
Fish community structure in Lake 

Erie: continued rehabilitation or a 

return to degradation?

J.D. Conroy1,2, S.A. Ludsin1, K. Kayle2, J.T. 

Tyson2, R.L. Knight2, and D.A. Culver1

1 – Dept. of EEOB, OSU

2 – DOW, ODNR

Photo credit: NASA



Roadmap

 Introduction: Identifying LE fish community threats to   

established goals

 Methods

 Results

 Discussion



Lake Erie fish community goals

 Great Lakes Fishery Commission:  Harmonic cool-water 

percid community

Ryan et al. 2003



Lake Erie fish community goals

 Great Lakes Fishery Commission:  Harmonic cool-water 

percid community

 To achieve balance:

» External P load target = 11,000 metric tonnes (11 Gg)

» Western basin [TP] target = 15 mg m-3

» Central basin [TP] target = 10 mg m-3

Ryan et al. 2003



Lake Erie fish community goals

 Great Lakes Fishery Commission:  Harmonic cool-water 

percid community

 To achieve balance:

» External P load target = 11,000 metric tonnes (or Gg)

» Western basin [TP] target = 15 mg m-3

» Central basin [TP] target = 10 mg m-3

 Expected outcomes

» Controlled phytoplankton abundance (PP)

» Year-round aerobic central basin hypolimnion (not realistic)

» Adequate Lower Trophic Level and Forage Fish base
Ryan et al. 2003
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Phosphorus load changes

Data from Dolan 1993, Dolan pers. comm.
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Data from Dolan & McGunagle, USEPA, Environ. Canada, ODOW
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Phytoplankton community changes

Lake Erie 1980s



Phytoplankton community changes

Microcystis

“Mike”

Lake Erie

August 2009

Lake Erie Now
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Zooplankton community changes

Data from Watson & Carpenter 1976, unpub. CLEAR data, Makarewicz 

1993, Conroy et al. 2005, unpub. LEPAS data



Zooplankton community changes

Data from Watson & Carpenter 1976, unpub. CLEAR data, Makarewicz 

1993, Conroy et al. 2005, unpub. LEPAS data
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Hypotheses

 Recent increased [TP], Phytoplankton, and 

Zooplankton lead to:

 H1: Shift from benthivore to planktivore dominance

 H2: Shift to bottom-up control of the fish community
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» Abiotic/biotic patterns and processes

» Internal/external forcing functions

» Density-dependent & independent controls

 Today, therefore: 
» Will focus on bottom-up signal detection

» Will directly compare post-1996 to pre-1996 periods

Ludsin et al.  2001.  Life after death in Lake Erie: nutrient 
controls drive fish species richness, rehabilitation.  Ecol. Appl.
11: 731–746.

Their findings for 1969-1996:

Declining tolerant fish spp., increasing intolerant spp. 



Approach

 Synthetic, systemic

» Abiotic/biotic patterns and processes

» Internal/external forcing functions

» Density-dependent & independent controls

 Today, therefore: 

» Will focus on bottom-up signal detection

» Will directly compare post-1996 to pre-1996 periods

– Ludsin et al.  2001.  Life after death in Lake Erie: nutrient 

controls drive fish species richness, rehabilitation.  Ecol. 

Appl. 11: 731–746.

Examining life after “Life after death in Lake Erie”
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Data sources

 DOW bottom trawls

» October 1969–2008

» Western & central basins

 Community analyses

» Walleye age-0 prey species: planktivores vs. benthivores
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Walleye Prey Species

Planktivores

• preferred

•  caloric value

Alewife
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Spottail shiner

Gizzard shad

Rainbow smelt

Benthivores

• non-preferred

•  caloric value

Freshwater drum

White bass

Yellow perch

Trout-perch

White perch

Round goby
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r = 0.51
p = 0.002
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Summary

 Prey species’ abundances changed

» WB: benthivore DOMINANCE

» CB: regular benthivore dominance

» Walleye regularly depend on less preferred, low quality prey

 Balance between top-down and bottom-up control
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 Lake Erie LTLs show evidence for degradation

» [TP] > targets;  [SRP]/[TP] is increasing

» Phytoplankton biomass increasing, based on analysis of 
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Forage Task Group

sampling stations 1-20



Continued rehabilitation or degradation?

 Lake Erie LTLs show evidence for degradation

» [TP] > targets;  [SRP]/[TP] is increasing

» Phytoplankton biomass increasing, based on analysis of 

limited samples

» Zooplankton biomass slightly increasing

but still less than the 1970s

Forage Task Group

sampling stations 1-20
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Continued rehabilitation or degradation?

 Lake Erie LTLs show evidence for degradation

» [TP] > targets

» Phytoplankton biomass increasing

» Zooplankton biomass slightly increasing or similar

 Lake Erie forage fish community changing

» Shift to benthivore dominance

– prey fish quality affecting growth?

» Modified top-down/bottom-up balance 

– w/  planktivores, ZP?

– How does re-eutrophication affect balance?

» occurrence/severity of hypoxia affecting intolerant species
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» Nutrient input AND cycling affect outcome

– P bioavailability (external & internal sources) important

» Harmful algal blooms, hypoxia, low trophic efficiency, etc.

– Zooplankton do not eat much Microcystis
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» Harmful algal blooms, hypoxia, low trophic efficiency, etc.

 Need to better conceptualize and quantify 

connections between Lower Trophic Levels & fish

» Expand plankton sample analysis lake-wide

» Zooplankton AND phytoplankton

» 1,000 Forage Task Group phytoplankton samples yet to be 

analyzed

– No more 10 year gaps! (e.g., 1986-1996)



Achieving fish community goals 

 GLFC seeks harmonic cool-water percid community
» Nutrient input AND cycling affect outcome

– P bioavailability (from external & internal sources) impt.

» Harmful algal blooms, hypoxia, low trophic efficiency, etc.

 Need to better conceptualize and quantify 
connections between Lower Trophic Levels & fish

» Expand plankton sample analysis lake-wide

» Zooplankton AND phytoplankton

» 1,000 Forage Task Group phytoplankton samples yet to be 
analyzed (1999-2009)

» GLRI plankton and benthos sampling by OEPA and USGS 
and National Coastal Assessment proposed for 2010-2015
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