LEMN 2008 Conference
University of Windsor
May 1, 2008

EcoFore: A research program to
synthesize Lake Erie data and to
* *--develop a hypoxia forecasting
¥z modellng framework
i _'Jbs"eph'v. DePinto, LimnoTech
Don Scavia, SNRE, University of Michigan
David Allan, SNRE, Uhiversity of Michigan
Tomas Hook, CILER, NOAA-GLERL and UM



EcoFore Motivation

m Field observation
§ and research on q
S nypoxia incentral

METRES

8= basin - LETS, ‘%E
B |FYLE, EPA, EC G & &

LAKE ERIE LONGITUDINAL CROSS SECTION

Source: Murray. Charlton, NWRIL

B Re-occurrence of
HABs and
nearshore
nuisance attached
algae |




Ecosystem Forecasting of Lake Erie Hypoxia

What th System Drivers/Forcing Functions
[ 1at are tne
Causes, Consequences, and Phosphorus Basin
I : - : Land U M nt Climat
Potential Remedies of Lake Erie e b Hydrology e
Hypoxia?
m Linked set of models to forecast: l
e - changes in nutrient loads to Lake Erie | Watershed Forecasts
"’f&' - ‘responses of central basin hypoxia to
£ multiple stressors _ Tributary Flows Phosphorus
' = P loads, hydrometeorology, dreissenids Loading
5, - potential ecological responses to
» ok changes in hypoxia l '
T Approach : Lake Water Quality Forecasts
- -Models with range-of complexity Temperature Dissolved
. : Profiles and I Pri
- Consider both anthropogenic and de?,?,?gn ?“m}]r::ﬂ'ﬁ Pm':,':,';r%n Oxygen
Profiles
natural stressors Volume
: - Use available data - IFYLE, LETS, etc. l
L - Will assess uncertainties in both .
g drivers and models - Ecological Impact Forecasts
- .Apply models within an Integrated . ngbscf;m Fish Habitat Food Web and
Assessment framework to inform Hypoxia Quality and Fisheries
decision making for ‘policy and Relationships Growin Rates Responses
management
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|. Watershed Loading

1) Estimate TP loads for all tributaries
« Data from Heidelberg College, point sources
« Examine sensitivity of loads to hydrologic variation

2) Quantify mass balance estimates for watersheds
« Construct P budgets
. Develop time sequence of P loadings
« Compare inputs to exports

3) Evaluate conservation practices
o  Statistical analysis
«  Watershed agricultural estimates
« Correlations between conservation and nutrient loading

4) Develop models of hydrology and nutrient export
« Soil and Water Assessment Tool (SWAT)
 Distributed Large Basin Runoff Model (DLBRM)

-Inputs for hypoxia model:



Heidelberg WQL Data for SRP, 1975-2007
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Study sites: 24 Lake Erie watersheds
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P Fertilizer use for the Lake Erie watersheds from 1972 to 2002
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Historical trend in annual P fertilizer input to

selected watersheds and the entire LEB from
1972 to 2002
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ll. Hypoxia Forecasting Modeling Approaches

Models ranging in complexity
— 1D hydrodynamics with DO consumption rates
« Vertical thermal and mixing profiles from hydrodynamic model

e DO mass lost from water column and sediment demand
— 1D hydrodynamics with simple mechanistic WO model

« TP, Carbon, Solids mechanisms driven by central basin
concentrations as boundary conditions

— 1D hydrodynamics with simple mechanistic WO model

TP, Carbon, Solids mechanisms driven by basin loads
— 3D hydrodynamics with complex mechanistic WO model

« Advanced eutrophication model framework linked to and run at
same scale as hydrodynamic model

« Multi-class phyto- and zooplankton, organic and inorganic
nutrients, sediment digenesis, etc

« Addition of zebra mussels

-Inputs for effects models




-SOD = 0.75 g/m2/d
-WCOD,, = 0.0 g¢/m3/d

1989 wcCoD, = 0.06 g/m3/d WCOD;, = 0.002 g/m?/d
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1D Simple Dissolved Oxygen Model
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Central Basin Oxygen Depletion Rate

1D Model Calibration of Annual Hypolimnetic Deoxygenation Rate
(Rucinski et al. (in prep))
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Central Basin Oxygen Depletion Rate
D. Rockwell, GLNPO, using Rosa and Burns (1987)
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lll. Ecological Effects

Objective: develop forecasts that managers
can use to guide fisheries policies In
response to anticipated hypoxia impacts.

Ensemble of Models
- Statistical models
- Bloenergetics-based population models
- Growth Rate Potential (GRP)
- IBM (Individual Based Bioenergetics)
- Food-web models
- Comprehensive Aquatic Simulation Model (CASM)
- EcoPath with EcoSim and EcoSpace




Growth rate potential models (GRP)

Bioenergetic Growth Rate Potential (GRP; g g day):

Expected daily growth rate of a fish placed in a volume of
water with known conditions:

Potential input variables:

prey density (prey type, prey size)

temperature
oxygen

light




Daily growth (g)

Daily growth potential of 10-g yellow perch in
hypolimnion of offshore Lake Erie during 1994
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3D Modeling Analysis Provides Opportunity to
Analyze Nearshore Problems |

Offshore
Watershed  Nearshore Material and ;
Production and | _Blota Exchange Froduction. and
Inflows, Runoff > SR ) < > Cycling of Material
Material Loads yb ase%l AT Transported from
1\ i Nearshore

Nearshore: Boundary

Nearshore Problems in Great Lakes
15 - 30 mdters depth

- Nuisance and hazardous algal blooms
- Beach Closures and Postings

= Fish Consumption by at-risk
populations along coastal zones

- Chemicals of Emerging Concern -
major source of chemicals such as
PPCPs is WWTPs

- Aquatic Invasive Species
= Alter ecosystem structure and function

- Affect beneficial uses of coastal zones
I




Data Needs for 3D Eutrophication Models

Categories of Model Data Needs:

Wind
Land Use " - System Input Data
L Temperature :
Human Activities Sk BeclErion - System State Data

- System Response Data

‘*“ Tributary Flows

i Direct Runoff Hydrodynamic
g Watershed > and
; Model : Temperature
Model

Nutrient, %

Organic Carbon,

Circulation
Temperature

Biota Loads Water Levels
' Nutrient- ' Nutrient-
Eutrophication Eutrophication
i i Model <€ > Model
Configured to entire Biogeochemical
lake at appropriate Nearshore ge Offshore
Material Exchange
scale to capture /) ) A
B o e e Biota Movement
near.s Initial Conditions Initial Conditions
gradlents Parameterization ; Parameterization
State Variables State Variables
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