basin		
	All	% of	All	% of	
Class	species	invaders	species	invaders	
Bivalvia	1147	>99	560	7	
Gastropoda	1	100	8	19	
Oligochaeta	255	0	1665	0	
Insecta	129	0	399	0	
Crustacea	0	0	44	0	
Hirudinea	2	0	10	0	
TOTAL	1534	75	2701	2	

MDS Plot of Differences in the Benthic Communities in Nearshore and Offshore zones in 2009:

- Significant difference (P=0.001) was found between nearshore and offshore communities in the Central basin
- Presence/absence of dressenids did not change the result

- However, in the Eastern Basin, the presence of dreissenids had a stronger effect than depths (Global R = 0.73 vs. R = 0.24, ANOSIM)
- Dreissenids contribute to the homogenization of the benthic community?

Population Dynamics of Dreissenids in Lake Erie

(Data for 1992 – 2002 from Patterson et al. 2005, Data for 2004 from Ciborowski et al 2007)

Density, m ⁻²	1992 (n=47)	1993 (n=37)	1998 (n=30)	2002 (n=107)	2004 (n=283	200) (n=4	19 10)
Eastern Basin: All Dreissena	~6000	~4875	~6000	9481		7	791
% of <i>D. bugensis</i>	~25	~74	~92	100		9	9.9
Central Basin: All Dreissena	~1000	~2425	~3000	635			90
% of <i>D. bugensis</i>	~13	~72	100	97			97
Western Basin: All Dreissena	~875	~1375	~375	601		8	885
% of <i>D. bugensis</i>	0	0	~33	43			88
Lake-wide: All Dreissena	2600	2658	3791	2025		í	532
% of <i>D. bugensis</i>	19	66	88	92			94
•							
Wet biomass g m ⁻²	1992	1993	1998	2002	2004	2009	
Wet biomass g m ⁻² Eastern Basin: All <i>Dreissena</i>	1992	1993	1998	2002 ~4826	2004	2009 642	
Wet biomass g m ⁻² Eastern Basin: All <i>Dreissena</i> % of <i>D. bugensis</i>	1992 ~26	1993 ~72	1998 ~94	2002 ~4826 ~100	2004	2009 642 99.9	
Wet biomass g m ⁻² Eastern Basin: All <i>Dreissena</i> % of <i>D. bugensis</i> Central Basin: All <i>Dreissena</i>	1992 ~26	1993 ~72	1998 ~94	2002 ~4826 ~100 ~659	2004	2009 642 99.9 54	
Wet biomass g m ⁻² Eastern Basin: All <i>Dreissena</i> % of <i>D. bugensis</i> Central Basin: All <i>Dreissena</i> % of <i>D. bugensis</i>	1992 ~26	1993 ~72 ~44	1998 ~94 ~99	2002 ~4826 ~100 ~659 ~99	2004	2009 642 99.9 54 98	
Wet biomass g m-2Eastern Basin: All Dreissena% of D. bugensisCentral Basin: All Dreissena% of D. bugensisWestern Basin	1992 ~26 ~25	1993 ~72 ~44	1998 ~94 ~99	2002 ~4826 ~100 ~659 ~99 ~269	2004	2009 642 99.9 54 98 79	
Wet biomass g m-2Eastern Basin: All Dreissena% of D. bugensisCentral Basin: All Dreissena% of D. bugensisWestern Basin% of D. bugensis	1992 ~26 ~25	1993 ~72 ~44 0	1998 ~94 ~99 ~50	2002 ~4826 ~100 ~659 ~99 ~269 ~69	2004	2009 642 99.9 54 98 79 95	
Wet biomass g m-2Eastern Basin: All Dreissena% of D. bugensisCentral Basin: All Dreissena% of D. bugensisWestern Basin% of D. bugensisLake-wide: All Dreissena	1992 ~26 ~25 0 640	1993 ~72 ~44 0 370	1998 ~94 ~99 ~50 999	2002 ~4826 ~100 ~659 ~99 ~269 ~269 ~69 1146	2004	2009 642 99.9 54 98 79 98 79 95 241	

Size-frequency Distribution of Dreissenids in Lake Erie, 2009

- Both species had two distinct maximums
- Dreissena r. bugensis was significantly larger (P < 0.001)

What is coming out of Lake Erie?

- Over 100 private boats from Lake Erie were examined for dreissenids during winterization in marinas in Buffalo area
- 11 boats were found to contain attached live dreissenids

Size-Frequency Distribution of Dreissenids from Macrophytes Attached to Trailers and Small Boats from Lake Erie

Sample #	1		2		3	
Species	ZM	QM	ZM	QM	ZM	QM
Sample Size	8	8	56	97	74	57
Mean Length (mm)	4.88 ±0.75	5.66 ±0.67	4.41 ±0.20	4.65 ±0.17	5.63 ±0.15	5.40 ±0.15

Dreissenids on Power Boats from Lake Erie

Sample #		1	2		3	
Species	ZM	QM	ZM	QM	ZM	QM
Sample Size	145	33	144	159	0	7
Mean						
Length (mm)	7.7±0.4	3.8±0.5	5.1±0.1	4.5±0.1		7.4±0.9

Size-Frequency Distributions: Sail Boats from Lake Erie

Sample #	1		2		3	
Species	ZM	QM	ZM	QM	ZM	QM
Sample Size	32	112	48	14	151	44
Mean Length (mm)	10.9 ±0.5	8.5 ±0.8	11.1 ±0.4	8.9 ±0.5	11.8 ±0.2	8.4 ±0.3

COMPARISON WITH 1979

Role of Exotic Species in the Benthic Diversity of Lake Erie:

has increased from 7 to 19% of the total species richness of benthic invertebrates over the last 30 years

2009

1979

Taxon richness	Total	Invaders	% Invaders	Taxon richness	Total	Invaders	% Invaders
Insects	19	0	0	Insects	21	0	0
Molluscs	12	1	8	Molluscs	19	7	36
Crustaceans	3	0	0	Crustaceans	3	1	33
Hirudinea	2	0	0	Hirudinea	2	0	0
Other	6	2	33	Other	3	1	33
TOTAL	42	3	7	TOTAL	48	9	19

Benthic Community Structure in 1979 and 2009:

Invaders became dominant species in Lake Erie benthic community

Species

Role of exotic species in the Lake Erie benthic community over the last 30 years has increased:

- Total benthic density lake-wide from 2.1% to 45%
- Total benthic biomass lake-wide from 2.6 to 95%
- The largest difference was found in the least studied Eastern Basin

		%		%		%	Lake	%
Parameters	Eastern	invaders	Central	invaders	Western	invaders	wide	invaders
Density, m ⁻²	5997	4	6060	0.5	2417	1	4825	2.1
Biomass, g m ⁻²	1162	4	1334	0.1	948	5	1148	2.6

1	9	7	9

2009								
		%		%		%	Lake	%
Parameters	Eastern	invaders	Central	invaders	Western	invaders	wide	invaders
Density, m ⁻²	1465	62	2295	10	2565	67	2108	45
Biomass, g m ⁻²	751	>99	97	86	163	79	337	95

Cluster Analysis of Benthic Communities (by density):

 Benthic communities in 1979 and 2009 were significantly different (P = 0.01, SIMPROF)

MDS Plot of Differences in the Benthic Communities in Different Basins in 1979-2009 (density):

- Benthic communities have changed significantly in all lake basins
- The largest difference was found in the least studied Eastern Basin

Conclusions:

- Exotic species formed 19% of the species richness, were disproportionally overrepresented by molluscs and crustaceans, and absent in insects
- Exotic species formed 45% of the total density and 95% of the total wet biomass
- Benthic communities were significantly different in all lake basins, regardless of the presence of dreissenids
- Significant difference was found between the nearshore and offshore communities in the Central Basin; in contrast, in the Eastern Basin the presence of dreissenids had stronger effect than depths
- Role of exotic species over the last 30 years has increased in:
 - benthic diversity from 7% to 19%
 - density from 2.1% to 45%
 - wet biomass from 2.6% to 95%
- Due to the introduction of exotics, benthic communities have significantly changed in all lake basins, with the largest difference found in the least studied Eastern Basin

Conclusions:

- Lake-wide dreissenid density was 532 m⁻² and quagga mussels formed over 94%
- Average wet biomass of dreissenids was 241 g m⁻² and quagga mussels formed 99% of total dreissenid biomass
- However, *D. polymorpha* obtained similar or larger sizes and density on examined boats - the main vectors of spread for the two species
- Therefore, despite the dominance of *D. r. bugensis* among dreissenids in Lake Erie, the introduction of *D. polymorpha* may be just as likely as that of *D. r. bugensis*

Acknowledgments

This study was funded by U.S. EPA

"The Nearshore and Offshore Lake Erie Nutrient Study" to: C. Pennuto, A. Y. Karatayev, A. Perez-Fuentetaja, L. E. Burlakova, G. Matisoff, J. Kramer, D. Bade, J. Conroy.

Our special thanks to S. Mastitsky, Marissa Hajduk, Chris Janek, and other Buffalo State students & staff for assistance

