LEMN 2008 Conference University of Windsor May 1, 2008

> EcoFore: A research program to synthesize Lake Erie data and to develop a hypoxia forecasting modeling framework

Joseph V. DePinto, LimnoTech Don Scavia, SNRE, University of Michigan David Allan, SNRE, University of Michigan Tomas Hook, CILER, NOAA-GLERL and UM

EcoFore Motivation

Field observation and research on <u>hypoxia</u> in central basin - LETS, IFYLE, EPA, EC

East Central WINDSOR Low oxygen West TOLEDO CLEVELAND DEPTH WESTERN CENTRAL EASTERN METRES BASIN BASIN BASIN Warm epilimnion - 30 Cool hypolimnion Coo - 40 (becomes hypoxic)

Re-occurrence of HABs and nearshore nuisance attached algae

Ecosystem Forecasting of Lake Erie Hypoxia

- What are the *Causes, Consequences,* and *Potential Remedies* of Lake Erie Hypoxia?
- Linked set of models to forecast:
 - changes in nutrient loads to Lake Erie
 - responses of central basin hypoxia to multiple stressors
 - P loads, hydrometeorology, dreissenids
 - potential <u>ecological responses to</u> <u>changes in hypoxia</u>
- Approach
 - Models with range of complexity
 - Consider both anthropogenic and natural stressors
 - Use available data IFYLE, LETS, etc.
 - Will assess uncertainties in both drivers and models
 - Apply models within an Integrated Assessment framework to inform decision making for policy and management

Lake Erie EcoFore Team

Watershed Modeling

- David Allan, UM Lead
- David Dolan, UWGB
- Pete Richards, Heidelberg
- Tom Croley, GLERL
- Chansheng He, WMU
- Hypoxia Modeling
 - Don Scavia, UM PI, co-lead
 - Joe DePinto, LTI co-lead
 - Dmitry Beletsky, GLERL-UM
 - Dave Schwab, GLERL
 - Tom Johengen, UM
 - Steve Ruberg, GLERL

Ecological Effects Modeling

- Tomas Hook, GLERL-UM -Lead
- Larissa Sano, UM
- Stuart Ludsin, OSU
- Ed Rutherford, UM
- Steve Bartell, E2 Consulting
- Doran Mason, NOAA-AOML
- Steve Brandt, GLERL
- Henry Vanderploeg, GLERL
- Management Partners
 - Roger Knight, ODNR
 - Paul Horvatin, EPA-GLNPO
 - David Rockwell, EPA-GLNPO

I. Watershed Loading

- 1) Estimate TP loads for all tributaries
 - Data from Heidelberg College, point sources
 - Examine sensitivity of loads to hydrologic variation
- 2) Quantify mass balance estimates for watersheds
 - Construct P budgets
 - Develop time sequence of P loadings
 - Compare inputs to exports
- 3) Evaluate conservation practices
 - Statistical analysis
 - Watershed agricultural estimates
 - Correlations between conservation and nutrient loading
- 4) Develop models of hydrology and nutrient export
 - Soil and Water Assessment Tool (SWAT)
 - Distributed Large Basin Runoff Model (DLBRM)

-inputs for hypoxia models

Heidelberg WQL Data for SRP, 1975-2007

Ave. Daily Conc., mg/L

Ave. Daily Load, metric tons/day

Study sites: 24 Lake Erie watersheds

Historical trend in annual P fertilizer input to selected watersheds and the entire LEB from 1972 to 2002

II. Hypoxia Forecasting Modeling Approaches

Models ranging in complexity

- <u>1D hydrodynamics with DO consumption rates</u>
 - Vertical thermal and mixing profiles from hydrodynamic model
 - DO mass lost from water column and sediment demand
- 1D hydrodynamics with simple mechanistic WQ model
 - TP, Carbon, Solids mechanisms driven by central basin concentrations as boundary conditions

- <u>1D hydrodynamics with simple mechanistic WQ model</u>

• TP, Carbon, Solids mechanisms driven by basin loads

<u>3D hydrodynamics with complex mechanistic WQ model</u>

- Advanced eutrophication model framework linked to and run at same scale as hydrodynamic model
- Multi-class phyto- and zooplankton, organic and inorganic nutrients, sediment digenesis, etc
- Addition of zebra mussels

-inputs for effects models

Calibrated Model Performance

-SOD = 0.75 g/m2/d $-WCOD_e = 0.0 \text{ g/m3/d}$

2004 $WCOD_h = 0.020 \text{ g/m}^3/\text{d}$

2005 $WCOD_h = 0.030 \text{ g/m}^3/\text{d}$

1D Simple Dissolved Oxygen Model

Central Basin Oxygen Depletion Rate

1D Model Calibration of Annual Hypolimnetic Deoxygenation Rate (Rucinski et al. (in prep))

Central Basin Oxygen Depletion Rate

D. Rockwell, GLNPO, using Rosa and Burns (1987)

III. Ecological Effects

Objective: develop forecasts that managers can use to guide fisheries policies in response to anticipated hypoxia impacts.

Ensemble of Models

- <u>Statistical models</u>
- Bioenergetics-based population models
 - Growth Rate Potential (GRP)
 - IBM (Individual Based Bioenergetics)
- Food-web models
 - Comprehensive Aquatic Simulation Model (CASM)
 - EcoPath with EcoSim and EcoSpace

Growth rate potential models (GRP)

Bioenergetic Growth Rate Potential (GRP; g g⁻¹ day⁻¹):

Expected daily growth rate of a fish placed in a volume of water with known conditions:

Potential input variables:

prey density (prey type, prey size)

temperature

oxygen

light

Daily growth potential of 10-g yellow perch in hypolimnion of offshore Lake Erie during 1994

Day of year

3D Modeling Analysis Provides Opportunity to Analyze Nearshore Problems

Data Needs for 3D Eutrophication Models

LEMN 2008 Conference University of Windsor May 1, 2008

> EcoFore: A research program to synthesize Lake Erie data and to develop a hypoxia forecasting modeling framework

Joseph V. DePinto, LimnoTech Don Scavia, SNRE, University of Michigan David Allan, SNRE, University of Michigan Tomas Hook, CILER, NOAA-GLERL and UM