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Abstract

We introduce a new family of cooperative games for which there is
coincidence between the nucleolus and the Shapley value. These so-
called clique games are such that players are divided into cliques, with
the value created by a coalition linearly increasing with the number
of agents belonging to the same clique. Agents can belong to multiple
cliques, but for a pair of cliques, at most a single agent belong to their
intersection. Finally, if two players do not belong to the same clique,
there is at most one way to link the two players through a chain of
players, with any two adjacent players in the chain belonging to a
common clique.

We provide multiple examples for clique games, chief among them
minimum cost spanning tree problems. This allows us to obtain new
correspondence results between the nucleolus and the Shapley value,
as well as other cost sharing methods for the minimum cost spanning
tree problem.
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1 Introduction

The Shapley value (Shapley, 1953) and the (pre)nucleolus (Schmeidler, 1969)

are two well known values for cooperative games. The Shapley value is an

average of the marginal contributions of a player, while the prenucleolus is

the value that minimizes the dissatisfaction of the worst-off coalitions. The

nucleolus differs from the prenucleolus by also requiring that the value be

individually rational.

Coincidence between these two values is uncommon and, in general, diffi-

cult to check without computing both values. Recently, Yokote et al. (2017)

provide a sufficient and necessary condition for this coincidence to hold, but it

requires the computation of both the Shapley value and a parametric family

of sets that mimic the computation of the (pre)nucleolus.1 This characteriza-

tion can be applied in order to identify the correspondence in some particular

classes of games, such as airport games (Littlechild and Owen, 1973), bid-

der collusion games (Graham et al., 1990) and polluted river games (Ni and

Wang, 2007). Csóka and Herings (2017) also find coincidence is some three-

player games based on bankruptcy problems. As discussed by Kar et al.

(2009), for general cooperative games we have coincidence if the game only

has two players or if all players are symmetric within the normalized game.

Some other games have also been proposed (Deng and Papadimitriou, 1994;

van den Nouweland et al., 1996), all having in common that the value of a

coalition is equal to the sum of the values created by the pairs composing

that coalition. That family was extended by Kar et al. (2009), who show

that the coincidence persists in games that satisfy the so-called PS property.

Such games are such that the marginal contributions of player i to S and to

its complement N \ (S ∪ {i}) sums up to a player-specific constant.

In this paper, we present another family of games, called clique games,

in which the Shapley value and the nucleolus coincide. The family can be

described as follows: the set of players is divided into cliques that cover it.

A coalition will create value when it contains many players belonging to the

1Additionally, the condition also requires to check whether the sets in this parametric
family are balanced.
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same clique, with the value increasing linearly with the number of agents

in the same clique. Players may belong to more than one clique, but the

intersection of two cliques contains at most a single player. Finally, if two

players are not in the same clique, there exists at most one way to “connect”

them through a chain of connected cliques.

The family of clique games has a non-empty intersection with PS-games,

but some clique games are not PS-games, and some PS-games are not clique

games.

Clique games are convex, and hence their respective Shapley values are

the average of extreme points in the core. We thus obtain a link between

three crucial concepts of cooperative game theory: the nucleolus, the core,

and the Shapley value.

While the conditions for a game to be a clique game seem demanding, we

provide three relevant examples. The first one has producers selling goods to

buyers organized in exclusive territories. The second one is a job scheduling

problem (Bahel and Trudeau, 2017) in which agents have jobs to be executed

on machines that can only process one job at a time, with the jobs having

fixed start and finish times.

Our third example is the one we mainly focus on: the minimum cost

spanning tree (mcst) problem. First introduced by Bird (1976), this well-

studied game has players connecting to a source through a network, with the

cost of an edge being a fixed amount that is paid if the edge is used, regardless

of the number of users of the edge. The game has always a non-empty core

even though it is not convex. Moreover, the Shapley value is not always in

the core (Dutta and Kar, 2004).

Nevertheless, Bergantiños and Vidal-Puga (2007a) and Trudeau (2012)

propose Shapley value-based solutions that are in the core, by first modifying

the costs of the edges. For any pair of nodes in the network, Bergantiños

and Vidal-Puga (2007a) look at the paths between them and ranks them

according to their most expensive edge. The edge between the pair of nodes

is then assigned the cost of that cheapest most expensive edge, allowing to

obtain the so-called irreducible mcst problem. The Shapley value of that

game yields the folk solution. The solution proposed by Trudeau (2012) is
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similar, but looks at cycles instead of paths, yielding a cycle-complete mcst

problem and the cycle-complete solution.

Bergantiños and Vidal-Puga (2007b) also provide another Shapley value-

based definition of the folk solution, by defining a cost game assuming that

any coalition can connect either to the source or to any other node.

We identify mcst problems that generate clique games. In particular, it

turns out that if we consider elementary mcst problems (in which all edges

have a cost of 0 or 1), which form a basis for all mcst problems, the subset

of cycle-complete problems (which include irreducible problems) generates

clique games. Our result on clique games then applies, yielding that the

nucleolus coincides with the cycle-complete solution for cycle-complete prob-

lems and with the folk solution for irreducible problems.

We can extend the correspondence one step further: for all elementary

mcst problems, the folk (cycle-complete) solution corresponds to the nucleo-

lus and the permutation-weighted average of the extreme points of the core

of the public (private) mcst game.

The paper is divided as follows: preliminary definitions are in Section

2. Section 3 describes and illustrates clique games. Section 4 contains the

correspondence results. The application and extension of the results to mcst

problems are described in Section 5.

2 Preliminaries

Let N = {1, · · · , n} be a set of agents. A transferable utility game (TU

game, for short) is a pair (N, v) where v is a real-valued function defined on

all subsets S ⊆ N satisfying v(∅) = 0. Given i ∈ N and S ⊆ N \ {i}, the

marginal contribution of agent i to S is defined as

∆v
i (S) = v(S ∪ {i})− v(S).

A game is convex if ∆v
i (S) ≤ ∆v

i (T ) for all i ∈ N and S ⊆ T ⊆ N \ {i}.
A value is a function that associates with each TU game (N, v) a payoff

allocation x ∈ RN . Two well-known values for TU games are the Shapley
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value (Shapley, 1953) and the (pre)nucleolus (Schmeidler, 1969).

The Shapley value of the game (N, v) is the payoff allocation Sh(v) defined

as

Shi(v) =
1

n!

∑
π∈Π

∆v
i (Pi(π))

for all i ∈ N , where Π is the set of all orderings of N and Pi(π) is the set of

predecessors of agent i in π, i.e. Pi(π) = {j : π(j) < π(i)}.
The excess of a coalition S in a TU game (N, v) with respect to an al-

location x is defined as e(S, x, v) =
∑

i∈N xi − v(S). The vector θ(x) is

constructed by rearranging the 2n excesses in (weakly) increasing order. If

x, y ∈ RN are two allocations, then θ(x) >L θ(y) means that θ(x) is lexi-

cographically larger than θ(y). As usual, we write θ(x) ≥L θ(y) to indicate

that either θ(x) >L θ(y) or x = y.

The nucleolus of the game (N, v) is the set

Nu(v) = {x ∈ X : θ(x) ≥L θ(y)∀y ∈ X}

where X =
{
x ∈ RN :

∑
i∈N xi = v(N), xi ≥ v({i})∀i ∈ N

}
is the set of in-

dividually rational allocations. When X 6= ∅, as it is the case for the TU

games we study here, it is well-known that Nu(v) is a singleton, whose unique

element we denote, with some abuse of notation, also as Nu(v).

By contrast, the prenucleolus of the game (N, v) is the set

Pre(v) =
{
x ∈ X0 : θ(x) ≥L θ(y)∀y ∈ X0

}
where X0 =

{
x ∈ RN :

∑
i∈N xi = v(N)

}
is the set of allocations. Whenever

the prenucleolus is individually rational, which will be the case in all games

that we consider, it coincides with the nucleolus. Therefore, from now on,

we focus exclusively on the nucleolus.

The core is the set of allocations such that no coalition is assigned less

than its stand-alone value. Formally,

Core(v) =

{
x ∈ X0 :

∑
i∈S

xi ≥ v(S)∀S ⊂ N

}
.

5



When Core(v) 6= ∅, for each π ∈ Π, let yπ ∈ Core(v) be the allocation

that lexicographically maximizes the allocations with respect to the order

given by the permutation. The permutation-weighted average of extreme

points of the core is the average of these allocations:

ȳ(v) =
∑

π∈Π(N)

1

n!
yπ(v).

If the game is convex, ȳ is the Shapley value. It is also closely related to

the selective value (Vidal-Puga, 2004) and the Alexia value (Tijs, 2005), the

permutation-weighted average of leximals. All of these values coincide for

the minimum cost spanning tree problem studied in Section 5.

On some occasions, we work with transferable cost games (N,C), where

C is a real-valued function defined on all subsets S ⊆ N satisfying C(∅) = 0.

We then define vC as follows: For all S ⊆ N , vC(S) =
∑

i∈S C({i})− C(S).

An allocation x for the cost game C is equivalent to an allocation xC for

the value game vC if xCi = C ({i}) − xi for all i ∈ N . We then say that

x ∈ Nu(C) iff xC ∈ Nu
(
vC
)
. We say that x ∈ Core(C) iff xC ∈ Core(vC).

Finally, we say that C is concave iff −C is convex. It is straightforward to

check that C is concave iff vC is convex.

3 Clique games

Let Q =
{
Q1, . . . , QK

}
be a cover of N . For each Qk ∈ Q, the interior of

Qk, Int
(
Qk
)
, is the set of agents that only belong to Qk, i.e.

Int
(
Qk
)

=
{
i ∈ Qk : i /∈ Ql∀l 6= k

}
.

We say that there exists a path between Qk and Ql if there exists P kl ={
Qk1 , . . . , QkM

}
such that Qk1 = Qk, QkM = Ql and

∣∣Qkm ∩Qkm+1
∣∣ = 1 for

all m = 1, . . . ,M − 1. Analogously, we say that there exists a path between

Qk and Ql through agent i if there exists P kl
i =

{
Qk1 , . . . , QkM

}
such that

Qk1 ∩Qk2 = {i}. We say then that P kl
i is a path between Qk and Ql through

agent i. The set of agents connected to Qk via a path through agent i ∈ Qk
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is denoted as

NP
k,i =

{
j ∈ N : ∃l, P kl

i such that j ∈ Ql
}
.

Example 1 Let Q = {Q1, Q2, Q3} with Q1 = {1, 2}, Q2 = {2, 3, 4} and

Q3 = {4, 5, 6} (see Figure 1).

1 2

3

4

5

6

Figure 1: Example of a cover represented as cliques.

In this case, P 13
2 = {Q1, Q2, Q3} is a path between Q1 and Q3 through

agent 2. The other paths are P 12
2 = {Q1, Q2}, P 21

2 = {Q2, Q1}, P 23
4 =

{Q2, Q3}, P 32
4 = {Q3, Q2}, and P 31

4 = {Q3, Q2, Q1}. Moreover, NP
1,1 = ∅,

NP
2,2 = {1, 2}, NP

1,2 = {2, 3, 4, 5, 6}, NP
2,4 = {4, 5, 6}, and so on.

We say that a game
(
N, vQ

)
is a clique game if there existQ =

{
Q1, . . . , QK

}
cover of N , {vi}i∈N ⊂ R+ and {vQ}Q∈Q ⊂ R+ such that:

i) for all k ∈ {1, ..., K} and all i, j ∈ Qk, NP
k,i ∩NP

k,j = ∅ (in words: there

is at most one path between any two elements of Q),

ii) for all S ⊆ N ,

vQ(S) =
∑
i∈S

vi +
∑

Q∈Q(S)

(|Q ∩ S| − 1) vQ (1)

with Q(S) = {Q ∈ Q : S ∩Q 6= ∅}.

We write Q(i) for Q ({i}).
Let C be the set of all clique games.

We conclude this section by proposing two examples of clique games.
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Example 2 (Trading goods) Suppose that N = {1, 2, 3, 4, 5}, with 1 and 2

being producers and 3, 4 and 5 being buyers. Producer 1 has a capacity to

produce two units at constant marginal cost c1 while producer 2 can produce

a single unit at cost c2. Each buyer i is interested by a single unit that she

values at Ri. We suppose that the reserve prices of the buyers are larger than

the marginal cost of the producers.

We further suppose that producers 1 and 2 have exclusive territories (be-

cause of vertical restraints or collusion) and that buyers 3 and 4 are on the

territory of producer 1 and buyer 5 on the territory of producer 2. We also

suppose that the producers’ unused capacity can be sold to external buyers at

price q and that buyers have the option of buying from an external supplier

at price p, with Ri > p > q > cj.

When a coalition forms, trades occur between buyers and sellers in the

same territory, with unsatisfied demands and unsold supply resolved on the

outside market. For example, coalition {1, 2, 3, 5} will organize trades between

1 and 3 and 2 and 5, generating a surplus of R3 +R5 − c1 − c2. In addition,

producer 1 sells its extra unit on the outside market, generating an additional

surplus of q − c1.

The game can thus be represented (see Figure 2) by a clique game, with

cover Q = {{1, 2}, {1, 3}, {1, 4}, {2, 5}} and v1 = 2q − 2c1, v2 = q − c2,

vi = Ri − p for i = 3, 4, 5, v{1,2} = 0 and vQ = r ≡ p− q otherwise.

1 2

3

4

5

r

r

0 r

Figure 2: Clique cover of a trading goods game.

Example 3 (Job scheduling problem (Bahel and Trudeau, 2017)) Suppose

that N = {1, 2, 3, 4} with each agent having jobs to schedule on a machine.

Each job has fixed starting and finishing times, and a machine can only
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process one job at time. Each agent i has utility ui per job completed, and

machines can only be rented for the full time interval at cost c. Since ui > c,

a coalition will generate the most surplus by hiring the minimal number of

machines needed to schedule all jobs of its members.

0 0.2 0.4 0.6 0.8 1

1

1

3

4

2

Figure 3: Example of a job scheduling problem.

Figure 3 provides an illustration of a job scheduling problem. In this

example, agent 1 has two jobs to schedule, with others having a single job.

Let Q = {{1, 2, 3}, {1, 4}}, as those are the coalitions that can generate

savings by scheduling (some of their) jobs on the same machine. The game

is a clique game (Figure 4) with v1 = 2(u1− c), vi = ui− c for i = 2, 3, 4 and

vQ = c for all Q ∈ Q.

1

2

3

4
c

c
c

c

Figure 4: Clique cover of a job scheduling problem.

Not all job scheduling problems can be represented as a clique game

however. If the two jobs of agent 1 are coming from different agents, we lose

the representability by a clique.
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4 Correspondence between the Shapley value

and the nucleolus

In this section we show that for clique games, the Shapley value and the

nucleolus coincide, and we provide a closed-form expression for their value.

To get to this result, we first describe the marginal contributions in clique

games.

Lemma 1 Given a clique game (N, vQ), the marginal contribution of player

i ∈ N to S ⊆ N \ {i} is

∆vQ

i (S) = vi +
∑

Q∈Q(S)∩Q(i)

vQ.

Proof. By definition of a marginal contribution,

∆vQ

i (S) = vQ(S ∪ {i})− vQ(S)

(1)
= vi +

∑
Q∈Q(S∪{i})

(|Q ∩ (S ∪ {i})| − 1) vQ −
∑

Q∈Q(S)

(|Q ∩ S| − 1) vQ

= vi +
∑

Q∈Q(S)∩Q(i)

[(|Q ∩ (S ∪ {i})| − 1)− (|Q ∩ S| − 1)] vQ

+
∑

Q/∈Q(S),i∈Q

(|Q ∩ (S ∪ {i})| − 1) vQ

= vi +
∑

Q∈Q(S)∩Q(i)

[|Q ∩ S)| − (|Q ∩ S| − 1)] vQ

+
∑

Q/∈Q(S),i∈Q

(|{i}| − 1) vQ

= vi +
∑

Q∈Q(S)∩Q(i)

vQ.

We are now ready for the main result of this section.
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Theorem 1 For all vQ ∈ C and all i ∈ N ,

Shi
(
vQ
)

= ȳi
(
vQ
)

= Nui
(
vQ
)

= vi +
∑

Q∈Q(i)

|Q| − 1

|Q|
vQ.

Proof. It is obvious from Lemma 1 that vQ is a convex game. Thus, the

Shapley value is the average of extreme points of the core (Shapley, 1971;

Ichiishi, 1981) and Sh
(
vQ
)

= ȳ
(
vQ
)
. We show that for all i ∈ N ,

Shi
(
vQ
)

= Nui
(
vQ
)

= vi +
∑

Q∈Q(i)

|Q| − 1

|Q|
vQ.

We suppose that for all k ∈ {1, ..., K},
⋃
i∈Qk NP

k,i = N \ Int(Qk), that

is, there is a (unique) path between any two elements of Q. Without that

assumption, we can partition our agents into groups unconnected by paths,

and we can compute the Shapley value and the nucleolus independently on

each element of the partition.

We start with Sh
(
vQ
)
. Given π ∈ Π, under Lemma 1, the marginal

contribution of agent i to Pi(π) is vi+
∑

Q∈Q(Pi(π))∩Q(i) vQ. For each Q ∈ Q(i),

the probability that Q ∈ Q (Pi(π)) ∩ Q(i) is |Q|−1
|Q| . Summing up, we obtain

the desired result.

We now focus onNu
(
vQ
)
. Let x ∈ RN defined as xi = vi+

∑
Q∈Q(i)

|Q|−1
|Q| vQ

for all i ∈ N . We have that

e
(
S, x, vQ

)
=
∑
i∈S

vi +
∑
i∈S

∑
Q∈Q(i)

|Q| − 1

|Q|
vQ −

∑
i∈S

vi −
∑

Q∈Q(S)

(|Q ∩ S| − 1) vQ

=
∑

Q∈Q(S)

(
|Q ∩ S| (|Q| − 1)

|Q|
− (|Q ∩ S| − 1)

)
vQ

=
∑

Q∈Q(S)

(|Q ∩ S| (|Q| − 1)− |Q ∩ S| − 1) |Q|
|Q|

vQ

=
∑

Q∈Q(S)

|Q| − |Q ∩ S|
|Q|

vQ
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for all S ⊂ N , S 6= ∅. Assume without loss of generality
vQ1

|Q1| ≤
vQ2

|Q2| ≤ · · · ≤
v
QK

|QK | .

For each i ∈ Q1, let S1
i = N \

(
NP

1,i ∪ {i}
)
. Notice that for all Q ∈

Q \ {Q1}, we either have that S1
i ∩ Q = ∅ or S1

i ∩ Q = Q. In addition,

S1
i ∩ Q1 = Q1 \ {i}. Thus, e

(
S1
i , x, v

Q) =
vQ1

|Q1| . By construction, this is

the lowest excess value. To see why, notice that any S ⊂ N must have at

least one Q ∈ Q (S) such that |Q ∩ S| < |Q|. That generates an excess of
|Q|−|Q∩S|
|Q| vQ ≥ vQ

|Q| ≥
vQ1

|Q1| .

For each i ∈ Q1, let T 1
i = NP

1,i ∪ {i} = N \ S1
i . Take {T 1

i }i∈Q1 . This

is a partition of N . To see why, notice that each T 1
i is nonemtpy (because

i ∈ T 1
i for all i ∈ Qi), their union is N (because all cliques are connected

through a path), and they are pairwise disjoint (because of assumption i)).

Thus, we have |Q1| coalitions whose complements have the minimal excess,

with each agent belonging to exactly one of of these coalitions. Therefore,

to increase the excess of one of these coalitions we would need to decrease

the excess of another coalition, and the corresponding allocation could not

be the nucleolus.

We repeat the process for all Qk to obtain that∑
j∈Sk

i

Nuj
(
vQ
)

=
∑
j∈Sk

i

xj (2)

for all Qk ∈ Q and all i ∈ Qk. In case i ∈ Int(Qk) for some Qk ∈ Q, we have

Ski = N \ {i}, from where (2) and efficiency of x imply Nui
(
vQ
)

= xi.

In case Q = {Q1}, we have N = Int (Q1) and hence Nu
(
vQ
)

= x. So,

we assume |Q| > 1. From condition i) in the definition of clique games, there

exist some i ∈ N and Qk ∈ Q(i) such that Q = Int(Q) ∪ {i} for all Q ∈
Q(i) \ {Qk}. This implies that Nuj

(
vQ
)

= xj for all j ∈ Qk ∈ Q(i) \ {Qk}.
Under (2) and the efficiency of x, we deduce Nui

(
vQ
)

= xi. Repeating the

same reasoning, we can always find a new i ∈ N and Qk ∈ Q(i) such that

Nuj
(
vQ
)

= xj for all j ∈ Qk ∈ Q(i) \ {Qk}, so that (2) and the efficiency of

x imply Nui
(
vQ
)

= xi, and so on until we get Nu
(
vQ
)

= x.
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We next establish the connection between clique games and the PS-games

of Kar et al. (2009). We say that a game (N, v) is a PS-game if there exists

a ∈ RN such that ∆v
i (S) + ∆v

i (N \ (S ∪ {i})) = ai for all i ∈ N and S ⊆
N \ {i}.

We show the condition needed for a clique game to also be a PS-game,

which illustrates that not all clique games are PS-games.

Proposition 1 A clique game vQ is a PS-game if and only if for all Q ∈ Q
it holds either |Q| ≤ 2 or vQ = 0.

Proof. Under Lemma 1, for any clique game vQ, we have that

∆vQ

i (S) = vi +
∑

Q∈Q(S)∩Q(i)

vQ

and thus that ∆vQ
i (S) + ∆vQ

i (N \ (S ∪ {i}))

= vi +
∑

Q∈Q(S)∩Q(i)

vQ + vi +
∑

Q∈Q(N\(S∪i))∩Q(i)

vQ

= 2vi +
∑

Q∈Q(N\{i})∩Q(i)

vQ +
∑

Q∈Q(S)∩Q(N\(S∪{i}))∩Q(i)

vQ.

Hence, vQ is a PS-game if and only there exists b ∈ RN such that∑
Q∈Q(S)∩Q(N\(S∪{i}))∩Q(i)

vQ = bi

for all S ⊆ N \ {i}. In this case, ai = 2vi +
∑

Q∈Q(N\{i})∩Q(i) vQ + bi for all

i ∈ N .

Fix i ∈ N . Let S ⊆ N \ {i} and Q ∈ Q(S) ∩ Q (N \ (S ∪ {i})) ∩ Q(i).

If |Q| ≤ 2 then |Q ∩ S| ≤ 1 (because i ∈ Q and i /∈ S). Since Q ∈ Q(S),

we deduce Q ∩ S = {j} for some j 6= i. Thus, Q = {i, j} ⊆ S ∪ {i}, which

contradicts that Q ∈ Q (N \ (S ∪ {i})). Hence, Q(S) ∩ Q (N \ (S ∪ i)) ∩
Q(i) ⊆ {Q ∈ Q : |Q| > 2}.

From this, we deduce that if vQ = 0 for all Q ∈ Q such that |Q| > 2,

then bi = 0 for all i ∈ N .
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Suppose now that there exists Q ∈ Q such that |Q| > 2 and vQ > 0. Fix

i ∈ Q. With S = ∅ we obtain
∑

Q∈Q(S)∩Q(N\(S∪i))∩Q(i) vQ = 0 (as Q(S) = ∅).
With S = {j}, j ∈ Q \ {i}, we obtain

∑
Q∈Q(S)∩Q(N\(S∪i))∩Q(i) vQ ≥ vQ > 0

(as Q ∈ Q(S) ∩Q (N \ (S ∪ {i})) ∩Q(i)) .

Moreover, not all PS games are clique games, as the next example shows:

Example 4 (Example 3.12 in Kar et al. (2009)) We consider the TU

game (N, v) with N = {1, 2, 3, 4} and such that v(S) = 0 if |S| = 1, 1 if

|S| = 2, 3
2

if |S| = 3, and 3 if S = N . This is a PS game with ∆v
i (S) +

∆v
i (N \ (S ∪ {i})) = 3

2
for all i and S. However, it is not a clique game.

To see this, notice that v(S) = 0 if |S| = 1 imposes that vi = 0 for all

i ∈ N . Then, v(S) = 1 if |S| = 2 imposes that any pair i, j belong to some

clique Q with vQ = 1. The no-cycle condition of clique games (condition i))

leaves us with a single candidate for the set of cliques: Q = {N}. But then

v(S) = |S| − 1 for all S, which is different from the PS-game for |S| = 3.

5 Minimum cost spanning tree problems

In this section we describe the minimum cost spanning tree problem, showing

that an important subset of such games are also clique games. In turn, this

allows us to link the nucleolus to some well-known cost sharing solutions for

mcst problems.

5.1 The problem

We assume that the agents in N need to be connected to a source, denoted

by 0. Let N0 = N ∪ {0}. For any set Z, define Zp as the set of all non-

ordered pairs (i, j) of elements of Z. In our context, any element (i, j) of Zp

represents the edge between nodes i and j. Let c = (ce)e∈Np
0

be a vector in

RNp
0

+ with Np
0 = (N0)p and ce ∈ R+ representing the cost of edge e. Let Γ be

the set of all cost vectors. Since c assigns cost to all edges e, we often abuse

language and call c a cost matrix. A minimum cost spanning tree (mcst)

problem is a triple (0, N, c). Since 0 and N do not change, we omit them in
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the following and simply identify a mcst problem (0, N, c) by its cost matrix

c.

A cycle pll is a set of K ≥ 3 edges (ik−1, ik), with k ∈ {1, . . . , K} and

such that i0 = iK = l and i1, . . . , iK−1 distinct and different than l. A path

plm between l and m is a set of K edges (ik−1, ik), with k ∈ {1, . . . , K},
containing no cycle and such that i0 = l and iK = m. Let Plm(N0) be the

set of all such paths between nodes l and m.

A spanning tree is a non-orientated graph without cycles that connects

all elements of N0. A spanning tree t is identified by the set of its edges.

We call mcst a spanning tree that has a minimal cost. Note that the

mcst might not be unique. Let C(N, c) be the minimal cost of a mcst. Let

cS be the restriction of the cost matrix c to S0 ⊆ N0. Let C(S, c) be the cost

of the mcst of the problem (S, cS). Given these definitions, we say that C is

the stand-alone cost function associated with c.

For any cost matrix c, the associated cost game is given by (N,C) with

C(S) = C(S, c) for all S ⊆ N . We then write, with some abuse of notation,

(N, c) instead of (N,C) and say that it is a mcst game.

A variant of the mcst problem, called the public mcst problem, allows

any coalition to use all nodes, including those belonging to agents outside of

the coalition, to connect to the source. The public cost function associated

with c is defined as

CPub(S, c) = min
T⊆N\S

C(S ∪ T, c)

for all S ⊆ N . By contrast, we sometimes call (N, c) the private cost function

associated with c and the mcst problem the private mcst problem.

Abusing language slightly, we use the term mcst game to designate the

cost game generated by a mcst problem.

5.2 The irreducible and cycle-complete cost matrices

Given that a mcst game is typically not a concave game, its Shapley value

is not always in the core. The following two modifications to the problem

15



allow to transform the game into a concave one.

From any cost matrix c, we define the irreducible cost matrix c∗ as follows:

c∗ij = min
pij∈Pij(N0)

max
e∈pij

ce

for all i, j ∈ N0.

From any cost matrix c, we define the cycle-complete cost matrix c∗∗ as

follows:

c∗∗ij = max
k∈N\{i,j}

(
cN\{k}

)∗
ij

for all i, j ∈ N0, and

c∗∗0i = max
k∈N\{i}

(
cN\{k}

)∗
0i

for all i ∈ N , where
(
cN\{k}

)∗
indicates the matrix that we first restrict to

agents in N \ {k} before transforming into an irreducible matrix.

The cycle complete matrix can also be defined using cycles (Trudeau,

2012): for edge (i, j), we look at cycles that go through agents i and j. If

there is one such cycle such that its most expensive edge is cheaper than a

direct connection on edge (i, j), we assign this cost to edge (i, j).

Let C∗ be the characteristic cost function associated with the mcst prob-

lem (N, c∗). Let C∗∗ be the characteristic cost function associated with the

mcst problem (N, c∗∗). The Shapley values of C∗ and C∗∗ are respectively

called the folk (yf (c)) and cycle-complete (ycc(c)) solutions.

5.3 Minimum cost spanning tree games and clique games

We are now ready to describe the set of mcst games that are also clique

games.

Lemma 2 A mcst game (N, c) is associated to a clique game if and only if

there exist Q satisfying condition i) of clique games and {cQ}Q∈Q ⊂ R that

satisfy the following conditions:

a) cij = cQ for all Q ∈ Q and all i, j ∈ Q;
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b) cij ≥ max {c0i, c0j} for all i, j ∈ N such that there exists no Q ∈ Q
with i, j ∈ Q;

c) for all Q ∈ Q, if cmin0,Q , cQ < cmax0,Q then |arg maxj∈Q c0j| = |Q| − 1, where

cmax0,Q = maxj∈Q c0j and cmin0,Q = minj∈Q c0j.

Proof. Note first that condition b) can be replaced by:

b’) cij = max {c0i, c0j} for all i, j ∈ N such that there exists no Q ∈ Q
with i, j ∈ Q.

To see why, notice that an edge (i, j) with cij > max {c0i, c0j} is irrelevant in

the sense that it does not affect the cost function C. Hence, the associated

game (N, vC) does not change if we reduce cij until equality holds. We

then assume that c has no irrelevant edges. This also forces to have cQ ≤
max {c0i, c0j} for all Q ∈ Q and all i, j ∈ Q.

We first show that the conditions generate a clique game. Suppose that

we want to connect members of S to the source. Conditions a) and b’) make it

never optimal to directly connect members of different cliques. Combination

of the three conditions make it always better to connect members of the

same clique to each other. Let {S1, S2, . . . , SK} be a partition of S such that

if i, j ∈ Sk, then there exists a path between i and j for which the most

expensive edge is cQ, for some Q ∈ Q. Then, the cost of coalition S is

C(S, c) =
K∑
k=1

min
i∈Sk

c0i +
∑

Q∈Q(S)

(|Q ∩ S| − 1) cQ.

By condition c), if members of a clique have different costs to connect to the

source, then all but one have the same high cost cmax0,Q . We can thus simplify

the cost of coalition S to

C(S, c) =
∑
i∈S

c0i +
∑

Q∈Q(S)

(|Q ∩ S| − 1) (cQ − cmax0,Q ).
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We then have that vC is such that

vC(S, c) =
∑

Q∈Q(S)

(|Q ∩ S| − 1) (cmax0,Q − cQ)

which corresponds to a clique game with vi = 0 for all i ∈ N and vQ =

cmax0,Q − cQ.

We next show that these conditions are necessary. Without condition a),

there exist i, j, k ∈ Q such that cij 6= cQ but cik = cQ. Then, C({i, j} , c) =

min{c0i, c0j} + cij, C({i, k} , c) = min{c0i, c0k} + cQ and C is no longer a

clique game.

Without condition b), there exist i, j belonging to different cliques such

that cij < max {c0i, c0j}. Then C({i, j} , c) = min {c0i, c0j}+ cij and C is no

longer a clique game.

Without condition c), there exists a clique Q containing m ≥ 3 agents

and such that |arg maxj∈Q c0j| < m− 1. There are thus at least two agents,

say i and j, with cmin0,Q ≡ c0i ≤ c0j < cmax0,Q . Then, C({i, j} , c) = c0i + cQ <

c0i + c0j + (cQ − cmax0,Q ) and C is no longer a clique game.

Let Γc be the set of matrices generating clique mcst problems.

Consider the subset of mcst problems known as elementary mcst (emcst)

problems: for any i, j ∈ N0, cij ∈ {0, 1}. Let Γe be the set of elementary cost

problems.

It turns out that the intersection of clique and elementary mcst problems

is the set of elementary cycle-complete problems,

Lemma 3 Γc ∩ Γe = Γecc, the set of elementary cycle-complete problems.

Proof. “⊇” We need to show that elementary and cycle-complete mcst

games are clique games. By definition, there exists a cover Q of N that

satisfies condition i) of clique games and such that cij = 0 if i, j ∈ Q and

cij = 1 otherwise. Thus, cQ = 0 for all Q ∈ Q and conditions a) and b)

of Lemma 2 are satisfied. Elementary cycle-complete matrices are such that

for each Q ∈ Q, either all members of Q have a cost of zero to connect to

the source, all members of Q have a cost of one to the source, or a single

agent in Q has a cost of zero, with others having a cost of one to connect
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to the source. Otherwise, if agents i and j have a cost of zero, but not k,

there are multiple paths of cost zero between the source and k. From this,

condition c) of Lemma 2 only applies when a single agent in Q has a cost

of zero, with others having a cost of one to connect to the source, so that

|arg maxj∈Q c0j| = |{j ∈ Q : cj0 = 1}| = |Q| − 1.

“⊆” Let c ∈ Γc ∩ Γe. Assume c is not cycle-complete. Then, for some

i, j ∈ N0, we have that cij = 1 but there exist two distinct free paths between

them. If i, j ∈ N , we cannot buildQ that satisfies condition i) of clique games

and conditions a) and b) in Lemma 2. If j = 0, we can assume that each

node k in these paths but two (one in each path) satisfy ck0 = 1. Let i0 and

i1 be the nodes with ci00 = ci10 = 0. We also assume that cαβ = 0 for all

α, β ∈ N in the path (otherwise, we would be in the previous case). We have

the following possibilities:

1. Both paths are contained in the same clique Q ∈ Q. Then, condition

c) in Lemma 2 implies |arg maxj∈Q c0j| = |Q| − 1 and hence all nodes

in Q but one should have cost 1 to the source. But there are two nodes

(i0 and i1) with cost zero to the source, which is a contradiction.

2. There exist two consecutive nodes α, β ∈ N that belong to different

cliques. Since cαβ = 0 and max{cα0, cβ0} = 1, condition b) in Lemma

2 does not hold, which is a contradiction.

3. There exists a path of at least two cliques between i0 and i1. Clearly,

each of these cliques should have at least two consecutive nodes. More-

over, condition i) of clique games implies that i0 and i1 belong to differ-

ent cliques. Thus, there exist j0 ∈ N consecutive node to i0 and such

that i0, j0 ∈ Q0 and i1 ∈ Q1 with Q0, Q1 different cliques. Condition

b) in Lemma 2 implies that 0 = cj0i1 ≥ max{c0j0 , c0i1} = 1, which is a

contradiction.

We then have that, in any mcst problem whose cost matrix is elementary

and cycle complete, the (pre)nucleolus, the Shapley value, the permutation-

weighted average of the extreme points of the core and the cycle-complete
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rule coincide. Formally:

Theorem 2 For all c ∈ Γecc, Nu(C) = Sh(C) = ȳ(C) = ycc(c).

Proof. The correspondence between the nucleolus, the Shapley value and the

permutation-weighted average of the extreme points of the core is obtained

as a corollary of Theorem 1 and Lemma 3. Correspondence with the cycle-

complete solution is by definition.

In addition, as soon as the cost matrix is elementary, the (pre)nucleolus,

the permutation-weighted average of the extreme points of the core, and the

cycle-complete rule coincide. Formally:

Theorem 3 For all c ∈ Γe, Nu(C) = ȳ(C) = ycc(c).

Proof. Correspondence between the cycle-complete solution and ȳ is shown

in Trudeau and Vidal-Puga (2017). We show the correspondence between

the nucleolus and the cycle-complete solution. It is immediate that C∗∗ ≤ C.

We show that if C∗∗(S) < C(S), then the excess of coalition S is ignored in

the calculation of Nu(C∗∗).

As shown in Trudeau and Vidal-Puga (2017), there exists T ⊆ N \S such

that C∗∗(S) = C(S ∪ T ) +C(N \ T )−C(N) < C(S). This can we rewritten

as∑
i∈S∪T

C(i)− C(S ∪ T ) +
∑
i∈N\T

C(i)− C(N \ T )−
∑
i∈N

C(i) + C(N) >
∑
i∈S

C(i)− C(S)

vC(S ∪ T ) + vC(N \ T )− vC(N) > vc(S)

x(S ∪ T )− vC(S ∪ T ) + x(N \ T )− vC(N \ T )− x(N) + vC(N) < x(S)− vC(S)

e(S ∪ T, x, vC) + e(N \ T, x, vC)− e(N, x, vC) < e(S, x, vC)

e(S ∪ T, x, vC) + e(N \ T, x, vC) < e(S, x, vC).

Therefore, the excess of S is not taken into account when we find Nu(C).

We also have that

C∗∗(S ∪ T ) + C∗∗(N \ T )− C∗∗(N) ≤ C(S ∪ T ) + C(N \ T )− C(N) = C∗∗(S)
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leading to conclude, in the same manner as above, that

e(S ∪ T, x, C∗∗) + e(N \ T, x, C∗∗) ≤ e(S, x, C∗∗)

and thus that the excess of S is not taken into account when we find Nu(C∗∗).

Therefore, Nu(C) and Nu(C∗∗) depend on the same excesses, and we must

have that Nu(C) = Nu(C∗∗). Since Nu(C∗∗) = ycc(c), we also have that

Nu(C) = ycc(c).

If we look at public mcst games instead of private mcst games, we obtain

similar correspondence results. First, we consider the subset of elementary

irreducible games, for which CPub = C. We have correspondence between

the (pre)nucleolus, the Shapley value, the permutation-weighted average of

the extreme points of the core and the folk solution.2

Corollary 1 For all elementary and irreducible matrices c, Nu(C) = Sh(C) =

ȳ(C) = yf (c).

For elementary mcst games, for which CPub is typically different from C,

we obtain the following result:

Theorem 4 For all c ∈ Γe, Nu
(
CPub

)
= ȳ

(
CPub

)
= yf (c).

The proof is similar to the proof of Theorem 3 and is omitted.

2A related result is provided by Subiza et al. (2016). They provide a closed-form
solution for the folk solution in a class of mcst games that are a subset of clique games
in which links between agents have a cost that is either high or low. Their result is a
simplification of our closed-form expression for their family. They extend by considering
games in which the set of agents can be partitioned in independent groups, such that they
can all be connected separately to the source, applying their conditions on every group.
One could do the same thing in our setting.
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mcst

emcst

Nu(C) = ycc(c) = y(C)

Nu
(
CPub

)
= yf (c)
= y

(
CPub

)

clique-mcst

Nu(C) = Sh(C)

cycle-complete emcst

Nu(C) = Sh(C) = ycc(c) = y(C)

irreducible emcst

C = CPub

Nu(C) = Sh(C) = yf (c) = y(C)

Figure 5: Summary of the results for mcst problems.

The results of this section are summarized in Figure 5. The set of clique-

mcst games are those described in Subsection 5.2.
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