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Abstract

The collapse of housing prices in the aftermath of the U.S. subprime mortgage crisis of
2008 not only worsened the balance sheet positions of the banking sector but also led to a “bank
run” in some cases such as the collapse of Lehman Brothers in September 2008. We develop a
theoretical model featuring household debt (mortgages) and banking sector frictions. We show
that mortgage risks can potentially lead to a bank run equilibrium. Such an equilibrium exists
since mortgage risks reduce the liquidation prices of bank assets. We further show that mortgage
market regulations such as loan-to-value requirements reduce the likelihood of bank runs.
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1 Introduction
One prominent feature of the 2008-09 financial crisis in the United States was the close connec-

tion between the housing market bust and banking panics. When housing prices started to collapse
in 2007, the value of mortgage-backed securities (MBS) experienced a steep decline. The balance
sheet positions of banks holding large amounts of MBS worsened considerably. This led to “bank
runs” in some cases. The collapse of Bear Sterns and the bankruptcy of Lehman Brothers are but
two well-known events in a string of bank runs that took place in 2007-2008 (e.g., Gorton 2010).

In this paper, we capture the link between mortgage loans and bank panics using a highly stylized
theoretical model built upon Gertler and Kiyotaki (2015) (GK hereafter). GK provides a framework
to study financial panics in an infinite horizon environment.1 Banks in their model hold one type
of asset, the capital claims issued by firms. Holding these assets is risky since the return to such
claims is subject to shocks. When a large negative shock hits the economy, the return on the capital
claims (and their price) fall, worsening banks’ balance sheet conditions. The shock can give rise to
a self-fulfilling bank-run equilibrium – a household stops rolling over its deposits since it believes
that other households will not roll over theirs, and if the household keeps its deposits with the banks,
it will lose them. If all households stop rolling over their deposits, then the banks would need to
liquidate some assets on their balance sheets. A bank run happens if the liquidation value of the
assets falls below the value of a bank’s liabilities.

Our objective is to study bank runs caused directly by the risks related to mortgages. To do so,
we extend GK by introducing mortgage claims. We allow banks to hold two types of assets: capital
claims (as in GK) and mortgage claims. Mortgage claims are issued by households. Like capital
claims issued by firms, mortgage claims are risky since their return is contingent. A negative shock
to the mortgage claims’ return leads to a decline of their price, worsening banks’ balance sheets. The
mortgage debt return being contingent is the key to generating bank runs. In the literature, household
debt is typically modeled as a non-contingent contract. Without default, a non-contingent contract
guarantees banks the return of their lending. In this environment, a shock hitting the household
sector is unlikely to lead to a bank run. In our paper, on the other hand, although default is not
explicitly modelled, since household debt is contingent, a decline in return can be thought of as
a reduced-form way of capturing the rise in the default rate of mortgage debt.2 In addition, the
downfall in asset prices during a run in the model mirrors the collapse of the mortgage-backed
securities during the financial crisis.3

We conduct numerical exercises using a perfect-foresight model for both the bank run and no-

1Similar to Diamond and Dybvig (1983), in GK the fundamental reason for bank runs to occur is liquidity mismatch
– banks hold long-term assets which are financed by short-run liabilities. However, GK build an infinite horizon model
while Diamond and Dybvig (1983) feature a three-period environment. In terms of technical approach, GK is more
closely related to Cole and Kehoe (2000), which models self-fulfilling debt crises.

2When the contracts are non-contingent, the return is pre-determined and the loss of the banks is from the loan loss
due to mortgage default. In our setup, the loss for banks is captured by a negative shock to the realized return instead of
a shock to loans themselves.

3Modelling the long-term nature of mortgage debt and debt securitization is beyond the scope of our stylized model.



run cases. We find that an adverse mortgage risk shock can lead to a bank run. During panics,
banks liquidate both capital and mortgage assets at extremely low prices. The probability of a bank
run becomes positive due to the low liquidation prices. Different from the case of a technology
shock, which hits the return on capital and affects the total endowment of the economy, the chance
of having a bank run is lower in the case that the economy is hit by a mortgage shock (which only
affects the return on household loans). However, once the economy is in the run equilibrium, the
severity of the negative impact on the economy from a mortgage shock is similar to a technology
shock. We also find that there is a significant spillover effect in both the run and no-run cases. For
example, in both cases, a negative shock to the return of one asset increases the risk premium and
depresses the price of the other asset.

Linking the mortgage debt risk with the possibility of a bank run has important policy impli-
cations, particularly for mortgage loan regulations. To explore this, we use our model to study the
effect of changing the loan-to-value (LTV) ratio. For the no-run case, we find a conventional finan-
cial accelerator effect: a higher LTV ratio tends to amplify the shocks. For the run case, we show
that a tightened LTV ratio reduces the probability of a bank run for both types of shock. This sug-
gests that policy makers need to take into account the asymmetric nature of LTV regulation: a loose
regulation might lead in adverse circumstances to a bank panic and consequently to a considerably
larger decline in output.

Our paper is related to the following strands of literature. The first is the literature studying
the role of frictions in models with financial intermediaries and business cycles (see, for example,
Gertler and Kiyotaki 2010; Gertler and Karadi 2011). Our paper is particularly related to the re-
cent development in the literature that links the banking sector financial frictions to financial panics
(GK; Gertler, Kiyotaki, and Prestipino 2016, 2020a, 2020b, and 2020c). Gertler, Kiyotaki, and
Prestipino (2016) extend GK to include a wholesale funding market to capture its role in the Great
Recession; Gertler, Kiyotaki, and Prestipino (2020a) incorporate bank runs à la GK into a conven-
tional macroeconomic framework to quantify the impact of bank panics on the aggregate economy;
Gertler, Kiyotaki, and Prestipino (2020c) focus on the role of macroprudential tools in preventing
bank panics. Our contribution is that we introduce household borrowing to the GK framework. With
this, we are able to address the question of how a shock hitting the household sector can lead to a
bank run.

The second direction in the literature examines the role of household debt in business cycle
fluctuations (e.g., Iacoviello 2005; Iacoviello and Neri 2010; Justiniano, Primiceri and Tambalotti
2015; Forlati and Lambertini 2011). Our paper is particularly related to Ferrante (2019), which has
a banking sector with financial frictions similar to those in GK; the banks in this model have both
business assets and household debt on their balance sheets. However, bank panics are not addressed
in Ferrante (2019).

The rest of the paper is organized as follows. In Section 2 we present the model. Section 3
discusses the bank run equilibrium. Section 4 presents numerical examples and describes how the
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model works. In Section 5 we discuss policy implications and in Section 6 we offer some concluding
remarks.

2 The Model
2.1 Households

There is a continuum of infinitely lived households. They consist of two types, patient and impatient
ones, which differ only by the rate at which they discount the future. Patient households are denoted
by p, and impatient ones by m. For simplicity we assume that there is a measure one of each type.
The discount factors for the patient and impatient households are denoted as βp and βm respectively,
with βp > βm. In the model, the impatient households who discount the future at a higher rate be-
come borrowers whereas the patient households become lenders. Impatient households can borrow
either from the patient ones or from banks. We assume that the patient households are less efficient
in making loans than the banks.

There is one non-durable commodity, consumption goods, and two durable goods, capitalK and
housing H . We assume away depreciation. The total stocks of capital and housing are normalized
to 1. Capital K can be held by both patient households and banks; the respective quantities are
denoted by Kp

t and Kb
t , with

Kt = Kb
t +Kp

t = 1. (1)

Housing can be held by both patient and impatient households. The total housing stock is

Ht = Hm
t +Hp

t = 1. (2)

The non-durable goods are produced by using capital. The production function is linear:

F (K) = Zk
t+1K. (3)

That is, one unit of capital produces ZK
t+1 units of non-durable goods. Both patient households and

banks 4 have access to this technology. However, households are less efficient, and their production
incurs additional costs f(Kp

t ), which are the consumption goods used in period t for producing
ZK
t+1K

p
t , where

f(Kp
t ) =

γk

2
(Kp

t )2. (4)

Both patient and impatient households derive utility from consuming non-durable goods and hous-
ing.

4More precisely, it is entrepreneurs who produce using funds borrowed from banks.
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2.1.1 Patient households’ problem

The expected life-time utility for each patient household is

E0

∞∑
t=0

βpu(Cp
t , H

p
t ), (5)

where u(Cp
t , H

p
t ) = logCp

t + η logHp
t . Here Cp

t and Hp
t denote the consumption of non-durable

goods and housing consumption respectively, and the weight η indicates the relative importance of
housing in the utility function. The household faces the following budget constraint:

Cp
t +Dt +QK

t K
p
t + f(Kp

t ) +Qh
tH

p
t +QL

t L
p
t + g(Lpt )

≤ ZK
t W

p
t +RtDt−1 + (ZK

t +QK
t )Kp

t−1 + (ZL
t +QL

t )Lpt−1 +Qh
tH

p
t−1, (6)

where Dt is the patient household’s deposits in the banking sector, Rt the risk-free rate, and Kp
t

the capital stock held by the patient household. Qh
t is the price of housing. The patient household

also holds another type of asset, Lpt , which can be thought of as claims issued by the impatient
households (essentially, these are loans to impatient households). The patient household buys this
type of assets at price QL

t at time t. At time t + 1, the patient household receives the return on the
claims, ZL

t+1. When making loans, the patient household is less efficient than the banks, incurring
an additional costs of g(Lpt ) in terms of non-durable goods, where

g(Lpt ) =
γl

2
(Lpt )

2. (7)

The first-order conditions are:
Cp
t :

upc,t = uC(Cp
t , H

p
t ) = λpt , (8)

Dt :

λpt = βpEtRt+1λ
p
t+1, (9)

which can be rewritten as
EtΛ

p
t,t+1Rt+1 = 1, (10)

where Λp
t,t+1 = βpEt

λp1,t+1

λp1,t
= βp

upc,t+1

upc,t
.

Kp
t :

βpEtλ
p
t+1(Z

K
t+1 +QK

t+1) = (QK
t + f ′(Kp

t ))λpt . (11)

Defining RK,p
t+1 =

ZK
t+1+Q

K
t+1

QK
t +f ′(Kp

t )
, the above equation can be rewritten as

EtΛ
p
t,t+1R

K,p
t+1 = 1. (12)
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Lpt :

βpEtλ
p
t+1(Z

L
t+1 +QL

t+1) = λpt (Q
L
t + g′(Lpt )). (13)

Defining RL,p
t+1 =

ZL
t+1+Q

L
t+1

QL
t +g

′(Lp
t )

, the above equation can be rewritten as

EtΛ
p
t,t+1R

L,p
t+1 = 1. (14)

Hp
t :

upH,t
upc,t

= Qh
t − EtΛ

p
t,t+1Q

h
t+1, (15)

where
upH,t =

η

Hp
t

. (16)

2.1.2 Impatient households’ problem

The impatient household maximizes the following expected lifetime utility:

E0

∞∑
t=0

βmu(Cm
t , H

m
t ), (17)

where
u(Cm

t , H
m
t ) = logCm

t + η logHm
t . (18)

The impatient households do not hold capital; however, they can issue claims to either patient
households or banks (let us denote these amounts by Lpt and Lbt respectively); and the total amount
of claims is

Lt = Lpt + Lbt . (19)

The price of the claims is denoted as QL
t , and the return on the claims as ZL

t . The budget constraint
of each impatient household is

Cm
t +Qh

tH
m
t + (ZL

t +QL
t )Lt−1 ≤ ZtWm,t +QL

t Lt +Qh
tH

m
t−1. (20)

We assume that each patient household is subject to a collateral constraint:

QL
t Lt ≤ θEtQ

h
t+1H

m
t , (21)

where θ is the loan-to-value (LTV) ratio. We assume that 0 ≤ θ ≤ 1.
The first-order conditions are:

Cm
t :

λm1,t = umC,t =
1

Cm
t

, (22)
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Lt :

λm1,tQ
L
t = βmEtλ

m
1,t+1(Z

L
t+1 +QL

t+1) + λm2,tQ
L
t , (23)

where λm2,t is the Lagrangian multiplier for the collateral constraint.
Hm
t :

umH,t + βmEtλ
m
1,t+1Q

h
t+1 + θλm2,tEtQ

h
t+1 = Qh

t λ
m
1,t, (24)

where
umH,t =

η

Hm
t

. (25)

Using the above equations, we obtain

umH,t + βmEtu
m
C,t+1Q

h
t+1 +

(
umC,t − βmEtumC,t+1

ZL
t+1 +QL

t+1

QL
t

)
θEtQ

h
t+1 = Qh

t u
m
C,t. (26)

2.2 Financial intermediaries

There is a continuum of banks of measure 1. Note that we use lowercase letters for individual bank
variables and capital letters for their aggregate counterparts. Each bank funds capital investment
of the business borrowers and makes loans to household borrowers by issuing deposits to patient
households and using their own net worth. More precisely, in each period, bank j’s assets ajt are
financed by deposits djt and bank’s own net worth njt:

ajt = djt + njt. (27)

The assets consist of capital assets and loans to impatient households, lbjt:

ajt = QK
t k

b
jt +QL

t l
b
jt. (28)

Bank j maximizes

Vjt = maxEt{Λp
t,t+1((1− σ)njt+1 + σVjt+1)} (29)

subject to the flow of funds condition

ajt = QK
t k

b
jt +QL

t l
b
jt = djt + njt. (30)

Note that we assume that banks use the patient households’ discount factor. Define

RK,b
jt =

ZK
t +QK

t

QK
t−1

, (31)

and

RL,b
jt =

ZL
t +QL

t

QL
t−1

. (32)

6



The law of motion for net worth is

njt+1 = RK,b
t+1Q

K
t k

b
jt +RL,b

t QL
t l
b
jt −Rtdjt, (33)

and the incentive constraint is
Vjt ≥ κkQK

t k
b
jt + κltQ

L
t l
b
jt. (34)

Substituting the flow of funds condition to the net worth equation, we have

njt+1 = (RK,b
t+1 −Rt)Q

K
t k

b
jt + (RL,b

t+1 −Rt)Q
K
t l

b
jt +Rtnjt. (35)

Define RB
t+1, the weighted average return on total bank assets, as

RB
t+1 = RK,b

t+1

QK
t k

k
jt

ajt
+RL,b

t+1

QL
t l
b
jt

ajt
.

Define the bank’s leverage as
φjt =

ajt
njt+1

.

The net worth equation can be further written as

njt+1 = Et[(R
B
t+1 −Rt)φjt +Rt]njt.

Using the undetermined coefficients method, we guess that the bank’s value function is a linear
function of net worth:

Vjt = µn,tnjt, (36)

where µn,t can be thought of as the expected discounted marginal gain of having one more unit of
net worth. We also guess that

φt = φjt =
ajt
njt+1

.

Appendix A shows that

EtΛ
p
t,t+1[((1− σ) + σµn,t+1)(R

K,b
t+1 −Rt)]

κk
(37)

=
EtΛ

p
t,t+1[((1− σ) + σµn,t+1)(R

L,b
t+1 −Rt)]

κlt
.

Equation (37) implies that the expected discounted return from holding capital assets must equal
the expected discounted return from holding mortgage assets, after adjusting for the diversion rates
difference. This gives us a spillover effect – a rise in risk premium of one of the assets, for example,
RK,b
t+1 −Rt, will lead to a rise in the other, RL,b

t+1 −Rt.
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When the incentive constraint binds, the following equation holds:

µn,tnjt = κkQK
t k

b
jt + κltQ

L
t l
b
jt. (38)

Define κBt = κk
QK

t k
b
jt

ajt
+ κlt

QL
t l

b
jt

ajt
; we then can obtain this:

µn,t = κB
ajt
njt

= φtκ
B
t . (39)

Thus,
φt =

µn,t
κBt

. (40)

Equation (40) suggests that (i) the bank leverage is endogenously determined; and (ii) this leverage
decreases as κBt increases.

2.3 Aggregation and resource constraints

Since all banks face the same problem, their behavior will be identical. Therefore we will omit the
subscript j in our exposition below. At the aggregate level, we have

QK
t K

b
t +QL

t L
b
t = φtNt, (41)

with
Nt = N e

t +Nn
t , (42)

where N e
t and Nn

t denote the aggregate net worth of the existing and newly entering banks respec-
tively.

Using

N e
t =

∫ 1

0

Njt dj

and
Nn
t = ωb, (43)

we have the law of motion of the aggregate net worth:

Nt = N e
t +Nn

t (44)

= σ
[
(ZK

t +QK
t )Kb

t−1 + (ZL
t +QL

t )LLt−1 −RtDt−1
]

+ (1− σ)ωb (45)

= σN e
t +W b, (46)

with
W b = (1− σ)ωb. (47)
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The exiting banks simply consume their net worth:

Cb
t = (1− σ)N e

t (48)

= (1− σ)
[
(ZK

t +QK
t )Kb

t−1 + (ZL
t +QL

t )Lbt−1 −RtDt−1
]

(49)

=
1− σ
σ

(Nt −W b). (50)

Define the aggregate output as

Yt = ZK
t + ZK

t (W p +Wm) +W b. (51)

The output is demanded by households and banks, i.e.

Yt = f(Kp
t ) + g(Lpt ) + Cp

t + Cm
t + Cb

t . (52)

The amount of total loans is
Lpt + Lbt = Lt. (53)

Similarly, the housing supply and capital supply equations are

Hp
t +Hm

t = 1, (54)

and
Kp
t +Kb

t = 1. (55)

3 Bank Runs
In this section we consider an unanticipated bank run. As in GK, we assume that when patient

households make deposits at t− 1 that mature in t, they assign a probability of zero to a run at time
t. However, a run can happen ex post as follows. When deposits mature at time t, the patient house-
holds must decide whether to roll the deposits over for another period. If an individual household
believes that the other households will not roll over the deposits and thus itself decides not to roll
over its own deposits, then this becomes a self-fulfilling prophecy. (A certain condition should hold
for existence of such an equilibrium; it will be discussed later in the paper.) Then the banks will be
forced into liquidation. They will need to liquidate both capital and mortgage claims and turn the
proceeds over to patient households.

Impatient households take loans at t − 1, which mature in period t. Similarly, they assign a
probability of zero to a run at time t. When a run happens ex post, it is assumed that the impatient
households still repay their debts to the banks but the banks have to liquidate their assets related to
mortgage debt, which will be acquired by the patient households.

Thus, as in GK, there are two equilibria: a “normal” one where patient households roll over
their deposits; and a “run” equilibrium where patient households stop rolling over their deposits. In
the event of a run, banks’ net worth goes to zero, and the patient households hold the entire capital
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stock and mortgage claims. In what follows we describe the conditions under which a bank run can
exist and the liquidation prices for the two assets in the event of a run.

3.1 Conditions for a bank run equilibrium

We consider a run on the entire banking system. After the realization of a negative shock to ZK
t

or ZL
t , if depositors decide not to roll over their deposits, banks have to liquidate their assets. To

distinguish the run case from the no-run one, we use ∗ to indicate the case where depositors stop
rolling over deposits. For example, QK∗

t and QL∗
t are the asset prices of capital and mortgage claims

when the banks have to liquidate assets. Quantities QK∗
t and QL∗

t have to be low enough to support
a run equilibrium in which the liquidation value of bank assets (ZK

t +QK∗
t )Kb

t−1 +(ZL
t +QL∗

t )Lbt−1
is lower than the value of its liabilities RtDt−1. (And this is the condition we referred to earlier.)
When a run happens, the banks return the proceeds from liquidation back to patient households
(depositors). This means that the banks are left with zero equity. We define a recovery rate xt as

xt =
(ZK

t +QK∗
t )Kb

t−1 + (ZL
t +QL∗

t )Lbt−1
RtDt−1

. (56)

For convenience, define a variable runt as follows

runt = 1− xt. (57)

The value of run indicates a possibility of having a bank run. A run equilibrium exists when runt >
0.

Let us describe the conditions that will hold when a run occurs. First, the patient households
stop rolling over deposits, D∗t = 0. Banks liquidate both types of assets, Kb∗

t = 0 and Lb∗t = 0, and
hold zero equity, N∗t = 0. Patient households hold the entire stock of capital, Kp∗

t = 1, and become
the only source from which impatient households can borrow, Lp∗t = L∗t .

The aggregate return for banks at the time of a run is

RB∗
t =

(ZK
t +QK∗

t )Kb
t−1 + (ZL

t +QL∗
t )Lbt−1

QK
t−1K

b
t−1 +QL

t−1L
b
t−1

(58)

=
QK
t−1K

b
t−1

QK
t−1K

b
t−1 +QL

t−1L
b
t−1

RK,b∗
t +

QL
t−1L

b
jt−1

QK
t−1K

b
jt−1 +QL

t−1L
b
t−1

RL,b∗
t , (59)

whereRK,b∗
t =

ZK
t +QK∗

t

QK
t−1

andRL,b∗
t =

ZL
t +QL∗

t

QL
t−1

. Using equationsQK
t−1K

b
t−1+Q

L
t−1L

b
t−1 = φt−1Nt−1 =

At−1, and At−1 = Dt−1 +Nt−1, equation (56) can be rewritten as

xt =
RB∗
t

Rt

1

1− 1
φt−1

. (60)

Equation (60) implies that a bank run becomes possible when RB∗
t is low or leverage φt−1 is
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high. There are two potential reasons for a low value of RB∗
t and high value of φt−1: one stems

from low capital returns and the other from low returns on mortgage claims.
After the run, new banks enter the industry and the banking system starts to rebuild itself. As

in GK, we assume that new banks cannot immediately start their operations – there is a short delay.
Although the new banks start to enter at t + 1, they only start to operate from period t + 2. Banks’
net worth is

Nt+1 = W b + σW b, (61)

and
Nt+i = σ

[
(ZK

t +QK
t )Kb

t−1 + (ZL
t +QL

t )Lbt−1 −RtDjt−1
]

+W b, i ≥ 2. (62)

At the time of the run t, the output produced equals

Yt = ZK
t + ZK

t (W p +Wm), (63)

whereas the output demanded by households (banks’ consumption is zero) is

Yt = f(Kp∗
t ) + g(Lp∗t ) + Cp∗

t + Cm∗
t (64)

= f(1) + g(L∗t ) + Cp∗
t + Cm∗

t .

3.2 The liquidation price

In this section we discuss how the liquidation prices QK∗
t and QL∗

t are determined. When a run
happens at time t, before going out of business banks need to fully liquidate their assets carried
from time t − 1. They sell all their assets to patient households at time t. The liquidation prices
QK∗
t and QL∗

t are determined by the first-order conditions for patient households by imposing the
run conditions Kp∗

t = 1 and Lp∗t = L∗t . Using the first-order conditions for the patient households,
we can show that 5

QK∗
t = E

∞∑
i=1

Λp
t,t+i

[
ZK
t+i − f ′(K

p
t+i)
]
− f ′(Kp∗

t ) (65)

= E
∞∑
i=1

(βp)i
upc,t+i
up∗c,t

[
ZK
t+i − γkK

p
t+i

]
− γk.

It is more likely to have a large reduction in QK∗
t when there is a large negative shock to ZK

t

and the adjustment cost parameter γk is large. How low the liquidation price QK∗
t could go is also

related to the value of up∗c,t. A large decline in Cp∗
t at the time of the run tends to lead to a low

liquidation price.

5See Appendix B for derivation details.
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Similarly, we can show that

QL∗
t = E

∞∑
i=1

Λp
t,t+i[Z

L
t+i − g′(L

p
t+i)]− g′(L

p∗
t ) (66)

= E

∞∑
i=1

(βp)i
upc,t+i
up∗c,t

[ZL
t+i − γlL

p
t+i]− γlL∗t .

Equation (66) suggests that a large decline in ZL
t+i will lead to a large decline in QL∗

t . A high debt
level Lpt+i and high adjustment costs γl will also contribute to the low liquidation price. As in the
case with ZK

t , a large decline in Cp∗
t at the time of the run tends to lead to a low liquidation price.

4 Numerical Examples and Workings of the Model
In this section, we present some numerical examples to illustrate the nuts and bolts of the model.

We first present the cases where a bank run does not happen; and then we present the bank run cases.

4.1 Parameters and steady state values

Table 1 displays the parameter values used in our numerical example. For most of the parameter
values, we follow GK. We choose the discount rates for the patient and impatient households, βp
and βm, to be 0.99 and 0.95, respectively. The weight of the housing in the utility function, η, is set
to 0.5. The adjustment cost parameter for managing capital, γk, is 0.007, while that for mortgage
claims, γl, is set to 0.08. The loan-to-value ratio, θ, is set to 0.85. We set the endowments for the
patient and impatient households, ωp and ωm, to be 0.045 and 0.45, respectively.

For the banking sector, we set the steady-state level of leverage φ to 10 and annual risk premium
for both capital claims and mortgage claims to 100 basis points. These numbers are similar to the
ones in GK, and they render the diversion rates of 0.19 for both assets. We assume that the shock
to the return on capital and shock to the return on mortgage claims are both quite persistent, with
ρzK = ρzL = 0.95.

Table 2 reports the steady state values. Consumption of non-durables goods by the patient
households is more than two times that by the impatient households. The housing consumption of
patient households is about five times that of impatient households. Banks’ capital asset holding is
about eight times their holdings of mortgage claims. Due to the high adjustment costs, the amounts
of both assets (capital and mortgage) held by the patient households are smaller than those held by
the banks. The ratio of total consumption over output is about 80 percent.

4.2 Baseline case: no runs

Figure 1 shows the baseline no-run case where the economy is subject to the technology shock
ZK
t .The size of the shock is five percent. As in GK, the immediate response to the shock is a

decline in net worthNt. The 30 per cent decline in net worth tightens the banks’ incentive constraint,
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leading to a rise in the risk premium for capital assetsERK
t+1−Rt. With the higher costs of acquiring

capital, the demand for capital assets declines, which in turn leads to a decline in the asset priceQK
t .

Different from GK, there is a spillover effect – the risk premium of the mortgage assets ERL
t+1−Rt

rises due to the tightened incentive constraint of the banking sector. Together, the aggregate risk
premium for the banks ERB

t − Rt rises by about 40 basis points. The higher borrowing costs
lower the demand for bank loans. The asset price of the mortgage claims QL

t declines, which
further deteriorates the balance sheet position of the banking sector. Since banks hold less capital
and mortgage claims, patient households have to hold more of the two assets. Due to the high
management costs when households hold these assets, output declines by about 6 percent. On the
other hand, the demand for housing declines due to the weaker bank balance sheet positions, and
Qh
t falls. The run variable is negative, suggesting that banks are solvent when the assets are sold at

regular prices.
Figure 2 shows the case where the economy is subject to a mortgage shock ZL

t . The size of the
shock is also five percent. Compared to ZK

t , the overall impact on output is much smaller, only
about 0.4%. This is because ZK

t directly affects the endowment in the economy while ZL
t does

not. ZL
t is rather a redistributional shock – a negative shock results in a loss to lenders (patient

households and banks), and a gain to borrowers (impatient households). Similar to the ZK
t shock,

the immediate impact of the mortgage shock is a decline in net worth Nt, and a rise in the risk
premium for mortgage claims ERL

t+1 − Rt. There is also a spillover effect, which leads to a rise
in ERK

t+1 − Rt. The prices for both capital and mortgage claims QL
t and QK

t fall. The banks are
more leveraged and households need to manage more assets; this leads to a decline in output due to
the high management costs. Again, the run variable is negative, suggesting that banks are solvent
when the assets are sold at regular prices.

4.3 Case of a bank run

In this section, we study whether a bank run equilibrium can occur in our model. We first study the
ZK
t shock. We assume that a five percent ZK

t shock hits the economy at the beginning of the first
period t = 1 with persistence of 0.95, which we also assumed in the no-run case. To see whether
a run equilibrium exists, we conduct the following exercise. For each period t = 1, 2, ..., 40, we
compute the liquidation pricesQK∗

t andQL∗
t by assuming that a bank run happens beginning at time

t. We substitute QK∗
t and QL∗

t to equation (56) to check if xt < 1. If that is the case (meaning
runt > 0), we conclude that a run equilibrium indeed exists in that period. If the run variable turns
out to be negative, a run equilibrium cannot exist in that period. We plot out the run variable for
the first 40 period in Figure 3. It shows that a run is possible for all of the first 40 quarters after the
shock, with the chance of having a run being the highest right after the shock.

We conduct a similar exercise to a five percent ZL
t shock. Figure 4 shows the result. Similar

to the ZK
t shock, the run variable is positive upon impact and remains positive for the entire 40

quarters. The magnitude of the run variable, however, is much smaller than that under the ZL
t
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shock. Another difference is that the likelihood of a bank run becomes larger and peaks later in
the case of a ZL

t shock. This is due to different patterns of behavior of asset prices under the two
different shocks.

An inspection of equations (64), (65), and (66) can explain this difference. Equation (64) shows
that a ZK

t shock reduces the endowment in the economy directly, and that a larger decline in ZK
t

will lead to a larger decline in Cp∗
t at the time of the run. Since Cp∗

t appears in both (65), and (66),
both QK∗

t and QL∗
t are at their lowest when the run happens, and it is when the decline in ZK

t is
the largest. For a ZL

t shock, QL∗
t appears to reach the lowest point when ZL

t experiences the largest
decline. This is easy to see from (66), where ZL

t enters directly to the equation. However, a ZL
t

shock does not enter equation (64) and thus does not affect the endowment in the economy. This
leads us to conclude that the decline in Cp∗

t is not necessarily related to the size of the decline in ZL
t .

As a result, the time when QK∗
t reaches its lowest point does not coincide with that whenZL

t has the
largest drop.

We use Figures 5 and 6 to further illustrate the responses of the key variables to the shocks
when a run happens. In Figure 5, we assume that a bank run happens in the second period after
the ZK

t shock. The red dash line displays the run case. For comparative purposes, the no-run case
responses are also displayed as the solid blue line. When a run happens, depositors stop rolling over
the deposits, leading to liquidation of both capital and mortgage assets by banks. As a result, Kb

t

and Lbt drop to zero. The asset prices of both capital and mortgage claims QK
t and QL

t drop by about
15 percent. The value of ERK

t+1 −Rt rises by about 300 basis points and ERl
t+1 −R by about 400

basis points. The extremely high costs of obtaining funds also cause a decline in housing price Qh
t

by about 15%. Output declines by almost 30% in the run economy, partly due to the fact that the
ZK
t shock decreases the endowment directly and partly due to the sharp rise in management costs

since now households have to hold large amounts of assets. Consumption of the patient households
declines by almost 15% and consumption of the impatient households declines by about 10%.

We next assume that a run happens in the second period after the ZL
t shock and display the

responses of the key variables in Figure 6. The responses are similar to those in the case of the ZK
t

shock but the damage to the economy is less severe. When a run takes place, the banks liquidate
both types of assets, and quantities Kb

t and Lbt drop to zero. This leads a decline in prices QK
t and

QL
t , but the magnitude of the decline is smaller than in the case of the ZK

t shock (a 10 percent price
drop as a response to ZL

t vs. a 15 percent price drop as a response to ZK
t ). The premiumERK

t+1−Rt

rises by about 250 basis points, and ERl
t+1−Rt by about 300 basis points. Overall, output declines

by about 20 percent, less than in the ZK
t shock case. The decline in consumption of both patient

and impatient households is also smaller compared to the ZK
t shock case.

5 Policy Implications
The high leverage for both household and banking sectors was a key factor leading to the 2008-

09 financial crisis. A related important policy question is whether tighter regulations on household
borrowing and bank lending can reduce the likelihood of bank runs. In this section, we address this
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issue by lowering the leverage of households and banks in an alternative economy and by comparing
the results for the alternative economies with those for the baseline economy in both the no-run and
run scenarios.

5.1 Household Leverage – Loan-to-value ratio

Figures 7 and 8 illustrate what would happen in the no-run case when we reduce the value of the
LTV ratio θ faced by households from 0.85 to 0.75. We compare the impulse response functions of
the key variables. We find that for both types of shocks, a fall of the LTV ratio dampens the impact
of a negative shock, a typical financial accelerator effect. This is particularly true when the economy
is hit by a ZL

t shock. In the alternative economy where LTV=0.75, the output only declines by 0.15
percent, much less than in the baseline model. The decline of the banks’ net worth is much milder,
two percent compared to six percent in the baseline model. This leads to a dampening responses of
the risk premium ERK

t+1 −Rt and ERL
t+1 −Rt and a more moderate rise in the bank leverage φt.

Another key question is whether a lower LTV ratio helps reduce the likelihood of a bank
run equilibrium. We compute the likelihood of having a run equilibrium for both shocks when
LTV=0.75. Figures 9 and 10 show that for this lower level of the LTV ratio, the runt variable is
lower than in the baseline case. When the economy is hit by a ZK

t shock, the likelihood of a run on
impact is half of that in the baseline case, and become negative after about 20 quarters. In the case
of the ZL

t shock, the runt becomes negative, suggesting that a run equilibrium does not exist when
LTV=0.75.

5.2 Bank Leverage

In this exercise, the steady state level of bank leverage in the alternative economy is set to φ =

8.8, slightly lower than the value φ = 10 in the baseline model, which gives us about 12 percent
reduction in the value of φ. We compare the alternative economy with the baseline economy for
both the run and no-run cases. The results are similar. We observe a typical financial accelerator
effect for the no-run case (Figures 11-12). In the run case, we find that the likelihood of a run is
smaller when φ = 8.8 (Figures 13-14).

6 Conclusions
GK have shown that a shock to a productive asset can potentially lead to a bank run. We have

extended the GK model to incorporate household debt and show that a shock to the return on a
non-productive asset can also lead to a bank run. The extension is important since it allows us
to model and analyze a salient issue at the center of the 2008-09 financial crisis: a large shock
to and a subsequent collapse of the mortgage-backed securities market can lead to a bank panic
and large decline in output. Having two assets on the banks’ balance sheets also allows us to
explicitly address the spillover effect: a shock to the mortgage assets weakens the banks’ balance
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sheet position, causing a rise of the borrowing costs of all assets held by the banks. The spillover
effect leads to a fall in the price of capital increasing the likelihood of a bank run. Our policy
experiments suggest that tightening households’ borrowing condition and banks’ lending condition
can reduce the likelihood of a bank run.

Although our model has shed light on the role of household mortgages, which was prominent
during the recent financial crisis, the simplicity of our model forced us to abstract from many inter-
esting issues observed in the data. In the future research, our model could be extended to incorporate
both a commercial banking and an investment banking sectors. In such an environment, a bank run
would start in the investment banking sector that holds mortgage-backed securities and then impact
the commercial banking sector (a spillover effect) that sells mortgage loans to households.6 Another
avenue of extending our model is to embed it in a conventional macroeconomic framework to be
able to conduct a quantitative analysis.

6This is similar to the setup in Gertler, Kiyotaki and Prestipino (2016), which has an unregulated wholesale banking
sector and a traditional retail banking sector. However, they do not consider household debt.
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Appendix A Banks’ problem
The Lagrangian for bank j’s problem is

Lt = Et{Λp
t,t+1[(1− σ)njt+1 + σVjt+1(njt+1)− λbank(κkQK

t k
b
jt + κltQ

L
t l
b
jt − Vjt)}, (67)

where λbank is the multiplier on the incentive constraint.
The first-order condition with respect to kbjt is

dLt
dkbjt

= Et

{
Λp
t,t+1[(1− σ)

dnjt+1

dkbjt
+ σ

dVjt+1

dnjt+1

dnjt+1

dkbjt
− λbankκkQK

t ]

}
= 0, (68)

which, together with equation (35), gives us

EtΛ
p
t,t+1[((1− σ) + σµn,t+1)(R

k,b
t+1 −Rt)] = λbankκ

k. (69)

Similarly, the first-order condition with respect to lbjt is

dL

dlbjt
= Et

{
Λp
t,t+1[(1− σ)

dnt+1

dlbjt
+ σ

dVjt+1

dnjt+1

dnjt+1

dlbjt
− λbankκlt]

}
= 0, (70)

or
EtΛ

p
t,t+1[((1− σ) + σµn,t+1)(R

L,b
t+1 −Rt)] = λbankκ

l
t. (71)

Note that equations (69) and (71) give us

EtΛ
p
t,t+1[((1− σ) + σµn,t+1)(R

K,b
t+1 −Rt)]

κk

=
EtΛ

p
t,t+1[((1− σ) + σµn,t+1)(R

L,b
t+1 −Rt)]

κlt
. (72)

Below, we verify whether our guess is correct and that the bank’s value is indeed linear in net worth
with

µn,t = Et{Λp
t,t+1((1− σ) + σµn,t+1)(R

B
t+1 −Rt)φt +Rt}.

To verify it, we substitute Vjt = µn,tnjt and equation (35) into the value function equation (29), to
obtain

Vjt = Et{Λp
t,t+1((1− σ)njt+1 + σVjt+1)}

= Et{Λp
t,t+1((1− σ) + σµn,t+1){[(RB

t+1 −Rt)φt +Rt]njt}}.

Equation (36) gives us

µn,t = Et{Λp
t,t+1[(1− σ) + σµn,t+1][(R

B
t+1 −Rt)φt +Rt]}},
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and thus we have verified that our conjecture is correct and that

Vjt = µn,tnjt.

Moreover, the bank’s incentive constraint can be rewritten as

µn,tnjt ≥ κkQK
t k

b
jt + κltQ

L
t l
b
jt. (73)

When the incentive constraint binds, we have

µn,tnjt = κkQK
t k

b
jt + κltQ

L
t l
b
jt. (74)

Define κBt = κk
QK

t k
b
jt

ajt
+ κlt

QL
t l

b
jt

ajt
; we can then have

µn,t = κB
ajt
njt

= φtκ
B
t . (75)

Thus
φt =

µn,t
κBt

, (76)

φtκ
B
t = µn,t = Et{Λp

t,t+1[(1− σ) + σµn,t+1][(R
B
t+1 −Rt)φt +Rt]}}.

Thus the leverage φt can be also expressed as

φt =
Et{Λp

t,t+1[(1− σ) + σφt+1κ
B
t+1]Rt}

κBt − Et{Λ
p
t,t+1[(1− σ) + σφt+1κBt+1][(R

B
t+1 −Rt))}

. (77)

Appendix B Expressions for QK∗
t and QL∗

t

B.1 Deriving QK∗
t

Combining the first-order condition for the patient households

EtΛ
p
t,t+1R

K,p
t+1 = 1, (78)

with RK,p
t+1 =

(ZK
t+1+Q

K
t+1)

QK
t +f ′(Kp

t )
, we obtain

EtΛ
p
t,t+1

ZK
t+1 +QK

t+1

QK
t + f ′(Kp

t )
= 1. (79)

This gives us
QK
t + f ′(Kp

t ) = EtΛ
p
t,t+1(Z

K
t+1 +QK

t+1), (80)

or
QK
t = EtΛ

p
t,t+1(Z

K
t+1 +QK

t+1)− f ′(K
p
t ). (81)
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Similarly, we can obtain

QK
t+1 = EtΛ

p
t+1,t+2(Z

K
t+2 +QK

t+2)− f ′(K
p
t+1), (82)

QK
t+2 = EtΛt+2,t+3(Z

K
t+3 +QK

t+3)− f ′(K
p
t+2). (83)

Substituting equations (82) and (83) to the equation (81), we have

QK
t = EtΛ

p
t,t+1(Z

K
t+1 + Λp

t+1,t+2(Z
K
t+2 +QK

t+2)− f ′(K
p
t+1))− f ′(K

p
t ) (84)

= EtΛ
p
t,t+1(Z

K
t+1 + Λp

t+1,t+2(Z
K
t+2 +

(
Λp
t+2,t+3(Z

K
t+3 +QK

t+3)− f ′(K
p
t+2)
)
) (85)

−f ′(Kp
t+1))− f ′(K

p
t ) (86)

= Et
(
Λp
t,t+1[Z

K
t+1 − f ′(K

p
t+1)] + Λp

t,t+2[Z
K
t+2 − f ′(K

p
t+2)] + ...− f ′(Kp

t )
)

(87)

= Et

∞∑
i=1

Λp
t,t+i[Z

K
t+i − f ′(K

p
t+i)]− f ′(K

p
t ), (88)

where

Λp
t,t+i = (βp)i

upc,t+i
upc,t

. (89)

During a run, Kp∗
t = 1, and thus

f
′
(Kp∗

t ) = γkKp∗
t = γk, (90)

and the liquidation price during the run can be written as

QK∗
t = E

∞∑
i=1

Λp
t,t+i[Z

K
t+i − f ′(K

p
t+i)]− f ′(K

p∗
t ) (91)

= E
∞∑
i=1

(βp)i
upc,t+i
up∗c,t

[ZK
t+i − γkK

p
t+i]− γk.

B.2 Deriving QL∗
t

From the first-order condition
EtΛ

p
t,t+1R

L,p
t+1 = 1, (92)

and with RL,p
t+1 =

ZL
t+1+Q

L
t+1

QL
t +g

′(Lp
t )
,we have

QL
t + g′(Lpt ) = EtΛ

p
t,t+1(Z

L
t+1 +QL

t+1), (93)

or
QL
t = EtΛ

p
t,t+1(Z

L
t+1 +QL

t+1)− g′(L
p
t ). (94)
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Similarly, we can obtain

QL
t+1 = EtΛ

p
t+1,t+2(Z

L
t+2 +QL

t+2)− g′(L
p
t+1), (95)

QL
t+2 = EtΛ

p
t+2,t+3(Z

L
t+3 +QL

t+3)− g′(L
p
t+2). (96)

Substituting equations (95) and (96) to the equation for QL
t yields

QL
t = Et

∞∑
i=1

Λp
t,t+i[Z

L
t+i − g′(LLt+i)]− g′(L

p
t ). (97)

That is

QL
t = E

∞∑
i=1

(βp)i
upc,t+i
upc

[ZL
t+i − g′(L

p
t+i)]− g′(L

p
t ).

During a run, Lp∗t = L∗t , and thus
g
′
(Lp∗t ) = γlL∗t , (98)

and using

Λp
t,t+i = (βp)i

upc,t+i
upc,t

, (99)

the liquidation price can be expressed as

QL∗
t = E

∞∑
i=1

Λp
t,t+i[Z

L
t+i − g′(L

p
t+i)]− g′(L

p∗
t ) (100)

= E
∞∑
i=1

(βp)i
upc,t+i
up∗c,t

[ZL
t+i − γlL

p
t+i]− γlL∗t .

Appendix C Numerical procedure when there is a run
We follow the procedure described in GK to compute the impulse responses to shocks during a

run. The details are as follows. Suppose the economy starts in a no-run equilibrium in the steady-
state and then it is hit with a negative shock to either capital or mortgage claims at t = 1. It stays at
a no-run equilibrium until t∗ when a bank run occurs. The condition for a bank run is

xt =
(ZK

t +QK∗
t )Kb

t−1 + (ZL
t +QL∗

t )Lbt−1
RtDt−1

< 1. (101)

After the run, the economy returns to the no-run equilibrium and converges back to the steady state
after T periods from the initial shock.

As in GK, we compute the path using the following steps. Step 1: we calculate the path of the
variables {Xt}t

∗+T
t=t∗+1 from t∗+1, the first period after the run, to the time the economy is back to the

steady state. Step 2: using {Xt}t
∗+T
t=t∗+1 and the fact that a run occurs at t∗,we computeXt∗ , the value

of the endogenous variables at the time of the run. Step 3: we compute the path of the variables
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from the initial shock at time t = 1 to the steady state and then select the first t∗− 1 elements of the
path {Xt}t

∗−1
t=1 . Among the three steps, the second one is crucial. In what follows, we describe Step

2 in details.
When a run happens, we have Kp,t∗ = 1, Kb,t∗ = 0, Lpt∗ = Lt∗ , L

b
t∗ = 0, Db

t∗ = 0, Nt∗ =

0, Cb
t∗ = 0, and (1− σ)ωb∗ = 0. We also have

f(Kp
t∗) =

γf

2
K∗2p,t =

γf

2
, (102)

f
′
(Kp

t∗) = γf , (103)

g(Lpt∗) =
γg

2
L2
t∗ , (104)

and
g
′
(Lpt∗) = γgLt∗ . (105)

Given that (1 − σ)ωb∗ = 0 and Cb
t∗ = 0, the resources are used for consumption of patient and

impatient households and for adjustment costs:

Yt∗ = f(Kp
t∗) + g(Lpt∗) + Cp

t∗ + Cm
t∗ . (106)

This means
Cp
t∗ = ZK

t∗ + Zt∗ [W p +Wm]− f(Kp
t∗)− g(Lpt∗)− Cm

t∗ . (107)

In our model, since we have two types of households, pinning down consumption of the patient
households is not as straightforward as in GK.7 The equation that we use for solving for Cp

t∗ is
equation (107), which has Cm

t∗ and Lpt∗ and their values are unknown. To find Cp
t∗ C

m
t∗ and Lpt∗ , we

use the following numerical procedure.
We start with initial guesses for Cm

t∗ and Lpt∗ , and we use equation (107) to obtain Cp
t∗ . We then

pin down Rt∗ using

Rt∗Et

[
βp
upC,t∗+1

upC,t∗

]
= 1. (109)

Since the values of Cp
t∗ and Cp

t∗+1 are already found (Step 1), we know the values of upC,t∗ and
upC,t∗+1. We then use

(ZK
t∗+1 +QK

t∗+1)

QK
t∗ + γf

Et

[
βp
upC,t∗+1

upC,t∗

]
= 1 (110)

7Note that in GK the consumption for households Ct∗ is pined down by using

Ct∗ = Zt∗ + Zt∗W − f(Kt∗). (108)

Since Zt∗ is an exogenous variable, Kt∗ = 1 at the time of a run (and W is a parameter), obtaining Ct∗ in GK is
straightforward. Once Ct∗ is solved for, GK use the Euler equation for the capital price to pin down QK

t∗ and the value
for the other endogenous variables at the time of the run.
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to pin down QK
t∗ . Again, we are able to obtain QK

t∗ since we already know upC,t∗ and upC,t∗+1. We
also know QK

t∗+1 from Step 1. We then use

(ZL
t∗+1 +QL

t∗+1)

QL
t∗ + γgLt∗

Et

[
βp
upC,t∗+1

upC,t∗

]
= 1 (111)

to obtainQL
t∗ . Note that at the time of a run, Lt∗ = Lpt∗ .Once we knowQL

t∗ , we can use the collateral
constraint

QL
t∗L
∗
t ≤ θEtQ

h
t∗+1H

m
t∗ (112)

to pin down Hm
t∗ (assuming the constraint is binding). Note that we know Qh

t∗+1 from Step 1.
The housing owned by patient households Hp

t∗ is easy to pin down given the housing constraint
Hm
t∗ +Hp

t∗ = 1. Using the Euler equation for housing for the patient households,

upH,t∗

upc,t∗
= Qh

t∗ − EtΛ
p
t∗,t∗+1Q

h
t∗+1, (113)

we can pin down Qh
t∗ since we know upH,t∗

(
upH,t∗ = 1

Hp
t∗

)
and upc,t

(
upc,t∗ = 1

Cp
t∗

)
, and we know

Qh
t∗+1 from Step 1.

We then use the first-order condition for the impatient households to update Qh
t∗ (Qh,update

t∗ ):

umH,t + βmEtu
m
C,t+1Q

h
t+1 +

(
umC,t − βmEtumC,t+1

(ZL
t+1 +QL

t+1)

QL
t

)
θEtQ

h
t+1 = Qh

t u
m
C,t. (114)

Furthermore, we substitute Qh,update
t∗ back to equation (113) to get up,updateH,t∗ . We now solve for Cm

t∗

and Lpt∗ so that they satisfy the following two equations:

Qh,update
t∗ −Qh

t∗ = 0,

and
up,updateH,t∗ − upH,t∗ = 0.
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Appendix D System of equations

Et[Λ
p
t,t+1Rt+1] = 1, (115)

Et

[
Λp
t,t+1

ZK
t+1 +QK

t+1

QK
t + f ′(Kp

t )

]
= 1, (116)

Et

[
Λp
t,t+1

ZL
t+1 +QL

t+1

QL
t + g′(Lpt )

]
= 1, (117)

upH,t
upC,t

= Qh
t − Et

[
Λp
t,t+1Q

h
t+1

]
, (118)

QL
t Lt ≤ θEtQ

h
t+1H

m
t , (119)

umH,t + βmEtu
m
C,t+1Q

h
t+1 +

(
umC,t − βmEtumC,t+1

ZL
t+1 +QL

t+1

QL
t

)
θEtQ

h
t+1 = Qh

t u
m
C,t. (120)

Cm
t +Qh

tH
m
t + (ZL

t +QL
t )Lt−1 ≤ ZK

t Wm,t +QL
t Lt +Qh

tH
m
t−1. (121)

QK
t K

b
t +QLLbt = Dt +Nt, (122)

QK
t K

b
jt +QLLbt = φtNt, (123)

Nt = σ
[
(ZK

t +QK
t )Kb

t−1 + (ZL
t +QL

t )Lbt−1 −RtDt−1
]

+ (1− σ)ωb, (124)

φt =
Et{Λt,t+1[(1− σ) + σφt+1κ

A
t+1]Rt}

κB − Et{Λt,t+1[(1− σ) + σφt+1κAt+1][R
B
t+1 −Rt]}

, (125)

φtκ
B
t = µn,t,

EtΛt,t+1[((1− σ) + σµn,t+1)(R
k,b
t+1 −Rt)]

κk

=
EtΛt,t+1[((1− σ) + σµn,t+1)(R

L,b
t −Rt)]

κlt
, (126)

Yt = ZK
t + ZK

t [W p +Wm] + (1− σ)ωb, (127)

Yt = f(Kp
t ) + g(Lpt ) + Cp

t + Cm
t + Cb, (128)

Cb
t+1 = (1− σ)

[
(ZK

t +QK
t )Kb

t−1 + (ZL
t +QL

t )Lbt−1 −RtDt−1
]
, (129)

Lpt + Lbt = Lt, (130)

Kp
t +Kb

t = 1, (131)

Hp
t +Hm

t = 1, (132)
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Tables and Figures

Table 1: Parameter values

Symbol Value Description
Households

βp 0.990 Discount factor for patient households
βm 0.950 Discount factor for impatient households
η 0.500 Relative utility weight of housing
γk 0.007 Cost parameter for households to manage capital
γl 0.080 Cost parameter for households to manage loans
θ 0.850 LTV ratio
wp 0.045 Patient households endowment
wm 0.450 Impatient households endowment

Financial Intermediaries
κk 0.193 Fraction of capital that can be diverted
κl 0.193 Fraction of mortgage claims that can be diverted
σ 0.950 Survival rate of the bankers
ωb 0.024 Endowment for new bankers

Shocks
ρk 0.950 Technology shock persistence
ρl 0.950 Mortgage shock persistence

24



Table 2: Steady State Values

Symbol Value Description
K 1.000 Total capital stock
Kb 0.646 Capital stock held by banks
Kp 0.354 Capital stock held by patient households
L 0.105 Total loans
Lb 0.074 Loans held by banks
Lp 0.031 Loans held by patient households
QK 1.000 Capital price
QL 1.000 Mortgage-backed security price
QH 0.697 Housing price
Cp 0.011 Patient households consumption
Cm 0.004 Impatient households consumption
Hp 0.823 Patient households housing
Hm 0.177 Impatient households housing
S 100.000 Annual risk premium for both assets (basis points)
R 1.010 Quarterly risk free rate
Cb 0.004 Banks consumption
D 0.648 Deposits held by banks
N 0.072 Net worth
φ 10.000 Banks leverage
X 1.114 Recovery rate
Y 0.020 Output

Some steady state ratios
Cp/Cm 2.639 Consumption: Patient/Impatient
Hp/Hm 4.664 Housing: Patient/Impatient
Kb/Lb 8.771 Bank capital holding/Bank mortgage holding
Lb/Lp 2.382 Mortgage Loans: Bank/Patient households
Kb/Kp 1.828 Capital: Bank/Patient households

(Cp+Cm)/Y 0.809 Total household consumption/Output
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Spreads are in annual basis points. Run is expressed in absolute values. All of the remaining variables
are in percentage deviations from their steady-state values.
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Spreads are in annual basis points. Run is expressed in absolute values. All of the remaining variables
are in percentage deviations from their steady-state values. Baseline: φss=10; Alternative:φss=8.8
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