Circulation, Temperature and Dissolved Oxygen in Lake Erie

Ram Yerubandi Environment Canada/ National Water Research Institute Burlington, Canada

Nathan Hawley NOAA-Great Lakes Environmental Laboratory Ann Arbor, USA

W.M. Schertzer, M. Charlton, Vi Richardson, Bob Rowsel, J. Milne and Engineering & Tech Ops, NWRI

Objectives of Field Experiments (2004 & 05)

Provide hydrodynamic and temperature observations required to assess/predict changes in water quality

Data base for calibration and verification of hydrodynamic and water quality models

Physical Processes for nutrient status, hypoxia in the lake

- Circulation, horizontal and vertical mixing
- Estimate water and nutrient residence times
- Estimate Inter basin transports on daily scale for model input
- Estimate onshore-offshore exchanges during summer episodic events (upwelling) along the north shore of the central basin

Experimental Set-up (2004)

International Field Year on Lake Erie

- More Coverage of instruments & water sampling
- Maintained interbasin transport moorings & High frequency temperature

Nearshore/Offshore Exchanges

- 1. The linear slope shows a depletion of 0.07 mg/L/d.
- 2. Some stations show anoxic conditions from mid-July to the middle of August.
- 3. Relation between low hypo volume and DO

Temporal Variability of DO & Stratification (2004)

Effects of physical processes on DO

Differences from time series and ship

•Stratification started from middle of June •Hypolimnion Volume and DO

Similar Variability in 2005

Influence of Meteorology (Central Basin buoy)

Influence of Vertical Mixing on Hypoxia

- Persistence of strong N2
- Kz < 1 cm2 s-1
- This doesn't explain all

Summer Episodic Events and DO

Westerly winds forced upwelling

Meteorological forcing influences currents/mixing

Surface currents are in the order of 20-30 cm/s

Horizontal Exchanges in the Central basin

Difference between the years
Shear in the u comp is because of inertial oscillations

 Horizontal exchange (0.5 m²/s at the surface to 0.25 m²/s at bottom)

Dissolved Oxygen Balance in the Hypolimnion

$$\frac{dO_k}{dt} = \frac{K_x}{H_d} \left(\frac{O_e - O_k}{\Delta z} \right) - \left(SOD + P - R \right)$$

Vertical Mixing + low hypolimnion vol
 + typical SOD do not balance DO variability

[•] Horizontal Transport is also important

Inter-basin Exchange flows

Mean currents @ Penn. Channel

Difference in thermocline level between the CB & EB

EC-University (NSERC-SPG) Collaborative Study 2008 - 2009

NSERC SPG (Kevin Lamb/ U Waterloo- PI, Ralph Smith- U Waterloo, Joe Ackerman- U Guelph, Leon Boegman- Queens University)

Environment Canada (Ram Yerubandi, Sue Watson, David Lam)

Goals:

- 1. Understand the implications of internal wave induced mixing in hypoxia and other biogeochemical processes
- 2. High resolution models require detailed field measurements
- 3. Provide improved understanding on how the nutrients are assimilated from west basin to the central basin (GLWQA & Lake Erie LaMP)

Lake Erie 2008 Physical & Water Quality Moorings

- 1. 8 High Frequency thermistor moorings (10 sec @ 1m)
- 2. 3 Hourly temp mooring
- 3. Multi-level oxygen/Turbidity moorings at several stations
- 4. High frequency and hourly current profiles (ADCPs, ADVs)
- 5. Sediment Traps, Meteorology, Waves
- 6. Water sampling/ Microstructure profiling

Summary

- Large experiments after 20 years in the lake
- Data analysis & Hydrodynamic and water quality modeling ongoing Results so far!
- Physical limnology and surface meteorology parameters are analysed
- Physical Processes play a major role in the central basin hypoxia (nothing new!)
- Importance of bottom currents and turbulence measurements
- Estimation of horizontal and vertical mixing
- Interbasin and coastal exchanges
- Basin scale and small scale internal oscillations
- New physical limnology experiments in 2008 & 2009 (Lake Erie Surveillance Year)