Phosphorus Chemistry and Sequestration in Soil

Elizabeth (Libby) Dayton Research Scientist / Soil Environmental Chemistry School of Environment and Natural Resources Ohio State University

Today's Presentation

 Soil Chemical Processes Important to P sequestration and solubility / mobility / runoff / leaching

•Soil Testing of "labile P": Crop production vs environmental soil testing

 Assessment Tools to predict Risk of P transport (runoff/leaching) in Ohio

Soil Phosphorus Pools

Sequestered P very insoluble forms of P insoluble P minerals strongly adsorbed P

"Labile P" P in Equilibrium with soil solution P Adsorbed (bound) P soluble P minerals

Quantity

Soil solution P dissolved P bioavailable P

Intensity

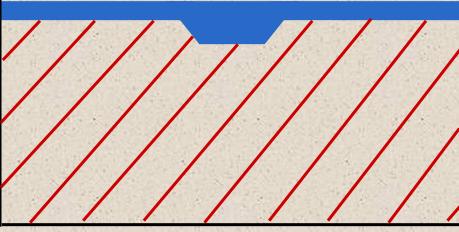
Q-I is a 2 way street replaces losses of dissolved P removes additions of soluble P

Sequestered >> Quantity >> Intensity

Chemical Fate of Introduced Soluble P

Fertilizer / Manure / Biosolids Additions

Soluble H₂PO₄-

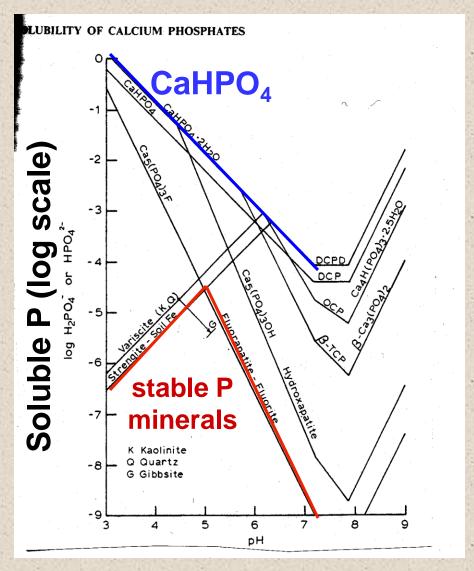

Adsorption (Binding) onto soil oxide clays (Fe, Al, Mn oxides)

Precipitation (Fe, Ca, Al phosphates) formation and transformation of P minerals

These two mechanisms control labile P in equilibrium with soil solution (QI)

Precipitation / Dissolution of P Minerals Solubility of P-minerals limits P dissolution and availability Fe, Al phosphates at low pH (<5) Ca phosphates at high pH (5 - 8.5)

% of Total Soil P


soluble P available P insoluble P unavailable P

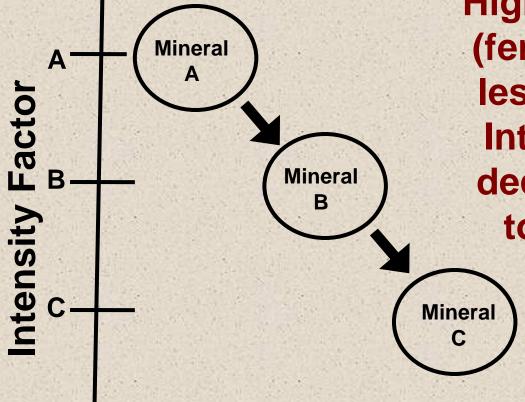
Soil pH

Very insoluble at most pH maximum solubility at pH 5 to 7

plant available P can be very low in unfertilized soil plant growth and crop yield can be limited by P

Does P fertilizer increase P solubility?

Fertilizer P becomes CaHPO₄ in soil

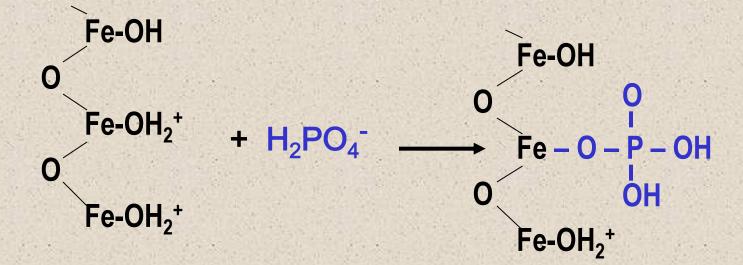

CaHPO₄ is metastable

Eventually transforms to FePO₄, AIPO₄ or a Ca apatite

while CaHPO₄ is still around-enjoy a higher soluble P and plants grow well

soluble P fertilizer works

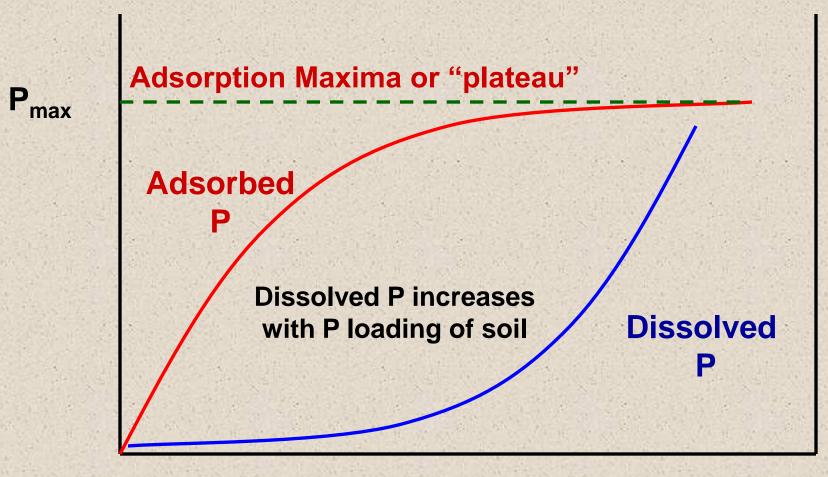
Effect of Q/I on P Availability / Solubility


Highly soluble P minerals (fertilizer) transform into less soluble P minerals. Intensity/concentration decreases and quantity/ total soil P increases

Quantity

Perhaps this is why runoff P is often not related to soil test P

P Adsorption (binding) onto Oxide Clay Surfaces Second mechanism controlling soil P solubility, mobility and availability


P adsorbs strongly to AI, Fe, Mn oxide soil surfaces

 Dependent on reactive oxide surface availability
 Not concentration dependent like mineral precipitation/dissolution reactions

Dissolved vs Adsorbed P

Increasing Phosphorus Loading of Soil

P loading of soil

Risk of P Transport in Ohio

In Ohio, the risk of agricultural phosphorus (P) runoff transport into surface water is assessed by either the Ohio USDA-NRCS

Phosphorus Index (P Index) Assessment Procedure or the Soil Test Risk Assessment Procedure (STRAP)

within the Nitrogen and Phosphorus Risk Assessment Procedures

http://efotg.nrcs.usda.gov/references/public/OH/Nitrogen and Phosphorous Risk Assessment Procedures.pdf

Both are currently being reviewed

Predicting P solubility and risk Ohio NRCS P Index

P Source Factors + Transport Factors = P Index Soil Test P Runoff Potential (slope) Soluble P In Distance To Stream Manure/biosolids Erosion Class, etc.

The Ohio P Index combines well established factors that influence the transport of P from agricultural fields to surface waters. Each factor is evaluated based on site specific data and weighted, or modified, according to its overall effect on P transport. Each of the site sub-values are added together to establish an overall site rating, or score, of Low, Moderate, High or Very High risk

Phosphorus source terms / weighting factors in current Ohio P Index						
4	Soil Test P mg/kg	Bray-Kurtz-P1 mg/kg X 0.07				
5	Fertilizer Application Rate	Planned Fertilizer P ₂ O ₅ Application (lbs/A) X 0.05				
6	Fertilizer P ₂ O ₅ Application Method	0 Applied Value = 0	Immediate Incorporation OR Applied on 80% Cover Value = 0.75	Incorporation < 1 Week OR Applied on 50-80% Cover Value = 1.5	Incorporation > 1week and < 3 months OR Applied on 30- 49% Cover Value = 3.0	No Incorporation or Incorporation > 3 months OR Applied on < 30% Cover Value = 6.0
7	Organic P Application Rate	Planned Manure/Biosolids P ₂ O ₅ Application (lbs/A) X 0.06				
8	Organic P ₂ O ₅ Application Method	0 Applied Value = 0	Immediate Incorporation OR Applied on 80% Cover Value = 0.5	Incorporation < 1 Week OR Applied on 50-80% Cover Value = 1.0	Incorporation > 1week and < 3 months OR Applied on 30- 49% Cover Value = 2.0	No Incorporation or Incorporation > 3 months OR Applied on < 30% Cover Value = 4.0

The Soil Test Risk Assessment Procedure (STRAP)

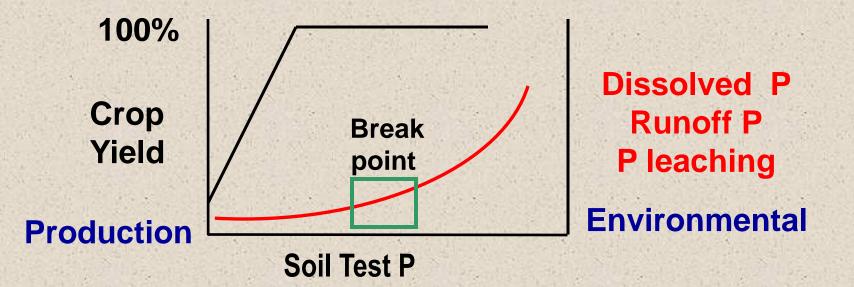
Simpler than P Index Often used as a screening tool

Used to predict risk of P transport based on the Bray-P1 extractable STP level. As STP levels increase above 150 mg/kg Bray-P1 it is presumed that their will be an increase in P transport and no additional phosphorus application is recommended.

Once field STP levels exceed 150 mg/kg Bray-P, the P Index can be used to evaluate risk of P transport and it is possible that the use of the P Index may allow for additional P application.

Soil Test P (STP)

Important Component for BOTH Ohio Indices

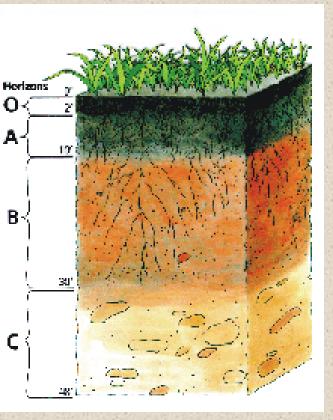

Crop Sufficiency vs Environmental Risk Crop production soil tests: Measure the "labile" nutrient pool that will be available to the crop during some / all of the growing season

Professor Bray's Requirement for a "good soil test" (1948)

- 1. Extract a proportionate part of plant available forms of nutrient from different soils
- 2. Extracted nutrients should correlate with uptake of nutrient and crop yield

Is it appropriate to extrapolate soil fertility test data to predict risk of P transport to surface water (runoff/leaching)?

Using Crop Production Soil Tests as Environmental Soil Tests



Identify soil test level "break point" where P solubility begins to increase rapidly if there is one

Set STP limit at break point to minimize soluble P

Problems: Are we confident where the break point is? What depth is the soil sampled to?

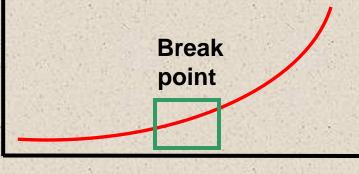
Typical Soil Profile

Soil Depth and P Sorption

A Horizon

zone of organic matter accumulation Typically less clay than B horizon lower P sorption than B horizon

B Horizon


zone of clay (oxide) accumulation increase in P adsorption decrease in soluble P

Non conservation tillage: P incorporation 6 to 8 inch depth

Surface fertilizer application or Conservation tillage: incorporation of P (< 2 inch) more P in A horizon which has lower sorption capacity. Potential for increased soluble P at the surface

Environmental P Soil Tests

Environmental Soil Test P

Similar approach – evaluate other test methods not necessarily correlated to crop yield.

Evaluate surface (0-2 in) soil sampling vs agronomic soil sampling (0-8 in) to determine which (if either) best predicts risk of P transport (runoff / leaching)

Current and Future Research Goals

Evaluate (validate) and if necessary revise

P Index P source terms [Soil test P (STP), P application rate, and P application methods]
Weighting/modifying factors to make P Risk Index more quantitative

•The threshold STP level of 150mg P/kg used in STRAP to predict P transport risk.

Results could be directly applied toward revising Ohio P assessment tools as necessary. Long-term experiment at: Waterman Research Farm Columbus, OH no-till, silt loam

CIG: Grand Lake St Mary's: Mercer County Celina, OH no-till, silt loam

GLNPO-R4 Sandusky Watershed mixed tillage silt loam and silty clay loam

GLNPO-R5, Robert Mullen Maumee watershed mixed tillage, silty clay loam

Kottman Hall

Questions??

Libby Dayton, dayton.15@osu.edu

School of Environment and Natural Resources www.snr.osu.edu