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Abstract

The job scheduling problem is a classic operational research problem
in which agents have jobs to be executed by machines in given time slots,
with each machine being able to process only one job at a time. We study
this problem using cooperative game theory, focusing on how to divide
the minimum cost (of executing all jobs) between the agents. First, we
characterize the set of stable allocations, which all charge only users whose
jobs are executed in peak-demand time periods. Second, using properties
designed to avoid strategic mergers or splits of the jobs, we offer axioma-
tizations for two remarkable stable allocation rules. Third, observing that
all stable rules fail Unanimity Lower Bound (ULB), a property requiring
that everybody pay an equal share of the first machine (since it is needed
by all), we study and axiomatize the Shapley value, which satisfies ULB.
A compromise is then proposed between Stability and ULB.
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1 Introduction

Consider a group of agents who each have to execute a number of jobs per-
formed by machines. These jobs may differ in their lengths, starting and ending
times. A machine can only execute one job at a time, and the necessity to exe-
cute multiple jobs (with potential time conflicts) thus creates a “job scheduling
problem”. As a prime illustration of this problem, consider the school bus sys-
tem in Ontario, Canada. In most major cities, four school districts compete for
students and each district hires school buses to pick up its kids. Schedules vary
from one school to the other, allowing for a bus and its driver to cover routes for
at least two different districts. The consortium of bus companies then charges
each school district for its use of the buses. Other examples include schedul-
ing classes in classrooms, assigning planes to mechanics, with planes having
a short window for maintenance between landing and take-off, and assigning
cases to lawyers, while preventing conflicts of interest that would occur if cases
overlapped.

The job scheduling problem is a classic topic in operations research. There
exist many variants of this problem; and our version is equivalent to the Tactical
Fixed Job Scheduling problem, as defined in the review of Elliyi and Azizgoglu
(2004). Early examples include Dantzig and Fulkerson (1954), who study the
minimum number of tankers to carry on a schedule of supply jobs, Gertsbakh
and Stern (1978), who link the problem to others, and propose an extension by
considering variable starting times. Closest to our model is the setting of Gupta
et al. (1979): given a set of time intervals, the authors look at the problem of
finding a minimal partition such that no element of the partition contains two
overlapping intervals. They find a T(N log N) algorithm which is optimal.

A number of extensions (different costs for different machines, machines
available at different times, different types of jobs and machines only able to
complete jobs of a given type, etc.) have been proposed. See Elliyi and Azizgoglu
(2004) for a review.

To our knowledge, the job scheduling problem has not been studied in eco-
nomics, although it is related to the assignment problem (Shapley and Shubik
(1971)). If a coalition S is compatible (i.e., the jobs of all members of S can be
done on the same machine), they create a value equivalent to the cost of |S| − 1
machines. The closest problem seems to be the glove market game (Shapley,
1959). Our model is different because agents are not assigned to a given side of
the market, which is typically partitioned into elements of different sizes.

Another similar problem is the Bohm-Bawerk horse market game in which
agents value all goods in the same manner, but reserve prices might differ accross
agents. See for instance Núñez and Rafels (2005) and Tejada (2013), who study
respectively the core of two-sided and multi-sided Bohm-Bawerk games.

Conceptually, the problem is closely related to the queuing problem, in which
we also have to assign agents to machines. The main difference with the job
scheduling problem is that jobs do not need to be executed at a precise time.
Instead, each agent has a waiting cost, and the objective is to assign all jobs to a
single machine, while minimizing aggregate waiting costs. See Chun (2016) for a
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review. The differences are about the rigidities in the models: fair queuing limits
the number of machines (typically to one), but jobs can be moved around (which
is determined within the problem), while job scheduling allows for multiple
machines (with the number determined optimally), but there is no flexibility
for the starting times of the jobs.

After describing the operations research problem and its associated cooper-
ative game in Section 2, we examine the core in Section 3. We find that for an
allocation to be in the core, it must charge only the so-called peak-demand coali-
tions, i.e., groups of pairwise-incompatible players that need the same number
of machines as the grand coalition to execute their jobs. We axiomatize two
cost sharing rules that produce a core allocation for each problem. The first
one charges the same amount to all peak-demand coalitions. The second one
assigns to each peak-demand coalition a cost share that is proportional to the
length of its job interval. The characterizations that we propose for these rules
are based on properties that prevent strategic merging or splitting of jobs, in
the spirit of axioms proposed by O’Neill (1992), Chun (1988) and Sprumont
(2005) in various contexts.

Since all coalitions need at least one machine to process their jobs, it seems
very natural to impose that each agent pay at least 1

n th of the cost of a machine,
a property that we call Unanimity Lower Bound, following the propositions of
Moulin (1990), Maniquet (1996) and Hougaard and Moulin (2014) in different
contexts. However, this fairness requirement is incompatible with Core Selec-
tion. We examine in Section 4 the Shapley value, which fails Core Selection
but satisfies Unanimity Lower Bound. The axiomatic analysis that we propose
is based on the property of Equal treatment : if two agents become incompati-
ble (with all else equal), they should see their cost shares affected in the same
manner. The property is inspired by Myerson (1977) and Kar (2002).

In Section 5, we propose a compromise between Core Selection and Unanim-
ity Lower Bound, by weakening Core Selection: we suppose that if a coalition
wants to quit the group, it will be held responsible for its fair share of the ”fixed
cost”, which in our case is the cost of the first machine. We propose modifica-
tions to the rules introduced in Section 3 that satisfy the Weak Core Selection
property and Unanimity Lower Bound.

Finally, in Section 6, we drop the assumption that all machines have the
same cost. We show that the core is non-empty if and only if the average cost
of a machine decreases with the number of machines used. Section 7 concludes
and discusses further extensions. Independence of the properties used in the
axiomatizations is shown in the Appendix.

2 Preliminaries

2.1 The model

Let N = {1, ..., n} be a finite set of agents, with n ≥ 2. We denote by N the
collection of all such sets N . Each agent i ∈ N has a single job to be executed;
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andher job is described by its starting time and finishing time, respectively, si
and fi, with 0 ≤ si < fi ≤ 1. Every agent is thus characterized by a pair (si, fi);
and we write J = {(si, fi)}i∈N to refer to the agents’ job profile. Let J (N) be
the set of all such job profiles (listing the jobs of members of N).

A job scheduling problem can then be defined as a pair (N, J) such that
N = {1, 2, ..., n} ∈ N and J ∈ J (N). We call D the set containing all such job
scheduling problems.

Each job must be processed on a machine; and each machine is able to per-
form only one job at a time, without interruption from starting time to finishing
time. Assume that all machines have the same cost, which is normalized to 1
without loss of generality; and the full cost of 1 must be paid for each machine
that is used (for any positive amount of time).

For all S ⊆ N, J ∈ J (N) and t ∈ [0, 1] , define C(S, J, t) = {i ∈ S |si ≤ t < fi }.
That is to say, C(S, J, t) is the set of users (within S) whose jobs are ongoing
at time t. In addition, we write c(S, J, t) = |C(S, J, t)|; and we define the time
intersection of the jobs of S ⊆ N as I(S) ≡ [max

i∈S
si,min

i∈S
fi) = ∩i∈S [si, fi).

Definition 1 Consider N = {1, 2, . . . , n} and J ∈ J (N).
(a)- Denote by c̄J(S) ≡ max

t∈[0,1]
c(S, J, t) the peak demand for each coalition

S ⊂ N , that is, the highest number of users that we have at the same time.

(b)- Call a (nonempty) subset of agents S ∈ 2N a compatible coalition if
c̄J(S) = 1, that is, if their jobs can all be executed on the same machine.

We further define the intersection of jobs of agents in S ⊆ N as I(S) ≡
[max
i∈S

si,min
i∈S

fi) = ∩i∈S [si, fi).

For a problem (N, J), a feasible production plan is a partition P =
{
P 1, ..., PK

}
of the set N such that each P k (k = 1, ...,K) is a compatible coalition. Given
a problem (N, J), an optimal production plan for a coalition is a feasible pro-
duction plan that minimizes cost of completing all jobs listed in J . Since the
cost of using any machine is 1, optimality amounts to using as few machines as
possible to execute all jobs. In other words, an optimal production plan is a
partition of N into the least possible number of compatible coalitions.

Obviously, an optimal production plan P =
{
P 1, ..., PK

}
must satisfy K ≥

c̄J(N). Interestingly, it has been shown that there always exists a feasible pro-
duction plan such that K = c̄J(N).

Lemma 1 (Kroon et al., 1995)
Consider a fixed problem (N, J). There always exists a feasible production plan{
P 1, ..., PK

}
such that K = c̄J(N).

Such a production plan can be found using the following algorithm. First,
assign to the first machine the agent whose job starts the earliest. Keep adding
to the first machine the agent with the earliest starting job compatible with
previously added jobs until no more jobs are compatible. Then, repeat the
process for additional machines, as needed. Let us use the following example to
illustrate the previous definitions and lemma.
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Example 1 Suppose that N = {1, 2, 3, 4, 5} with the jobs described by J =
{(0, 0.1) , (0.2, 0.4) , (0.4, 0.6) , (0.3, 0.5) , (0.5, 0.7)} . This problem is illustrated
by Figure 1. One can easily see that c(N, J, t) = 2 for t ∈ [0.3, 0.7) and

Figure 1: Example of a job scheduling problem

c(N, J, t) ≤ 1 otherwise. Thus, c̄J(N) = 2. Optimal production plans are
P 1 = {{1, 2, 3} , {4, 5}} and P 2 = {{1, 4, 5} , {2, 3}} . In particular, if we ap-
ply the described algorithm to our example, then the jobs 1, 2 and 3 (which are
compatible) are assigned to the first machine, and jobs 4 and 5 are assigned to
the second machine.

Given a problem (N, J), recall from what precedes that c̄J(S) is the cost of
completing all jobs in S. Using the convention, c̄J(∅) = 0, one can easily see
that c̄J(·) is the characteristic cost function of the coalitional game generated
by the job scheduling problem (N, J).

An allocation y ∈ RN+ is a distribution of the minimum cost of serving N be-
tween its agents so as to satisfy the budget balance condition:

∑
i∈N yi = c̄J(N).

We write yS ≡
∑
i∈S yi. A cost sharing rule y assigns an allocation y(N, J) to

every job scheduling problem (N, J), which we formalize in the following defi-
nition.

Definition 2 A cost sharing rule is a mapping y : D → RN such that
∑
i∈N

yi(N, J) =

c̄J(N), for any (N, J) ∈ D.

We are now able to state the following definition.

Definition 3 The core of the problem (N, J) is Core(N, J) = {y ∈ RN |yN =
c̄J(N), yS ≤ c̄J(S),∀S ⊂ N}.

That is to say, the core of (N, J) is the set of allocations such that no coalition
S jointly pays more than its stand-alone cost c̄J(S). Picking a core allocation
is a central requirement in cooperative game theory: any allocation not in the
core will be blocked by at least one coalition of agents. The preliminary result
below is straightforward.

Lemma 2 Consider a fixed problem (N, J) and let
{
P 1, ..., PK

}
be an efficient

production plan for (N, J). If y ∈ Core(N, J) then we have yPk = 1, for any
k = 1, . . . ,K.

5



The proof is omitted; it follows directly from the respective definitions of the
core and an efficient allocation of the production. In the following section, we
provide a characterization of the core for a job scheduling problem.

3 Core allocations: the peak-demand and peak-
interval rules

A natural way of studying this problem is through the lens of the stand-alone
core. We thus first describe the core allocations, before introducing two partic-
ular cost-sharing rules which always propose an allocation that is in the core.
We then provide an axiomatic characterization for each of these two rules.

3.1 Study of the core

Let us fix a problem (N, J). We say that a coalition S is a peak-demanding coali-
tion if the group requires the same number of machines as the grand coalition
and if none of its members are compatible. Formally, let

GPD =
{
S ⊆ N

∣∣c̄J(S) = c̄J(N) = |S|
}

; and write ḡ =
∣∣GPD∣∣ . (1)

For each i ∈ N, call GPDi =
{
S ⊆ GPD |i ∈ S

}
the set of all peak-demanding

coalitions that i belongs to, and let gPDi =
∣∣GPDi ∣∣ be its cardinality.

Consider a (normalized) weight function w ∈ IRGPD

+ satisfying
∑

T∈GPD

wT =

1; and then define the associated cost share: for any i ∈ N

ywi =


∑

S∈GPD
i

wS , if GPDi 6= ∅

0, otherwise.
(2)

We call W (N, J) the set containing all such weight functions w ∈ IRGPD

+ for the
problem (N, J); and we use the notation Y(N, J) ≡ {yw |w ∈W (N, J)} for the
set containing the allocations generated via (2) for all possible weight functions.

Example 2 Let us revisit the job scheduling problem of Example 1. We have
GPD = {{2, 4} , {3, 4} , {3, 5}}. Pick any w{2,4}, w{3,4}, w{3,5} ≥ 0 such that
w{2,4} + w{3,4} + w{3,5} = 1. One then obtains cost allocations of the form

yw =
(
0, w{2,4}, w{3,4} + w{3,5}, w{2,4} + w{3,4}, w{3,5}

)
. It is easy to verify that

yw is in the core of this particular problem. In fact, it can be shown that the
core of this problem contains only allocations of this type.

The result of Example 2 is not a coincidence. The following theorem, which
is one of our main results, provides a full characterization of the core of a job
scheduling problem. It states precisely that the core coincides with the set of
allocations Y(N, J) defined earlier.
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Theorem 1 For any problem (N, J) ∈ D, we have Core(N, J) = Y(N, J).

Proof. Considering a fixed problem (N, J) ∈ D, we have to show the two
inclusions Y(N, J) ⊆ Core(N, J) and Core(N, J) ⊆ Y(N, J).

The first inclusion is relatively easy to prove. Indeed, for any given peak-

demand coalition S ∈ GPD, define the allocation yS by ySi =

{
1, if i ∈ S;
0, otherwise.

It is straightforward to check that yS is stable [since every coalition T pays a
joint share of yST = |T ∩ S| ≤ c̄J(T )]. We thus have the desired result since
the core is a convex set and W (N, J) is the convex hull of the set of allocations
{yS , S ∈ GPD} ⊂ Core(N, J).

To prove the second inclusion, let us first remark from Definition 1-(a) and
Equation (1) that each coalition S ∈ GPD is associated with a unique nonempty
interval I(S) = [max

i∈S
si,min

i∈S
fi) = ∩i∈S [si, fi). Furthermore, if S, S′ ∈ GPD and

S 6= S′, then we have I(S) ∩ I(S′) = ∅. This allows us to rank the respective
peak-demand coalitions S1, . . . , Sḡ, with the associated time intervals I1, . . . , Iḡ
such that t < t′ whenever (t, t′) ∈ Ig × Ig+1 and g ∈ {1, . . . , ḡ− 1}. In addition,
for all g = 1, . . . , ḡ, we write ig to refer to (one of) the agent(s) whose finishing
time is earliest in Sg, that is, fig = min

i∈Sg

fi.

Considering an arbitrary stable allocation y ∈ Core(N, J), we will construct

a vector of weights w ∈ IRGPD

+ and show that y = yw. First, let w1 = yi1 and,
if ḡ ≥ 2, define recursively wg = yig −

∑
l < g

ig ∈ Sl

wl for g = 2, . . . , ḡ.

Fix an efficient allocation of the production P = {P 1, . . . , PK} for the prob-
lem (N, J), that is, K = c̄J(N) is the minimum number of machines to execute
the jobs J . For any i ∈ N , call ki the rank of the unique subset of the partition
P such that i ∈ P ki . Without loss of generality, rank the n agents in (weakly)
increasing order of finishing time, that is, f1 ≤ f2 ≤ . . . ≤ fn. We use induction
over this order of finishing time to prove that y = yw.

Step 1: Note from what precedes that we necessarily have f1 ≤ fi1 , with

GPD1 = ∅ if f1 < fi1 . Let us then show that y1 =

{
0, if f1 < fi1 ;
w1, if f1 = fi1 .

Indeed, assuming that f1 < fi1 and recalling then that GPD1 = ∅, we can
claim that there exists k̄ ∈ {1, . . . ,K} \ {k1} such that lim

t→f1

C(Pk̄, J, t) = ∅. In

words, since the job of agent 1 is not in a peak demand interval, we can find
a machine of the partition P that is free at any time t that is close enough to
f1. But since we have by definition f1 ≤ fj for any j ∈ N , we can claim that
C(Pk̄, J, t) = ∅, ∀t ∈ [s1, f1), that is to say, the job of agent 1 is compatible
with every job in Pk̄. Hence, we have found a new efficient allocation of the
production P ′ = {P ′1, . . . , P ′K}, defined by: P ′k = P k if k /∈ {k1, k̄}; P ′k1 =
P k1 \ {1}; and P ′k̄ = P k̄ ∪ {1}. It thus follows from Lemma 2 (applied to both
P and P ′) that yP k̄ + y1 = 1 = yP k̄ and, therefore, y1 = 0.

Suppose now that we instead have f1 = fi1 . Then we have two possibilities:
i1 = 1 or (i1 6= 1 and f1 = fi1). The case where i1 = 1 is trivial since we have
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by definition y1 = yi1 = w1. Assume then that i1 6= 1 and f1 = fi1 . Then
one can see that we have a new efficient allocation of the production in P ′′ =
{P ′′1, . . . , P ′′K} such that: P ′′k = P k if k /∈ {k1, ki1}; P ′′k1 = (P k1 ∪{i1})\{1};
and P ′′ki1 = (P ki1 ∪ {1}) \ {i1}. Indeed, since i1 6= 1 and f1 = fi1 = min

j∈N
fj ,

we can claim that (P k1 ∪ {i1}) \ {1} and (P ki1 ∪ {1}) \ {i1} are compatible
coalitions (with an empty intersection). Applying Lemma 2 to P and P ′′ thus
gives: y(Pk1∪{i1})\{1} = yPk1 + yi1 − y1 = 1 = yPk1 . It hence comes that
y1 = yi1 = w1. In summary, we have shown that y1 is given by Equation (2).

Step i ≥ 2: Suppose now that for some i = 2, . . . , n, we have fi−1 ≤ fi [with
fj /∈ (fi−1, fi) for any j = 1, . . . , n]; and by our induction hypothesis, assume
that for any j = 1, . . . , i− 1 we have

yj = ywj =

 0, if GPDj = ∅;∑
Sg∈GPD

j

wg otherwise. (3)

We will now show that yi = ywi also holds by distinguishing the two cases below.

Case 1: Suppose that fi 6= fig for any g = 1, . . . , ḡ.
Then we have [fi−1, fi]︸ ︷︷ ︸

6=∅

∩Ig = ∅ (for any g = 1, . . . ḡ) and the following thus

holds: ∃k̄ ∈ {1, . . . ,K} s.t. lim
t→fi

C(Pk̄, J, t) = ∅, i.e., there exists a machine k̄

which is free at any t close enough to fi. Thus, recalling our induction hypothesis
(3), we may write: ∑

j ∈ Pki

fj < fi

yj =
∑

j ∈ Pk̄

fj < fi

yj =
∑

Sg :fig<fi

wg. (4)

By contradiction, suppose now that yi > ywi (the case yi < ywi is similar). Then
one can use (3)-(4) to write:∑

j ∈ Pki

fj ≤ fi

yj = yi +
∑

j ∈ Pki

fj < fi

yj >
∑

j ∈ Pk̄

fj ≤ fi

yj . (5)

Using Lemma 2 in (5) thus gives
∑

j ∈ Pki

fj > fi

yj <
∑

j ∈ Pk̄

fj > fi

yj . Letting P k̄+ ≡ {j ∈

P k̄ : fj > fi} 6= ∅ and P ki− ≡ {j ∈ P ki : fj ≤ fi}, and recalling from Lemma
2 that

∑
j∈Pki

−

yj +
∑

j∈Pki\Pki
−

yj = 1 =
∑
j∈P k̄

+

yj +
∑

j∈P k̄\P k̄
+

yj , one can then see

that we have
∑

j∈Pki
− ∪P k̄

+

yj =
∑

j∈Pki
−

yj +
∑
j∈P k̄

+

yj > 1. But this is a contradiction

because P ki− ∪ P k̄+ is a compatible coalition (for which core stability requires∑
j∈Pki

− ∪P k̄
+

yj ≤ 1).
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If we assume instead that yi < ywi , the contradiction obtains in a similar way

with the compatible set P ki+ ∪ P k̄−.

Case 2: Suppose that fi = fig for some g = 1, . . . , ḡ. The desired result
(yi = ywi ) obtains by definition of wg if i = ig. It hence follows from (3) that∑
j∈Pkig :fj≤fig

yj = w1 + . . .+ wg.

Assume now that i 6= ig and fi = fig . Then one can see that we have a new

efficient allocation of the production in P̂ = {P̂ 1, . . . , P̂K} such that P̂ k = P k

if k /∈ {ki, kig}; P̂ ki = (P ki ∪ {j ∈ P kig : fj ≤ fig}) \ {j ∈ P ki : fj ≤ fig}; and

P̂ kig = (P kig ∪ {j ∈ P ki : fj ≤ fig}) \ {j ∈ P kig : fj ≤ fig}. Applying Lemma

2 to P̂ and P thus gives: yPki +
∑

j∈Pki :fj≤fig

yj −
∑

j∈Pkig :fj≤fig

yj = 1 = yPki .

It hence comes that yi +
∑

j∈Pki :fj≤si
yj =

∑
j∈Pki :fj≤fi

yj =
∑

j∈Pkig :fj≤fig

yj =

w1 + . . .+ wg; and combining with (3), we get: yi =
∑

g′:i∈Sg′

wg′ = ywi .

To conclude the proof, observe from Lemma 2 that our weight vector w

is well defined:
ḡ∑
g=1

wg =
∑
j∈P 1

yj = . . . =
∑

j∈PK

yj = 1. Moreover, we have

wg ≥ 0,∀g = 1, . . . , ḡ. Indeed, given that y ∈ Core(N, J), we have yi1 = w1 ≥ 0;
and writing wg < 0 (for some g = 2, . . . , ḡ) leads to a contradiction, since the

compatible coalition S =
{
i ∈ Pkig−1

\ {ig} : fi ≤ fig−1

}
∪
{
i ∈ Pkig : fi > fig

}
then pays a joint share yS =

∑
g′ 6=g

wg′ =
ḡ∑

g′=1

wg′ − wg = 1− wg > 1 = c̄J(S).

3.2 Two distinguished cost sharing rules

We now introduce two intuitive cost sharing rules that always pick allocations
in the core Y(N, J), and that use the concept of proportonality. First, we define
the peak-demand rule, yPD(N, J), by letting wS = 1

ḡ for all S ∈ GPD. We thus
obtain a rule that shares costs in proportion to the number of peak-demand
intervals an agent belongs to.

Definition 4 The peak-demand rule yPD is defined as yPDi (N, J) =
gPD
i

ḡ for all

i ∈ N and corresponds to the allocation yw such that wS = 1
ḡ for all S ∈ GPD.

Next, we define a rule that takes into account the lengths of the respective
peak-demand intervals. For all S ∈ GPD, let L(S) = mini∈S fi −maxi∈S si be
the length of the peak-demand interval of coalition S. The peak-interval rule,

yPI(N, J), is then obtained by letting wS = L(S)∑
T∈GPD L(T ) .

Definition 5 The peak-interval rule yPI is defined as yPIi (N, J) =

∑
S∈GPD

i
L(S)∑

T∈GPD L(T )

for all i ∈ N ; and it corresponds to the allocation yw such that wS = L(S)∑
T∈GPD L(T )

for all S ∈ GPD.
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Example 3 Recall the problem of Examples 1-2: GPD = {{2, 4} , {3, 4} , {3, 5}}
and it follows that gPD = (0, 1, 2, 2, 1) . One thus gets yPD =

(
0, 1

3 ,
2
3 ,

2
3 ,

1
3

)
as

the allocation recommended by the peak-demand rule.
We have L({2, 4}) = L({3, 4}) = 0.1, while L({3, 5}) = 0.2. Thus, the

peak-interval rule gives yPI =
(
0, 1

4 ,
3
4 ,

1
2 ,

1
2

)
.

Notice that under the peak-demand rule, agents 2 and 5 pay the same share,
as they both belong to one peak-demand coalition. However, in the peak-interval
rule, agent 5 pays the same amount as agent 4, as both have a job in a peak-
demand interval for a length of 0.2. Agent 2, for which only 0.1 of her job is
during a peak-interval, pays half of what agent 5 is paying.

3.3 Characterizations

In this subsection we propose axiomatic characterizations of the peak-demand
rule and the peak-interval rule. We first formally define the property of Core
Selection, which requires rules to always provide core allocations.

Core Selection: For all (N, J), y(N, J) ∈ Core(N, J).

Next, we define a property that applies to groups: if two distinct groups
have the same number of agents and jobs of equal length, with no intersections
with anybody else, then they play a similar role and their members should all
pay the same cost share. The formal definition is as follows.

We say that two agents i, j ∈ N are symmetric if si = sj and fi = fj . We
say that two groups of agents S, T ∈ 2N are symmetric if

a) |S| = |T |
b) Any i, j ∈ S are symmetric; and any k, l ∈ T are symmetric.
c) fi − si = fj − sj , for all i ∈ S, j ∈ T .
d) [si, fi)∩[sk, fk) = ∅ = [sj , fj)∩[sk, fk), for all i ∈ S, j ∈ T, k ∈ N \(S∪T ).

In words, two agents are symmetric if they have the same starting and
finishing times. Two groups are symmetric if a) they contain the same number of
agents, b) each group is composed of symmetric agents, c) agents in both groups
have jobs of the same length and d) each agent in either group is compatible
with any agent not in the two groups.

It is a natural fairness requirement to impose that symmetric agents pay the
same share, as well as members of symmetric groups.

Symmetry: In (N, J), if i, j ∈ N are symmetric agents, then yi(N, J) =
yj(N, J).

Strong Symmetry: In (N, J), if S, T ⊂ N are symmetric groups, then
yi(N, J) = yj(N, J) for all i, j ∈ S ∪ T .

Note that Symmetry is implied by Strong Symmetry. In addition, we draw
the reader’s attention to the fact that Strong Symmetry can also be interpreted
as a fairness axiom about time neutrality. Indeed, the two groups S, T in its
definition are identical in all respects, except for the time at which their jobs
are executed (e.g., morning vs afternoon). If Strong Symmetry is violated for
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two such groups, then it means that the considered cost sharing rule is not time
neutral in the sense that jobs that have exactly the same characteristics (length,
number of competing jobs, etc.) are charged different prices simply because they
occur at different times of the day.

Next, we define two versions of No Merging No Splitting, which are designed
to eliminate incentives for agents to strategically merge or split their jobs so
as to lower their cost shares. The two versions differ because of the respective
situations in which they apply. No Merging No Splitting states that the shares
of other agents stay invariant only if the set of peak-demand coalitions is un-
changed. This limits the domain of application of No Merging No Splitting. On
the other hand, Strong No Merging No Splitting does not have this restriction.

We say that the problem (N ′, J ′) is a splitting manipulation of the problem
(N, J) by agent i ∈ N if: (a) N ′ = (N\i) ∪ {ia, ib}, (b) (sj , fj) = (s′j , f

′
j) for all

j ∈ N\i, (c) (s′ia , f
′
ia

) ∪ (s′ib , f
′
ib

) = (si, fi) and (s′ia , f
′
ia

) ∩ (s′ib , f
′
ib

) = ∅.
Equivalently, when the conditions (a)-(c) are satisfied, we also say that (N, J)

is a merging manipulation of the problem (N ′, J ′) by the agents ia, ib.

No Merging No Splitting: Suppose that the problem (N ′, J ′) is a split-
ting manipulation of the problem (N, J) by agent i ∈ N ; and |GPD(J ′)| =
|GPD(J)|. Then yi(N, J) = yia(N ′, J ′) + yib(N ′, J ′) and yk(N, J) = yk(N ′, J ′)
for all k ∈ N\i.

Strong No Merging No Splitting: Suppose that the problem (N ′, J ′) is
a splitting manipulation of the problem (N, J) by agent i ∈ N . Then yi(N, J) =
yia(N ′, J ′) + yib(N ′, J ′) and yk(N, J) = yk(N ′, J ′) for all k ∈ N\i.

It can be argued that changes to the set of peak-demand coalitions (under
which Strong No Merging No Splitting applies, but not No Merging No Splitting)
are easy to detect: any stable cost sharing rule uses peak-demand coalitions to
assign cost shares. Therefore, it may be argued that we do not need to explicitly
rule out such strategic manipulations (as they would be easier to detect).

Example 4 We revisit Example 1. Agent 2 has a job from 0.2 to 0.4, and be-
longs to a peak-demand coalition with agent 4 between 0.3 and 0.4. We consider
two possible splitting manipulations.

Suppose first that agent 2 splits into agents 2a and 2b, with respective jobs
(0.2, 0.3) and (0.3, 0.4). The condition for NMNS is satisfied, as agent 4 has an
intersection with 2b but not with 2a. Therefore, following that split, both NMNS
and SNMNS prescribe that y2a(N ′, J ′)+y2b(N

′, J ′) = y2(N, J) and yi(N
′, J ′) =

yi(N, J) otherwise. We can verify that we have yPD(N ′, J ′) = (0, 0, 1
3 ,

2
3 ,

2
3 ,

1
3 )

and yPI(N ′J ′) = (0, 0, 1
4 ,

3
4 ,

1
2 ,

1
2 ) so that this manipulation is thwarted by both

rules.
Suppose next that agent 2 splits into agents 2c and 2d with respective job

(0.2, 0.35) and (0.35, 0.4). The condition for NMNS is not satisfied, as agent
4 now has an intersection that creates a peak-demand coalition with both agents
2c and 2d. Therefore, following that split, NMNS puts no constraints on the
shares but SNMNS still prescribes that y2c(N

′, J ′) + y2d(N
′, J ′) = y2(N, J) and
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yi(N, J
′) = yi(N, J) otherwise. We can verify that we have yPD(N ′, J ′) =

(0, 1
4 ,

1
4 ,

1
2 ,

3
4 ,

1
4 ) and yPI(N ′J ′) = (0, 1

8 ,
1
8 ,

3
4 ,

1
2 ,

1
2 ) so that yPD fails SNMNS but

yPI satisfies it.
In terms of merging, notice that neither NMNS nor SNMNS protects against

the (non-credible threat of) merger of agent 2 with either agent 4 (because their
jobs intersect) or agent 5 (because their merger would create the need for a third
machine between 0.4 and 0.5). NMNS protects against a merger with agent 1
while SNMNS also protects against a merger with agent 3.

Finally, we introduce a property saying that if an agent changes the duration
of her job without impacting any of the stand-alone costs, then it should not
have any impact on the cost shares either.

Independence of Irrelevant Intervals: For all (N, J) let J ′ = {{sk, fk}k∈N\{i},
{si − a, fi + b}}, with a, b ≥ 0. Then, if CJ = CJ

′
, y(N, J) = y(N, J ′).

In other words, the cost shares should depend only on the cooperative cost
game generated by the job scheduling problem. Combining these axioms, one
obtains the following characterization result.

Theorem 2 A rule y satisfies No Merging No Splitting, Independence of Ir-
relevant Intervals and Strong Symmetry if and only if it is the peak-demand
rule.

Proof. It is easy to verify that the peak-demand rule satisfies No Merging No
Splitting, Independence of Irrelevant Intervals and Strong Symmetry. We show
that it is the only rule satisfying the properties.

Suppose that y satisfies No Merging No Splitting, Independence of Irrelevant
Intervals and Strong Symmetry.

Step 1: Use of No Merging No Splitting. For each i ∈ N , let Ai ={
Si,1, ..., Si,Ki

}
, with each Si,k ⊆ N\i, be such that

• tmin
Si,k < tmin

Si,l if k < l;

• tmax
Si,k = tmin

Si,k+1 for all k = 1, ...,Ki − 1;

• tmin
Si,1 = si;

• tmax
Si,Ki

= fi;

• Si,k 6= Si,k+1 for all k = 1, ...,Ki − 1;

• C(N, J, t) = Si,k ∪ i for all t ∈
[
tmin
Si,k , t

max
Si,k

[
.

In words, Ai gives the list of coalitions Si,k that are incompatible with i at
some given time t, since Si,k changes as t varies from si to fi.

We create new agents in the following manner: for all Si,k ∈ Ai, create
agent ik such that sik = tminSk and fik = tmaxSk . In words, we are creating
multiple agents, one for each coalition Si,k that is incompatible with i.
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Let N i = {ik}Ki

k=1 be the set of agents created for agent i. Then N ′ =
N1 ∪ ...∪Nn contains all agents created via this procedure; and the list of their
jobs is J ′ = {(sik , fik)} i = 1, . . . , n

k = 1, . . . , Ki

.

By (multiple applications of) No Merging No Splitting, it follows that, for
all i ∈ N ,

yi(N, J) =

Ki∑
k=1

yik(N ′, J ′).

Step 2: Use of Independence of Irrelevant Intervals. For all l =
1, ..., ḡ, let

zl = min
j∈N

min
k=1,...,Kj

|Sj,k|=l−1

tmax
Sj,k − tmin

Sj,k

be the shortest length of an interval for an incompatible coalition of size l. For all
i ∈ N and k = 1, ...,Ki, let f ′ik = sik +z|Si,k|+1, with other start times remaining

unchanged. Formally, for all i ∈ N , let J ′′i =
{

(sik , sik + z|Si,k|+1)
}Ki

k=1
; and

define J ′′ =
{
J ′′1, ..., J ′′n

}
. By Independence of Irrelevant Intervals, y(N ′, J ′) =

y(N ′, J ′′) and thus for all i ∈ N ,

yi(N, J) =

Ki∑
k=1

yik(N ′, J ′′).

Step 3: Use of Strong Symmetry. Let Gk be the set of coalitions S ⊆ N ′
such that c̄J

′′
(S) = |S| = k, for all k = 1, ..., ḡ. We verify that in the problem

(N ′, J ′′), the four conditions of Strong Symmetry are satisfied for any pair of
distinct coalitions S, T ∈ Gk. one coalition S ∈ Gk, so S ∩ T = ∅.

First, since S, T ∈ Gk, we have |S| = |T |, and condition a) is satisfied.
Second, in J ′′, we have set in Step 1 si = tminS and in Step 2 fi = tminS + zk,

for all i ∈ S. Thus, S is composed of symmetric agents. In the same manner we
have set in Step 1 si = tminT and in Step 2 fi = tminT + zk, for all i ∈ T . Thus,
S is also composed of symmetric agents, and condition b) is satisfied. It follows
that if i ∈ S and j ∈ T , we have fi − si = zk = fj − sj , and condition c) is
satisfied,

Finally, since all members of S have the same interval and S ∈ Gk, any
intersection with any other job would contradict this. The same reasoning
applies for T . Thus condition d) is satisfied.

Thus, S and T are symmetric groups. We thus have that yi = yj for all i, j ∈
S ∪ T. In our case, it means that for all k = 1, ...,Ki, yik(N ′, J ′′) ≡ α|Si,k|+1.

Step 4: Zero share for non-peak demands. We next show that αl = 0
for all l = 1, ..., ḡ − 1.

Fix l ∈ {1, ..., ḡ − 1} and for all S ∈ Gl, and all i ∈ S, split the agent in two,

ia and ib, dividing the job in two two equal parts: let ŝia = s′i, f̂ia = ŝib =
s′i+f

′′
i

2

and f̂ib = f ′′i for all i ∈ S. Let N̂ and Ĵ be the corresponding new sets of agents

and jobs. By No Merging No Splitting, we have yia(N̂ , Ĵ) + yib(N̂ , Ĵ) = αl. By
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Strong Symmetry, yia(N̂ , Ĵ) = yib(N̂ , Ĵ) = αl

2 . For all i ∈ S, split the agent
ib into two further agents, ib1 and ib2, dividing the job in two equal parts: let

šib1
= ŝib , f̌ib1

= šib2
=

ŝib+f̂ib
2 and f̌ib2

= f̂ib for all i ∈ S. Let Ň and J̌ be the
corresponding new sets of agents and jobs. By the same argument as above, we
obtain yib1

(Ň , J̌) = yib2
(Ň , J̌) = αl

4 .
Next, for all i ∈ S, remove the second half of the job of agent ia: s̃ia = ŝia

and f̃ia =
ŝia+f̂ia

2 . Let J̃ be the corresponding new set of jobs. By Independence

of Irrelevant Intervals, yi(Ň , J̃) = yi(Ň , J̌) for all i ∈ Ň . By Strong Symmetry,
αl

2 = yia(Ň , J̌) = yib1
(Ň , J̌) = αl

4 , which implies that αl = 0 for all l =
1, ..., ḡ − 1. Thus,

yi(N, J) =
∑

k∈{1,...,Ki}
|Si,k|=ḡ−1

yik(N ′, J ′′) =
∑

k∈{1,...,Ki}
|Si,k|=ḡ−1

αḡ.

Step 5: Use of budget balance. The total cost is ū. We have ḡ peak-
demand coalitions containing exactly ū agents each, thus αḡ = 1

ḡū ū = 1
ḡ for all

i ∈ N and all k. We thus obtain that for all i ∈ N ,

yi(N, J) =
∑

k∈{1,...,Ki}
|Si,k|=ḡ−1

1

ḡ
=
gPDi
ḡ

= yPDi (N, J).

We obtain an axiomatization of the peak-interval rule by replacing Indepen-
dence of Irrelevant Intervals by Core Selection, and strengthening No Splitting
No Merging into Strong No Merging No Splitting.

Theorem 3 A rule y satisfies Core Selection, Strong No Merging No Splitting
and Strong Symmetry if and only if it is the peak-interval rule.

Proof. It is easy to verify that the peak-interval rule satisfies Core Selection,
Strong No Merging No Splitting and Strong Symmetry. We show that it is the
only rule satisfying the properties.

Suppose that a rule y meets Core Selection, Strong No Merging No Splitting
and Strong Symmetry; and fix a problem (N, J). Our first step consists in
splitting each peak-demand intervals in multiple intervals of size q, with q being
the largest number such that for all S ∈ GPD(J), there exists kS ∈ N satisfying
L(S) = kSq. One can then create multiple agents, kS for each peak-demand
coalition S that i belongs to, with each agent having a job of length q. We also
create one agent for each interval on which i is demanding, but not part of a
peak-demand coalition.

Step 1: Use of Strong No Merging No Splitting. For each i ∈ N ,

label coalitions in GPDi such that GPDi =
{
S1, ..., Sg

PD
i

}
and tminSk < tminSl if

k < l. We create new agents in the following manner: for all Sl ∈ GPDi , create

kS
l

agents ilk and one agent il̄ such that sil1 = tminSl , silk = silk−1
+ q for
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k = 2, ..., kS
l

, filk = silk + q for k = 1, ..., kS
l

, sil̄ = tmaxSl−1 and fil̄ = tminSl , with
tmaxS0 = si. Create an additional agent i

gPD
i +1

such that si
gPD
i

+1
= tmax

SgPD
i

and

fi
gPD
i

+1
= fi. Notice that for some k, we might have that fik̄ = sik̄ , in which

case we can say that the agent ik̄ is not created.

Let N il = {ilk}
kS

l

k=1 be the set of agents created for agent i to cover her

demand with peak-demand coalition Sl. Let J il =
{

(silk , filk )
}kSl

k=1
be the set

of jobs of the agents in N il .

Let N i =
{{
N il , il̄

}gPD
i

l=1
, i
gPD
i +1

}
be the set of agents created for agent i.

Let J i =
{{
J il
}gPD

i

l=1
,
{

(sil̄ , fil̄)
}gPD

i +1

l=1

}
be the set of jobs of the agents in N i.

Let N ′ =
{
N1 ∪ ... ∪Nn

}
be the set of agents created for all agents and let

J ′ =
{
J1, ..., Jn

}
be the set of jobs for these agents.

By (multiple applications of) Strong No Merging No Splitting, we have that
for all i ∈ N ,

yi(N, J) =

gPD
i∑
l=1

kS
l∑

k=1

yilk (N ′, J ′) +

gPD
i +1∑
l=1

yil̄(N
′, J ′).

Step 2: Use of Core Selection. By Theorem 1, yil̄ = 0 in any core
allocation for all i ∈ N and all l. We thus have that for all i ∈ N ,

yi(N, J) =

gPD
i∑
l=1

kS
l∑

k=1

yilk (N ′, J ′).

Step 3: Use of Strong Symmetry.
Let us check, that in the problem (N ′, J ′), the four conditions of Strong

Symmetry are satisfied for any pair of distinct coalitions S, T ∈ GPD(J ′).
First, since S, T ∈ GPD(J ′), we have |S| = |T |, and condition a) is satisfied.
Second, for S ∈ GPD(J ′) let S̄ ⊂ N be such that (si, fi) ∩ (sj , fj) 6= ∅ for

all i ∈ S and j ∈ S̄ (i.e., S is one of the pieces we have divided S̄ into in Step
1). Then, from Step 1, we have that if i, j ∈ S, si = sj = tmin

S̄
+ (k − 1)q and

fi = fj = tmin
S̄

+ kq, for some k ∈ 1, ..., kS . Thus all agents in S have the same
job and are thus symmetric agents.

The same logic as above applies for T ∈ GPD(J ′). Thus all agents in T are
symmetric agents, and condition b) is satisfied. Since agents in both groups
have a job of length q, condition c) is satisfied.

Finally, since S is a peak-demand coalition, any intersection with any other
job would increase the size of the peak-demand coalition, a contradiction. The
same reasoning applies for T . Thus condition d) is satisfied.

Thus, S and T are symmetric groups and yilk (N ′, J ′) ≡ α for all i ∈ N ,

l = 1, ..., gPDi and k = 1, ..., kS
l

.
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Step 4: Use of budget balance. Total cost is ū. In J ′, we have∑
T∈GPD(J) k

T =
∑
T∈GPD(J)

L(T )
q peak-demand coalitions, each containing ex-

actly ū agents each, thus yilk = 1

ū
∑

T∈GPD(J)
L(T )

q

ū = 1∑
T∈GPD(J)

L(T )
q

for all

i ∈ N and all k, l. We thus obtain that for all i ∈ N ,

yi(N, J) =

gPD
i∑
l=1

kS
l∑

k=1

1∑
T∈GPD(J)

L(T )
q

=

gPD
i∑
l=1

kS
l∑

T∈GPD(J)
L(T )
q

=

gPD
i∑
l=1

L(Sl)
q∑

T∈GPD(J)
L(T )
q

=

∑
S∈GPD

i

L(S)
q∑

T∈GPD(J)
L(T )
q

=

∑
S∈GPD

i
L(S)∑

T∈GPD(J) L(T )
= yPIi (N, J).

4 Unanimity Lower Bound: the Shapley value

One striking feature of core allocations for the job scheduling problem is that
any agent that does not belong to a peak-demand coalition is not assigned any
cost. But, since every agent (or coalition) would pay at least the full cost of
one machine if he stood alone, it seems very natural to assume that everybody
is equally responsible for the cost of the first machine used. Thus, regardless of
compatibility issues, it is natural and fair to require that all agents should pay
at least 1

n , an equal share of the cost of the first machine.
This concept has been used in various environments —see Moulin (1990),

Maniquet (1996) and Hougaard and Moulin (2014); and we follow the literature
in calling the property Unanimity Lower Bound.

Unanimity Lower Bound: For all (N, J) and i ∈ N, yi(N, J) ≥ 1
n .

Given Theorem 1, the following result is immediate:

Corollary 1 There exists no rule satisfying both Core Selection and Unanimity
Lower Bound.

4.1 The Shapley value

If one is willing to sacrifice Core Selection in order to use a rule satisfying
Unanimity Lower Bound, a natural candidate is the Shapley value, formally
defined as follows. For all i ∈ N ,

yShi (N, J) =
∑
S∈N\i

|S|!(n− |S| − 1)!

n!

(
c̄J(S ∪ i)− c̄J(S)

)
.

16



In the context of the job scheduling problem, we can simplify this general
formula. In particular,

(
c̄J(S ∪ i)− c̄J(S)

)
can only take two values: zero or

one. Define WIi(J) =
{
S ∈ N \ i|c̄J(S ∪ i) = c̄J(S) + 1

}
as the set of coalitions

that are weakly-incompatible with i, i.e. such that adding i to these coalitions
requires an extra machine. Note that if S ∈WIi(J), i might still be compatible
with some agents in S. For instance, if S = {j, k}, if i is compatible with j and
incompatible with k, and j, k are compatible with each other, then i is weakly
incompatible with S.

We obtain the following simplification of the expression of the Shapley value.
For all i ∈ N ,

yShi (N, J) =
∑

S∈WIi(J)

|S|!(n− |S| − 1)!

n!
.

Example 5 In our running example, we have: WI1 = {∅},
WI2 = {∅, {4} , {1, 4} , {4, 5} , {1, 4, 5}},
WI3 = {∅, {4} , {5} , {1, 4} , {1, 5} , {2, 5} {4, 5} , {1, 2, 5} , {1, 4, 5}},
WI4 = {∅, {2} , {3} , {1, 2} , {1, 3} , {2, 3} {2, 5} , {1, 2, 3} , {1, 2, 5}} and
WI5 = {∅, {3} , {1, 3} , {2, 3} , {1, 2, 3}}.
We thus obtain ySh =

(
1
5 ,

11
30 ,

8
15 ,

8
15 ,

11
30

)
.

4.2 Characterization

We characterize the Shapley value by using the property of Equal Treatment,
which says that if we add an incompatibility between two agents, they should
see their cost shares affected in the same manner. The property is inspired by
Myerson (1977) and Kar (2002), who use it in slightly different contexts. We
need the following notation.

Denote I(J) = {(k, l) ∈ N ×N |(sk, fk) ∩ (sl, fl) 6= ∅} . For (k, l) /∈ I(J), let
J+kl be such that I(J+kl) = I(J) ∪ (k, l) .

Equal Treatment: For (k, l) ∈ I(J), yk(N, J)− yk(N, J+kl) = yl(N, J)−
yl(N, J

+kl)

The property is combined with a very simple property that we call Full
Incompatibility: if an agent is incompatible with all others, then he will require
a machine just to execute her job, and he should pay the full cost of it.

Let NF (J) = {i ∈ N |(i, j) ∈ I(J) for all j ∈ N\i} be the set of agents who
are incompatible with all other agents.

Full Incompatibility: If k ∈ NF (J), then yk(N, J) = 1.

Theorem 4 A rule satisfies Equal Treatment and Full Incompatibility if and
only if it is the Shapley value.

Proof. It is easy to verify that the Shapley value satisfies Equal Treatment and
Full Incompatibility. We show that it is the only rule satisfying these properties.
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We proceed by induction on the cardinality of I(J).

Suppose that |I(J)| = n(n−1)
2 . Then, NF (J) = N and yi(J) = 1 for all i ∈ N

by Full Incompatibility.
Suppose that we have shown that there is a unique rule satisfying the prop-

erties if |I(J)| ≥ m + 1. We show that it implies that there is a unique rule
satisfying the properties if |I(J)| = m.

We proceed by contradiction, supposing that y and x both satisfy the prop-
erties and that x(J) 6= y(J) when |I(J)| = m.

Take (k, l) /∈ I(J). Now

yk(J)− yl(J) = yk(J+kl)− yl(J+kl) (by Equal Treatment)

= xk(J+kl)− xl(J+kl) (by induction hypothesis)

= xk(J)− xl(J) (by Equal Treatment)

and thus yk(J)− xk(J) = yl(J)− xl(J).
Take any other (i, j) /∈ I(J). Then, repeating the argument above, we obtain

yi(J)− xi(J) = yj(J)− xj(J).
For all i ∈ NF (J), we have that yi(J) = xi(J) = 1 and thus that yi(J) −

xi(J) = 0.
Claim: For all i, j ∈ N\NF (J), there exists a sequence i1, ..., iK with i1 = i

and iK = j such that (ik, ik+1) /∈ I(J) for all k = 1, ...,K − 1.
Suppose otherwise. Let N∗ = N\NF (J). Then, we must have S, with i ∈ S

and j ∈ N∗\S, such that for all j ∈ S and k ∈ N∗\S, (j, k) ∈ I(J). Since
i, j /∈ NF (J), there exists l ∈ S and m ∈ N∗\S such that (i, l), (j,m) /∈ I(J).
This imposes that 2 ≤ |S| ≤ |N∗| − 2.

Suppose without loss of generality that si < sl. Since i and l are compatible,
fi ≤ sl. By definition of S, j and m are incompatible with both i and l. Thus,
sj , sm < fi and fj , fm > sl. In other words, [fi, sl] ∈ (sj , fj) ∩ (sm, fm) and j
and m are incompatible, contradicting our initial assumption. Thus, our claim
is verified.

Given that for all i, j ∈ N\NF (J), there exists a sequence i1, ..., iK with
i1 = i and iK = j such that (ik, ik+1) /∈ I(J) for all k = 1, ...,K − 1, it is
immediate that we obtain, by multiple applications of the argument above, that
yi(J)− xi(J) = yj(J)− xj(J).

We must have∑
i∈N

[yi(J)− xi(J)] = 0 (by budget balance)∑
i∈N∗

[yi(J)− xi(J)] = 0 (since yi(J) = xi(J) for i ∈ NF (J))

yi(J)− xi(J) = 0 ∀i ∈ N∗, since yi(J)− xi(J) = yj(J)− xj(J) ∀i, j ∈ N∗

Thus, y(J) = x(J).
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5 A compromise between Core Selection and
Unanimity Lower Bound

As seen in the previous section, Core Selection and Unanimity Lower Bound are
incompatible. We propose in this section a compromise based on a weakening
of the stability concept behind Core Selection.

Given that all coalitions would need to pay for at least one machine if they
were to undertake the project by themselves, one can imagine that constraints

are put on departing coalitions, with coalition S being asked to pay |S|
n , its

fair share of the “fixed” cost of 1. We thus consider a modified version of
stability that will be compatible with Unanimity Lower Bound. To this end,
we need to generalize our job scheduling problems, now identified as (N, J, a),
where (just as before) N and J are respectively the set of agents and their
profile of jobs. The new argument in the tuple (N, J, a) is a, the constant cost
of adding a new machine machine. For all S ⊆ N, let C(S, J, a) = ac̄J(S) and

C̃(S, J, a) = |S|
n +C(S, J, a). The coalitional game C(·, J, a) thus comes from the

problem with unit cost a for machines, while C̃(·, J, a) adds to each coalition
their fair share of the “fixed” cost of the first machine (which is 1).

We consider the game C̃
(
S, J, c̄

J (N)−1
c̄J (N)

)
, where coalitions pay their fair share

of the fixed cost of 1 but variable costs are rescaled so as to satisfy budget balance
in the original problem (N, J, 1).

Lemma 3 C̃
(
N, J, c̄

J (N)−1
c̄J (N)

)
= C(N, J, 1).

Proof. We have that

C̃

(
N, J,

c̄J(N)− 1

c̄J(N)

)
=

n

n
+
c̄J(N)− 1

c̄J(N)
c̄J(N)

= 1− c̄J(N)

c̄J(N)
+ c̄J(N)

= c̄J(N).

By extension, Core(N, J, a) =
{
y ∈ RN+

∣∣yN = ac̄J(N) and yS ≤ ac̄J(S)
}
.

Let C̃ore(N, J) =
{
y ∈ RN+

∣∣∣yN = c̄J(N) and yS ≤ C̃
(
S, J, c̄

J (N)−1
c̄J (N)

)}
. It is

obvious that y ∈ Core(N, J, 1) if and only if ay ∈ Core(N, J, a), for all a > 0.
Thus, Theorem 1 allows to find all allocations in Core(N, J, a).

We formally define the Weak Stability property described above: we suppose

that departing coalition S would have to pay |S|n when it departs.

Weak Stability: For all problems (N, J), y(N, J) ∈ C̃ore(N, J).

While in our example the Shapley value is in C̃ore(N, J), this is not true in
general. Consider a 3 player example in which agents 1 and 2 are compatible
with each other, and agent 3 is incompatible with both. Thus c̄J(N) = 2 and
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the Shapley value assigns shares ( 1
2 ,

1
2 , 1). We can verify that C̃({3}, J, 1

2 ) =
1
2 + 1

3 < 1 = ySh3 .
However, there are rules satisfying Unanimity Lower Bound and Weak Sta-

bility. We obtain a large set of such rules by modifying the rules satisfying Core
Selection, like our peak-demand and peak-interval rules.

For any rule y, we define the modification ẏ by: ẏ(N, J) = 1
n+y

(
N, J, c̄

J (N)−1
c̄J (N)

)
,

for all problems (N, J) with unit cost of 1.

Theorem 5 If y(N, J) satisfies Core Selection, then ẏ(N, J) satisfies Weak
Stability and Unanimity Lower Bound.

Proof. Fix (N, J and suppose that y(N, J) satisfies Core Selection
Weak Stability: Fix S ⊆ N. We have that

ẏS(N, J) =
|S|
n

+ yS

(
N, J,

c̄J(N)− 1

c̄J(N)

)
≤ |S|

n
+
c̄J(N)− 1

c̄J(N)
c̄J(S) (since y satisfies Core Selection))

= C̃

(
S, J,

c̄J(N)− 1

c̄J(N)

)
.

Unanimity Lower Bound: Since y satisfies Core Selection, it follows that

yi

(
N, J, c̄

J (N)−1
c̄J (N)

)
≥ 0 for all i ∈ N , in all core allocations. That is to say,

ẏi(N, J) = 1
n + yi

(
N, J, c̄

J (N)−1
c̄J (N)

≥ 1
n , for all i ∈ N.

Since we know how to find rules satisfying Core Selection, we obtain a large
family satisfying the two properties.

Example 6 We revisit our example. Since c̄J(N) = 2, we consider a game in
which the variable cost is 1

2 . We thus obtain ẏPD =
(

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
+
(
0, 1

6 ,
1
3 ,

1
3 ,

1
6

)
=(

1
5 ,

11
30 ,

8
15 ,

8
15 ,

11
30

)
and ẏPI =

(
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
+
(
0, 1

8 ,
3
8 ,

1
4 ,

1
4

)
=
(

1
5 ,

13
40 ,

23
40 ,

9
20 ,

9
20

)
.

Notice that ẏPD and ẏPI are not core allocations. In particular, coalition
{1, 2, 3} pays 11

10 with both rules, but can execute their jobs on their own at
the cost of 1. But notice that under our alternate interpretation of the game,
coalition {1, 2, 3} would have to pay their fair (proportional) share of the fixed

cost if they secede, which is 3
5 , to which we add c̄J (N)−1

c̄J (N)
= 1

2 for the machine they

need. We thus obtain C̃
(
{1, 2, 3} , J, c̄

J (N)−1
c̄J (N)

)
= 7

5 . Thus ẏPD{1,2,3} = ẏPI{1,2,3} =

11
10 <

7
5 = C̃

(
{1, 2, 3} , J, c̄

J (N)−1
c̄J (N)

)
.

6 Extension: general cost structure

Up to this point, we have assumed that each additional machine entails the
same marginal cost of 1. In this subsection, we generalize this assumption by
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considering a vector θ ∈ Rc̄
J (N)

+ , where θk represents the marginal cost of the kth

machine. A job scheduling problem with general cost function is thus a tuple

(N, J, θ). In this context, the cost of a coalition S is Θ(S, J, θ) ≡
∑c̄J (S)
k=1 θk.

Let e = (1, . . . , 1) ∈ Rc̄
J (N)

+ be a vector of ones. The results of our previous
sections hold essentially for problems of the form (N, J, e).

In this extended framework, we say that a cost function θ exhibits decreasing
average costs if

l∑
k=1

θk
l
≥
c̄J (N)∑
k=1

θk
c̄J(N)

for all 1 ≤ l ≤ c̄J(N).
We show that the core is non-empty if and only if the cost function ex-

hibits decreasing average costs. Define Ȳ(N, J, θ) ≡ Y(N, J, a(N, J, θ)e), where

a(N, J, θ) =
∑c̄J (N)
k=1

θk
c̄J (N)

is the average cost.

Theorem 6 Consider a problem (N, J, θ). Then Core(N, J, θ) 6= ∅ if and only
if θ exhibits decreasing average costs. Moreover, if θ exhibits decreasing average
costs, we have Ȳ(N, J, θ) ⊆ Core(N, J, θ).

Proof. Necessity.

Notice first that for any y ∈ Ȳ(N, J, θ), y(N) = c̄J(N)
∑c̄J (N)
k=1

θk
c̄J (N)

=
∑c̄J (N)
k=1 θk =

Θ(N, J, θ).
Fix S ⊆ N. By definition of Y(N, J, a(N, J, θ)e), we have for any y ∈

Ȳ(N, J, θ)

y(S) ≤ c̄J(S)

c̄J (N)∑
k=1

θk
c̄J(N)

≤ c̄J(S)

c̄J (S)∑
k=1

θk
c̄J(S)

= Θ(S, J, θ)

where the second inequality comes from decreasing average costs.

Sufficiency.
If θ does not have decreasing average costs then there exists m < c̄J(N) for

which
∑m
k=1

θk
m <

∑c̄J (N)
k=1

θk
c̄J (N)

.

We have a partition
{
P 1, ..., P c̄

J (N)
}

such that c̄J(P k) = 1 for all k =

1, ..., c̄J(N).

Take a coalition S consisting ofm elements of the partition
{
P 1, ..., P c̄

J (N)
}
.

By definition, Θ(S, J, v) =
∑m
k=1 θk, yielding the core constraint y(S) ≤

∑m
k=1 θk.

Repeating the arguments for any subset ofm elements of the partition
{
P 1, ..., P c̄

J (N)
}
,
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we obtain the core constraints y(P k) ≤
∑m
k=1

θk
m , for all k = 1, ..., c̄J(N). Sum-

ming up, we obtain

c̄J (N)∑
k=1

y(P k) =

n∑
i=1

yi

≤ c̄J(N)

m∑
k=1

θk
m

< c̄J(N)

c̄J (N)∑
k=1

θk
c̄J(N)

=

c̄J (N)∑
k=1

θk = Θ(N, J, θ)

where the first equality is because
{
P 1, ..., P c̄

J (N)
}

is a partition of N and the

strict inequality is by our assumption that
∑m
k=1

θk
m <

∑c̄J (N)
k=1

θk
c̄J (N)

.

Remark that one can easily adapt our two distinguished cost sharing rules
(introduced in Subsection 3.2) to this extended framework. The peak-demand

rule is defined in this context by yPDi (N, J, θ) =
gPD
i

ḡ a(N, J, θ), for all i ∈ N .

Likewise, the peak-interval rule is defined in this context by yPIi (N, J, θ) =∑
S∈GPD

i

L(S)∑
T∈GPD

L(T )a(N, J, θ), for all i ∈ N .

Corollary 2 On the set of job scheduling problems with general cost structure,
the following results hold:
i) the peak-demand rule satisfies Strong Symmetry, No Merging No Splitting
and Independence of Irrelevant Intervals;
ii) the peak-interval rule satisfies Strong Symmetry and Strong No Merging No
Splitting;
iii) whenever Core(N, J, θ) 6= ∅, we have ŷi(N, J, θ), ȳi(N, J, θ) ∈ Core(N, J, θ).

Statements i) and ii) follow from the fact that properties therein are defined
without referring to costs; and thus results are the same as in Section 3. Part
iii) follows from Theorem 6 and the fact that both the peak-demand rule and
the peak-interval rule always pick an allocation that is in Y(N, J, a(N, J, θ)e).

7 Concluding comments

We have examined the cooperative game and the cost sharing problem asso-
ciated with the classic job scheduling problem from operational research. It
has been shown that only players who belong to peak-demand coalitions (which
require the same number of machines as the grand coalition) may be charged
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a positive cost share under stable cost allocations. We have also studied two
natural cost sharing rules that are core selections. The peak-demand rule is
characterized by No Merging No Splitting, Independence of Irrelevant Intervals
and Strong Symmetry. On the other hand, the peak-interval rule is character-
ized by Core Selection, No Merging No Splitting and Strong Symmetry.

It turns out that Core Selection is incompatible with Unanimity Lower
Bound, a basic fairness requirement which requires that all agents pay an equal
share of the first machine (which is needed by every player or coalition). On
the other hand, the Shapley value satisfies Unanimity Lower Bound but not
Core Selection. A compromise between these two axioms has been proposed by
requiring stability for the modified problem where agents share the cost of the
first machine equally.

We also studied the extension where the cost is not linear in the number
of machines used, thus allowing for the possibility of decreasing or increasing
returns to scale. In that context, the core of a job scheduling problem may be
empty; and it has been shown that such a generalized job scheduling problem
is balanced if and only if it exhibits decreasing average costs. Interestingly,
we show that the respective properties of the peak-demand rule and the peak-
interval rule are preserved in this extended model.

Another natural extension of the problem obtains by assuming that each
agent may have multiple jobs to be executed. One possible way of allocating
costs in this case is to consider each job of each agent as an individual player,
share the cost as in our standard framework, and then charge to each agent the
sum of the shares of her respective jobs. In particular, selecting a core allocation
in the problem where each job is viewed as distinct player, and summing up the
shares of the respective jobs of each owner will generate a core allocation in the
extended problem with multiple jobs per agent. This approach would guarantee
that the property No Merging No Splitting of Job Portfolio is met. As suggested
by the name, this axiom says that agents should not benefit from splitting or
merging their job portfolios.

Our work contributes to a growing body of literature that examines the
cooperative aspects (and social choice implications) of classic problems from
operational research. For example, the well-known minimum cost spanning tree
problem has been studied (from a cost sharing perspective) by Bird (1976) and
Bergantiños and Vidal-Puga (2007). Likewise, the minimum cost arborescence
problem was introduced to this literature by Dutta and Mishra (2012) and also
studied by Bahel and Trudeau (2017). Some similarities between these problems
and the present one are (1) the existence of rules that are core selections and
(2) the importance of using fairness criteria to choose between these rules. In
comparison to the others, one remarkable aspect of the job scheduling problem
is the simplicity of the algorithm allowing to find its optimal plan: this allows
to define simple and intuitive rules.
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A Appendix: Independence of properties

A.1 Theorem 2

A.1.1 No Merging No Splitting and Independence of Irrelevant In-
tervals but not Strong Symmetry

Let S1 ∈ GPD be such that maxi∈S1
si < maxi∈Sj

si for all Sj ∈ GPD\S1. Let
wT = 1 if T = S1 and 0 otherwise. Let y1 be the resulting allocation rule.
We can verify that y1 satisfies No Merging No Splitting and Independence of
Irrelevant Intervals but not Strong Symmetry.

A.1.2 No Merging No Splitting and Strong Symmetry but not In-
dependence of Irrelevant Intervals

The peak-interval rule satisfies No Merging No Splitting and Strong Symmetry
but fails Independence of Irrelevant Intervals.

A.1.3 Independence of Irrelevant Intervals and Strong Symmetry
but not No Merging No Splitting

Let yEDi = c̄J (N)
n for all i ∈ N. We can verify that yED satisfies Independence

of Irrelevant Intervals and Strong Symmetry but not No Merging No Splitting.

A.2 Theorem 3

A.2.1 Core Selection and Strong No Merging No Splitting but not
Strong Symmetry

We can verify that y1 satisfies Core Selection and Strong No Merging No Split-
ting but not Strong Symmetry.
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A.2.2 Core Selection and Strong Symmetry but not Strong No Merg-
ing No Splitting

The peak-demand rule satisfies Core Selection and Strong Symmetry but fails
Strong No Merging No Splitting.

A.2.3 Strong No Merging No Splitting and Strong Symmetry but
not Core Selection

Let yPROi = fi−si∑
j∈N (fj−sj) c̄

J(N) for all i ∈ N. We can verify that yPRO satisfies

Strong Merging No Splitting and Strong Symmetry but not Core Selection.

A.3 Theorem 4

A.3.1 Equal Treatment but not Full Incompatibility

Let yEDi = c̄J (N)
n for all i ∈ N. We can verify that yED satisfies Equal Treatment

but not Full Incompatibility.

A.3.2 Full Incompatibility but not Equal Treatment

The peak-demand rule satisfies Full Incompatibility but not Equal Treatment.
To see this, suppose that i ∈ NF (J). Then, i ∈ S for all S ∈ GPD(J), and thus
ȳi = 1.

In our running example, remember that yPD(N, J) =
(
0, 1

3 ,
2
3 ,

2
3 ,

1
3

)
. Sup-

pose that we modify J ′ so that f ′1 = 0.25 and f ′i = fi and s′i = si otherwise. We
have thus added an incompatibility between agents 1 and 2. Then, GPD(J ′) =
{(1, 2) , (2, 4) , (3, 4) , (3, 5)} . We thus have that yPD(N, J ′) =

(
1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
4

)
.

The share of agent 1 has increase by 1
4 but the share of agent 2 by 1

6 .
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