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ABSTRACT: This paper takes an axiomatic approach to the revenue
sharing problem for an airline alliance network. We propose a simple sharing
rule that allocates the revenue of each flight equally among the carriers of the
flight. We show that it is the only rule satisfying the axioms of Separability,
the Null Airline Property, and Equal Treatment of Equals. We show that
the rule coincides with the Shapley value of the game associated with the
problem. We provide two extensions of the rule, allowing it to depend on
the lengths or the capacities of the flight legs. We also consider the maxi-
mum revenue problem for the airline alliance. We propose a simple Integer
Linear Programming model. We examine its Owen set. Lastly, we provide
an algorithm to compute both the optimal solution and the revenue sharing
solution given by the simple sharing rule for the maximum revenue problem.

JEL classification: C71, D70

Keywords : Revenue sharing, Airline alliance, Network
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1 Introduction

An airline alliance is an arrangement between two or more airlines agreeing to
cooperate and share their resources (e.g., legs). In doing so, they can expand
their flights between more Origin and Destination (OD) pairs or increase
their capacities and offer more flights on the existing network. In an airline
alliance, each airline expects its own revenue share as large as possible. For
a successful or stable alliance, a fair revenue sharing rule is essential.

There are two different approaches to the revenue sharing problem.1 In
the cooperative game theory approach, a Linear Programming (LP) model is
usually defined for the maximum expected revenue for the airline alliance.2

The maximum value of the LP problem for each coalition of the airlines
generates a TU game, called the airline alliance revenue management game.
The core of the game has been the main focus in the literature (Kimms and
Çetiner, 2012).

In the noncooperative game theory approach, airlines maximize their own
revenue independently. In Netessine and Shumsky (2005), horizontal and
vertical competition have been considered separately. In the horizontal game,
airlines are in direct competition on a given OD pair through parallel flights,
and seats on different flights are substitutable. In the vertical game, each
airline operates a different leg in a network of interconnected flights. Thus,
seats on different legs are complementary. Netessine and Shumsky studied
and compared the Nash equilibria of the two games, respectively.

Recently, Hu et al. (2013) combine the cooperative and the noncooper-
ative approaches. In their model, airlines first agree on a revenue sharing
rule and then implement the rule in a decentralized operation of their flight
reservation system. Specifically, they consider a two-stage game. In the first
stage, they use a cooperative game framework to model the output of the
negotiation in which airlines decide a revenue sharing rule that they will use
to split the revenue of interline and codeshare itineraries. Hu et al. require
that the sharing rules have the core property. In the second stage of the
game, they consider efficiency by modeling the operation of the alliance as
a noncooperative game in a decentralized network. Each airline manages its

1Revenue sharing problem is often treated as a part of the more general so-called
Revenue Management Problem in the airline industry. See Talluri and Ryzin (2004).

2Because demands for flights are uncertain before the departure of the flights, they
have to be estimated.
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own reservation system so as to maximize its expected revenue.
While the cooperative game approach to the revenue sharing problem

is very useful, it has two drawbacks. First, it relies on the definition of
the game associated with the problem. Second, it ignores the information
about the network structure of the problem. In this paper, we take an
axiomatic approach to the airline alliance revenue sharing problem. One of
the advantages of the axiomatic approach is that the revenue sharing rules
can be based on certain desirable properties that are directly related to the
network structure of the airline alliance and are independent of any notion
of game theory.

We consider a network model of the airline alliance. For simplicity, in
our model we assume that the demands for flights are perfectly elastic and
any supply of flights can be sold.3 Specifically, we model the problem as a
revenue sharing problem on a tree network, in which various paths between
pairs of nodes (i.e., OD pairs) are flights that generate revenues. Each airline
owns a part (a subset of legs) of the network and the whole network is jointly
shared by all airlines in the alliance.

We first propose a simple sharing rule that allocates the revenue of each
flight equally among the airlines that are the carriers of the flight. We provide
a characterization of the rule by the axioms of Separability, the Null Airline
Property, and Equal Treatment of Equals (Theorem 1). Separability is
similar to the Additivity axiom in the cost sharing literature (Moulin, 2002)
and it says that the allocation of the total revenue of all the flights can be
decomposed into problems of allocating the revenue of each individual flight.
The Null Airline Property is similar to the Dummy axiom in cost sharing
and can be considered as an equity axiom (see also Moulin, 2002). The Equal
Treatment of Equals treats all carriers equally in a flight. We also show that
the rule coincides with the Shapley value of the game associated with the
problem (Proposition 1).

To take into accounts the differences in the lengths or capacities of the
legs with different airlines, we consider two extensions of the model, one
in which each leg is associated with a length and one with a capacity. We
then replace the Equal Treatment of Equals axiom with two different axioms,
respectively. Accordingly, we provide two extensions of the rule. The first
is related to the lengths of the legs and the second to their capacities. We

3This assumption allows us to focus on the revenue sharing problem.
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provide their characterizations (Theorems 2 and 3), respectively.
We also consider the problem of sharing the maximum revenue. Tradi-

tionally, the focus of the airline alliance is to maximize the total revenue they
can jointly achieve. The game defined from the maximum revenue problem
for each coalition of the airlines can be considered as conditions on how the
total revenue of the alliance should be shared between the airlines. As men-
tioned before, to simplify the problem we assume that all flights that can
be offered will be sold and thus generate revenue.4 The problem then can
be simply modeled as an Integer Linear Programming (ILP) problem. Since
there is no duality theory for an ILP problem and thus, we cannot define
the Owen set (Owen, 1975) for the problem directly.5 We consider the LP
Relaxation of the ILP and show that they have the same set of solutions
(Lemma 1). Based on this result, we show that the core of the game is
nonempty (Theorem 4). Then, the Owen set of the LP Relaxation problem
can be defined and considered as a solution to the original maximum revenue
sharing problem.

Lastly, we propose an algorithm that solves the maximum revenue prob-
lem and at the same time implements the simple revenue sharing rule intro-
duced in the beginning.

1.1 Relation to the Literature

In the economic literature, revenue sharing problem in networks has not been
widely studied except Ginsburgh and Zang (2004), Bergantiños and Moreno-
Ternero (2015). On the other hand, there is a large related OR literature
on the revenue management in the airline alliances (Talluri and van Ryzin,
2004). In the latter, however, revenue sharing is considered as secondary in
the revenue management problem.

In contrast, cost allocation in networks has been widely studied (see
Sharkey (1995) for a survey). Here we just mention a few. Littlechild and

4We essentially just consider the capacity constraints and remove the demand con-
straints on the feasible flights in the maximum revenue problem.

5In the OR literature, the maximum revenue problem is simply considered as a LP
problem by ignoring the integer constraints, implicitly assuming that all the solutions
of the LP problem are integer-valued. Then, the Owen set can be defined by the dual
problem. Allocations in the Owen set are often used as revenue sharing rules. See Kimms
and Çetiner, 2012.
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Owen (1973) consider the airport games, Bergantiños and Vidal-Puga (2007)
on the minimum cost spanning tree games, Ni and Wang (2007) on the cost
sharing problem of a linear polluted river, Bogomolnaia et al. (2010) on the
cost sharing problem of a capacity network, and Moulin and Laigret (2011)
on the cost sharing problem with multiple goods.

1.2 Organization of the Paper

We define a revenue sharing model for the airline alliance network and in-
troduce a simple sharing rule in Section 2. In Section 3, we provide a char-
acterization of the simple rule. In Section 4, we show that the simple rule
coincides with the Shapley value of the game associated with the problem.
In Section 5, we show that the simple rule also satisfies two additional prop-
erties: the merging-proofness and the core property. In Section 6, we provide
two extensions of the simple rule. In Section 7, we consider the maximum
revenue sharing problem. In Section 8, we discuss an algorithmic approach
to the maximum revenue sharing problem. Section 9 concludes the paper.

2 The Model

Let A = {1, 2, 3, ...} be the set of all possible airlines. An airline network is a
graph g = (N,E), where N = {1, ..., n} is a finite set of nodes (e.g., airports)
and E is a collection of links (called legs) on N . We further assume that g is
a tree graph. Let A ⊂ A be a finite set of airlines. Assume that each airline
owns a certain number of links in E and each link in E is owned by only
one airline in A. In other words, for each a ∈ A, there is a set Ea ⊆ E and
{Ea}a∈A is a partition of E. A flight fij between i ∈ N and j ∈ N (j 6= i)
is a path in g, i.e., a set of links {(nl−1, nl)}l∈{2,...,d} such that i = n1 and
j = nd.

6 Denote fij = {(nl−1, nl)}l∈{2,...,d}. Let F be the set of all possible
flights on g. Given a flight fij ∈ F , we say fij is shared by the airline alliance
A(fij) ⊆ A if and only if an airline a ∈ A(fij) owns a link (or links) in fij.
Note that for each flight fij, there is a unique A(fij). A flight profile, f , is
a subset of F , i.e., f ⊆ F . Suppose that each flight fij generates a revenue
r(fij) ∈ R+. The total revenue of f , is thus,

∑
fij∈f r(fij).

6Since g is a tree, there is a unique path between any pair of nodes.
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A revenue sharing problem is a tuple (A, g, f, r). Since A is given, we
denote a problem by (g, f, r).7 Given a problem (g, f, r), a solution is a
vector x ∈ RA

+ such that ∑
a∈A

xa =
∑
fij∈f

r(fij).

A revenue sharing rule is a mapping x that assigns to each problem
(g, f, r) a solution x(g, f, r).

We first consider the following rule that allocates the revenue of each
flight equally to the airlines that are the carriers of the flight. Formally,

xa(g, f, r) =
∑

fij∈f :a∈A(fij)

r(fij)

|A(fij)|
, a ∈ A, (1)

where |A(fij)| is the number of airlines in the set A(fij).

Example 1. In Figure 1 below, there are three airlines a, b, and c, and
six airports. Suppose f = {f16, f34, f25, f26}. The total revenue of f is thus

r(f16) + r(f34) + r(f25) + r(f26),

which is to be shared between the three airlines. Note thatA(f16) = {a, b, c}, A(f34) =
{b}, A(f25) = {b}, A(f26) = {b, c}.
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FIG.1. An airline alliance network

By the revenue sharing rule (1), we have

7In Section 5, when we discuss airline merging, we will include A again.

7



xa =
1

3
r(f16),

xb = r(f25) + r(f34) +
1

3
r(f16) +

1

2
r(f26),

xc =
1

3
r(f16) +

1

2
r(f26).

3 The Characterization

For a characterization of (1), we use the following axioms.

Separability: Let (g, f 1, r) and (g, f 2, r) be two problems such that
f 1 ∩ f 2 = ∅. Then

xa(g, f
1 ∪ f 2, r) = xa(g, f

1, r) + xa(g, f
2, r), a ∈ A.

Separability is similar to the Additivity axiom in the cost sharing litera-
ture (Moulin, 2002). It allows us to decompose the revenue sharing for all
the flights into sharing each individual flight in the profile. This implies that
there is no cross-subsidization between flights.

The Null Airline Property: Let (g, f, r) be a problem and a ∈ A. If
a /∈ ∪fij∈fA(fij), then xa(g, f, r) = 0.

This axiom says that if an airline is not a carrier in any of the flights in a
given profile, the airline should not receive any revenue. This axiom is simi-
lar to the Dummy axiom in the cost sharing literature (see also Moulin, 2002).

Equal Treatment of Equals: Let (g, f, r) be a problem and a, a′ ∈ A
be two airlines. If, for every fij ∈ f , a ∈ A(fij) implies a′ ∈ A(fij), then
xa(g, f, r) = xa′(g, f, r).

The Equal Treatment of Equals is a symmetry axiom, which treats all
airlines in the same flight equally.
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Theorem 1 The rule defined in (1) is the only rule that satisfies the axioms
of Separability, Null Airline Property, and Equal Treatment of Equals.

Proof. It is easy to check that the rule (1) satisfies the above three axioms.
Now suppose that a sharing rule ϕ satisfies the three axioms. We will

show that ϕ must be given by (1). Fix an arbitrary f . Note that we
can write f = ∪fij∈f{fij}. Now consider the flight profile {fij}. By the
Null Airline Property and the Equal Treatment of Equals axioms, we have
ϕa(g, {fij}, r) = 0 for all a ∈ A \ A(fij), and ϕa(g, {fij}, r) = r(fij)/|A(fij)|
for all a ∈ A(fij).

Then by Separability, we have

ϕa(g, f, r) = ϕa(g,∪fij∈f{fij}, r)
=

∑
fij∈f

ϕa(g, {fij}, r)

=
∑

fij∈f :a/∈A(fij)

0 +
∑

fij∈f :a∈A(fij)

r(fij)

|A(fij)|

=
∑

fij∈f :a∈A(fij)

r(fij)

|A(fij)|

for all a ∈ A.

This completes the proof of the theorem. Q.E.D.

4 The Shapley Value

We now show that the rule (1) coincides with the Shapley value (Shapley,
1953) of the following revenue game r(·) that is associated with the problem
(g, f, r):

r(S) =
∑

{fij∈f |A(fij)⊆S}
r(fij), S ⊆ A. (2)

The Shapley value of the game r(·) is given by

φa(r) =
∑

S⊆A:a∈S

(|S| − 1)!(|A| − |S|)!
|A|!

[r(S)− r(S \ {a})], a ∈ A. (3)
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Proposition 1 The Shapley value of the revenue game r(·) defined in (2)
coincides with the rule (1).

Proof. Fix a ∈ A. Consider fij ∈ f . Define the following game:

rij(S) =

{
r(fij) if S ⊇ A(fij)
0 otherwise,

S ⊆ A. (4)

Clearly, all airlines in A\A(fij) are dummy in the game rij and all airlines
in A(fij) are symmetric. Thus the Shapley value of the game rij is given by

φa′(r
ij) =

{
r(fij)

|A(fij)| , a
′ ∈ A(fij)

0, otherwise
(5)

for all a′ ∈ A.
Since the game r(S) =

∑
fij∈f r

ij(S), the additivity of the Shapley value
implies

φa(r) =
∑
fij∈f

φa(r
ij)

=
∑

fij∈f :a∈A(fij)

r(fij)

|A(fij)|
.

This completes the proof of the proposition. Q.E.D.

5 The Merging-Proofness and the Core Prop-

erty

Airline merging is an important issue in the airline industry (Morrison and
Winston, 1986). However, airline alliance can be beneficial for customers
as long as they do not collude on pricing. We show below that, from the
revenue sharing aspect, under the revenue sharing rule (1) airlines would
have no incentive to merge.

Merging-proofness: Let (A, g, f, r) and (A, g, f, r) be two problems
where a1, a2 ∈ A, A = A \ {a1, a2} ∪ {a}, and Ea = Ea1 ∪ Ea2 in (A, g, f, r).
That is, in (A, g, f, r), a1, a2 are replaced by a in all flights that involve a1 or

10



a2 (or both). We say that the revenue sharing rule x satisfies the merging-
proofness if

xa(A, g, f, r) ≤ xa1(A, g, f, r) + xa2(A, g, f, r). (6)

We show below that the rule (1) satisfies the merging-proofness. Indeed,

xa(A, g, f, r) =
∑

fij∈f :a∈A(fij)

r(fij)

|A(fij)|

=
∑

fij∈f :a1∈A(fij),a2 /∈A(fij)

r(fij)

|A(fij)|
+

∑
fij∈f :a2∈A(fij),a1 /∈A(fij)

r(fij)

|A(fij)|

+
∑

fij∈f :a1∈A(fij),a2∈A(fij)

r(fij)

|A(fij)| − 1

≤
∑

fij∈f :a1∈A(fij),a2 /∈A(fij)

r(fij)

|A(fij)|
+

∑
fij∈f :a2∈A(fij),a1 /∈A(fij)

r(fij)

|A(fij)|

+2
∑

fij∈f :a1∈A(fij),a2∈A(fij)

r(fij)

|A(fij)|

= xa1(A, g, f, r) + xa2(A, g, f, r).

(We assume that |A(fij)| ≥ 2,∀fij ∈ f .)
While airline alliances are beneficial to customers, they shall be beneficial

to airlines as well. A requirement for a revenue sharing rule to be acceptable
by the alliance is the core property. Without it, some airlines may not want
to join the alliance or may want to leave an alliance they have joined.

In the following, we show that the simple sharing rule has the core prop-
erty. In fact, we show first that the revenue game defined in (2) is convex.
Therefore, by Proposition 1, the allocation given by the rule (1) is in the core
of the game (2) (Shapley, 1971).

In fact, for any S, T ⊆ A and S ⊂ T and a /∈ T , we have∑
{fij∈f |A(fij)⊆S∪{a}}

r(fij)−
∑

{fij∈f |A(fij)⊆S}
r(fij) =

∑
{fij∈f |a∈A(fij),A(fij)\{a}⊆S}

r(fij)

≤
∑

{fij∈f |a∈A(fij),A(fij)\{a}⊆T}
r(fij)

=
∑

{fij∈f |A(fij)⊆T∪{a}}
r(fij)−

∑
{fij∈f |A(fij)⊆T}

r(fij),

which shows that the game (2) is convex.
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6 Two Extensions

In an airline network, it is unlikely that all legs in a flight have equal distances.
Generally speaking, longer legs generate higher revenues than shorter ones.
Also, different legs may have different flight capacities. Therefore, it is not
always practical to treat all legs equally.

In the following, we consider two different models from the model in
Section 2. Specifically, we make two additional assumptions on the airline
alliance network. First, we assume that in the network each link is associated
with a distance. Formally, let gd ≡ (g, d), where d : E → R+ is a function
that assigns to each link e ∈ E a distance d(e) ∈ R+. Now, a revenue sharing
problem is a tuple (gd, f, r).

To treat longer legs differently from short ones, we introduce the following
axiom.

Distance Proportionality: For any individual flight fij ∈ f , if a ∈
A(fij) and da(fij) ∈ R+ is the total distance of the legs by airline a in the
flight fij, i.e., da(fij) =

∑
ea∈Ea∩fij d(ea), then airline a shares

da(fij)/
∑

a′∈A(fij) da′(fij) proportion of the revenue r(fij).

The distance-weighted rule is defined by

xa(g
d, f, r) =

∑
fij∈f :a∈A(fij)

da(fij)∑
a′∈A(fij) da′(fij)

r(fij), a ∈ A. (7)

We have the following characterization of (7).

Theorem 2 The distance-weighted rule (7) is the only rule satisfying Sepa-
rability, the Null Airline Property, and Distance Proportionality.

Proof. It is easy to check that the rule (7) satisfies the axioms of Separa-
bility, Null Airline Property, and Distance Proportionality.

Now suppose that a sharing rule ϕ satisfies the three axioms. We show
that it must be given by (7). Fix an arbitrary f . Note that we can write
f = ∪fij∈f{fij}. Now consider the flight profile {fij}. By the Null Airline
Property and Distance Proportionality, we have ϕa(g

d, {fij}, r) = 0 for all
a ∈ A \ A(fij), and ϕa(g

d, {fij}, r) = (da(fij)/
∑

a′∈A(fij) da′(fij))r(fij) for all
a ∈ A(fij).
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By Separability, we have

ϕa(g
d, f, r) = ϕa(g

d,∪fij∈f{fij}, r)
=

∑
fij∈f

ϕa(g
d, {fij}, r)

=
∑

fij∈f :a/∈A(fij)

0 +
∑

fij∈f :a∈A(fij)

da(fij)∑
a′∈A(fij) da′(fij)

r(fij)

=
∑

fij∈f :a∈A(fij)

da(fij)∑
a′∈A(fij) da′(fij)

r(fij),

for all a ∈ A.

This completes the proof of the theorem. Q.E.D.

In the second extension of the model, we assume that each link of the net-
work has a capacity constraint.8 Let gc ≡ (g, c), where c : E → I = {1, 2, ...}
is a function that assigns to each link (leg) a capacity. Now a problem is a
tuple (gc, f, r), where f is a feasible flight profile for gc defined as follows.

Call a flight profile, f ⊆ F , feasible for (gc, r) if∑
{fij∈f |ea∈fij}

fij ≤ c(ea), ea ∈ Ea, a ∈ A,

where fij, with a slight abuse of notation, also represents the number of seats
in the flight fij.

Note that now the total revenue of the flight profile f , is
∑

fij∈f r(fij)fij,
where r(fij) is considered as the unit revenue of the flight fij.

The capacity-weighted rule is defined by

xa(g
c, f, r) =

∑
fij∈f :a∈A(fij)

C(a, fij)∑
a′∈A(fij)C(a′, fij)

r(fij)fij, a ∈ A, (8)

8It is possible to define other rules that depend on both the distance and the capacity.
We omit these possible extensions.
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where C(a, fij) =
∑

ea∈Ea∩fij c(ea) is the total capacity of airline a for the
flight fij.

Accordingly, we introduce the following axiom.

Capacity Proportionality: For any flight fij ∈ f , if a ∈ A(fij) and
C(a, fij) is the total capacity of airline a for the flight fij, then airline a
shares C(a, fij)/

∑
a′∈A(fij)C(a′, fij) proportion of the revenue r(fij)fij.

We have the following characterization of (8).

Theorem 3 The capacity-weighted rule (8) is the only rule satisfying Sepa-
rability, Null Airline Property, and Capacity Proportionality.

Proof. It is easy to see that the rule (8) satisfies the three axioms.
Now suppose that a sharing rule ϕ satisfies the three axioms. We show

that it must be given by (8). Fix an arbitrary f . Note that we can write
f = ∪fij∈f{fij}. Now consider the flight profile {fij}. By the Null Airline
Property and Capacity Proportionality, we have ϕa(g

c, {fij}, r) = 0 for all
a ∈ A \ A(fij), and ϕa(g

c, {fij}, r) = (C(a, fij)/
∑

a′∈A(fij)C(a′, fij))r(fij)fij
for all a ∈ A(fij).

By Separability, we have

ϕa(g
c, f, r) = ϕa(g

c,∪fij∈f{fij}, r)
=

∑
fij∈f

ϕa(g
c, {fij}, r)

=
∑

fij∈f :a/∈A(fij)

0 +
∑

fij∈f :a∈A(fij)

C(a, fij)∑
a′∈A(fij)C(a′, fij)

r(fij)fij

=
∑

fij∈f :a∈A(fij)

C(a, fij)∑
a′∈A(fij)C(a′, fij)

r(fij)fij

for all a ∈ A.
This completes the proof of the theorem. Q.E.D.
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7 Sharing the Maximum Revenue

In the airline revenue management literature (e.g., de Boer et al., 2002), a
Mathematical Programming (MP) problem is defined to maximize the air-
line’s expected revenue from its supply of OD pairs, using the estimated
demand distribution to define constraints on flights. Extending this airline
revenue management problem from single airline to airline alliance is not
straightforward. One of the issues is how the airlines should share the joint
maximum revenue. For any airline alliance, airlines must first agree on a
revenue sharing rule.

Consider a problem (A, gc, r) (see Section 6). Assume that f ∗ is a revenue
maximizing flight profile for (A, gc, r). Let R(f ∗) =

∑
fij∈f∗ r(fij)fij be the

maximum revenue. How should R(f ∗) be shared among the airlines in A?
We first give a brief review of the traditional game theoretic approach.

Then we will introduce our algorithmic approach, which is related to our
axiomatic approach to the revenue sharing problem.

The game theoretic approach begins with the following definition. The
maximum revenue game of the problem (A, gc, r) is defined as follows: for
any S ⊆ A,

R(S) = max
∑

{fij∈F |A(fij)⊆S}
r(fij)fij (9)

s.t.
∑

{fij |ea∈fij}
fij ≤ c(ea), ea ∈ Ea, a ∈ S,

fij ≥ 0 integer , i < j, i, j ∈ N.

Note that problem (9) is an ILP problem. In the lemma below, we show
that for (9), it is equivalent to solve its LP Relaxation.

Lemma 1 The Integer Linear Programming problem defined in (9) can be
solved by solving its LP Relaxation.

Proof. Without loss of generality, assume that all r(fij) are different.
Note that all c(ea) are integers. Suppose that f ∗ = {f ∗ij}i<j is an optimal
solution for the LP Relaxation of (9). We shall show that all f ∗ij are in-
tegers. Therefore, f ∗ is also an optimal solution of (9). We prove this by
contradiction.
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For simplicity, suppose that there are only two f ∗i1j1 and f ∗i2j2 that are not
integers.9 Assume that r(f ∗i1j1) > r(f ∗i2j2).

By the integer capacity constraints, if any constraint for f ∗ is satisfied
with equality and at the same time, contains of one of the two non-integers,
f ∗i1j1 and f ∗i2j2 , it must contain both. Suppose one of these constraints is in
the following form:

f ∗i1j1 + f ∗i2j2 + ... = c(e∗a). (10)

Then we can always find a small ε > 0 and define a new feasible profile
f ∗∗ in which,

f ∗∗i1j1 = f ∗i1j1 + ε,

f ∗∗i2j2 = f ∗i2j2 − ε,
f ∗∗ij = f ∗ij, all others.

Note that for any non-binding constraint that contains only one of the
non-integers f ∗i1j1 and f ∗i2j2 , we can make ε small enough so that it would
still be non-binding. It is easy to see that the total revenue at f ∗∗ would be
higher than that of f ∗. This contradicts the assumption that f ∗ is optimal.

This completes the proof of the Lemma. Q.E.D.

Now we are ready to prove the following theorem.

Theorem 4 The game (9) is balanced and any solution to the dual problem
of R(A) is a core allocation.

Proof. Consider the following problem

R(A) = max
∑

{fij∈F |A(fij)⊆A}
r(fij)fij (11)

s.t.
∑

{fij |ea∈fij}
fij ≤ c(ea), ea ∈ Ea, a ∈ A,

fij ≥ 0 integer, i < j, i, j ∈ N.

By Lemma 1, the above problem and its LP Relaxation below have the
same set of solutions.

R(A) = max
∑

{fij∈F |A(fij)⊆A}
r(fij)fij (12)

9For other cases, the proof is similar and is omitted.
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s.t.
∑

{fij |ea∈fij}
fij ≤ c(ea), ea ∈ Ea, a ∈ A,

fij ≥ 0, i < j, i, j ∈ N.

Now we can consider the latter’s dual problem:

R
∗
(A) = min

∑
a∈A

∑
ea∈Ea

λ(ea)c(ea) (13)

s.t.
∑

a∈A(fij)

∑
ea∈Ea∩fij

λ(ea) ≥ r(fij),

λ(ea) ≥ 0, ea ∈ Ea, a ∈ A.

We show below that any solution to (13), (λ(ea))ea∈Ea,a∈A, would induce
a core allocation to the game R:

(
∑

ea∈Ea

λ(ea)c(ea))a∈A.

Indeed, for any S ⊆ A, it is easy to see that the solution (λ(ea))ea∈Ea,a∈A
restricted to S is also a feasible solution to the dual of the LP Relaxation of
R(S). Specifically, let

R(S) = max
∑

{fij∈F |A(fij)⊆S}
r(fij)fij (14)

s.t.
∑

{fij |ea∈fij}
fij ≤ c(ea), ea ∈ Ea, a ∈ S,

fij ≥ 0, i < j, i, j ∈ N.

The dual of R(S) is then

R
∗
(S) = min

∑
a∈S

∑
ea∈Ea

λ(ea)c(ea) (15)

s.t.
∑

a∈A(fij)

∑
ea∈Ea∩fij

λ(ea) ≥ r(fij),

λ(ea) ≥ 0, ea ∈ Ea, a ∈ S.

It is easy to see that∑
a∈S

∑
ea∈Ea

λ(ea)c(ea) ≥ R
∗
(S) = R(S) = R(S),∀S ⊆ A.
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The last equality is from Lemma 1.
This proves that the game (9) is balanced and a solution to the dual

problem (13) is a core allocation to the game. This completes the proof of
the theorem. Q.E.D.

Since the core of the game (9) is usually a set of allocations, the core
solution to the problem is not unique. Nevertheless, we can define the fol-
lowing solution concept. Given a problem, (A, gc, r). Consider the dual Lin-
ear Programming problem of the maximum revenue problem (12), namely,
the problem (13). Let (λ(ea))ea∈Ea,a∈A be one of its solutions. Define the
following Owen value (Owen, 1975):10

xOa (A, gc, r) =
∑

ea∈Ea

λ(ea)c(ea), a ∈ A. (16)

By Theorem 4, the above solution gives a core allocation.

Remark: The duality approach induces a (shadow) price for each unit
of the capacity on each leg. Since capacities are integer values, we shall be
aware of the issue that the optimal value can be very sensitive to the change
in capacity. Therefore, we shall be caution when we use the Owen value for
revenue sharing.

Example 2. Consider the following airline network

1 a
c12 = 10

2 b
c23 = 20

3 c
c34 = 10

4

FIG.2. A linear airline alliance network

10The Owen set is the set of all the Owen values.

18



Suppose that the revenue function is given as follows:

f f12 f13 f14 f23 f24 f34
r 500 1,500 2,000 800 1,800 400

The maximum revenue problem R(A) is the following

max 500f12 + 1, 500f13 + 2, 000f14 + 800f23 + 1, 800f24 + 400f34

s.t. f12 + f13 + f14 ≤ 10,

f13 + f23 + f14 + f24 ≤ 20, (17)

f14 + f24 + f34 ≤ 10,

fij ≥ 0, i < j, i, j = 1, 2, 3.

Recall that fij represents the number of seats.

It is easy to see that the optimal solution is f ∗13 = 10, f ∗24 = 10 and the
maximum revenue is 15, 000 + 18, 000 = 33, 000.

Now consider the dual problem R∗(A):

min 10λ(c12) + 20λ(c23) + 10λ(c34)

s.t. λ(c12) ≥ 500,

λ(c12) + λ(c23) ≥ 1, 500,

λ(c12) + λ(c23) + λ(c34) ≥ 2, 000,

λ(c23) + λ(c34) ≥ 1, 800,

λ(c23) ≥ 800,

λ(c34) ≥ 400,

λ(c12), λ(c23), λ(c34) ≥ 0.

The optimal solution is

λ(c12) = 500, λ(c23) = 1, 000, λ(c34) = 800.

According to the Owen solution (16), we have

xOa = 5, 000, xOb = 20, 000, xOc = 8, 000.
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It is easy to check that the above allocation is in the core of the game
given below:

R(a) = 5, 000, R(b) = 16, 000, R(c) = 4, 000,

R(a, b) = 23, 000, R(b, c) = 26, 000, R(a, c) = 9, 000,

R(a, b, c) = 33, 000.

8 An Algorithmic Approach

The maximum revenue problem (11) is an Integer Linear Programming Prob-
lem. By Lemma 1, we can solve its LP Relaxation (12) by applying the
Simplex Method (Dantzig, 1963). Since revenue sharing is also part of the
problem, in the following we propose an algorithm based on the Simplex
Method that solves both the maximum revenue problem and the revenue
sharing problem. Moreover, the revenue sharing solution is given by the
simple sharing rule (1).

We use a form of the Simplex Algorithm in Garfinkel and Nemhauser
(1972, pp.30-31).

Algorithm:11 Given a problem (A, gc, r). Consider the problem (11).
Apply the following algorithm to its LP Relaxation (12).

Step 1: (Initialization.) Begin with the basic feasible solution (BFS): f =
{fe}e∈E. Assign the revenue of each flight to the corresponding air-
line of the leg. Go to Step 2.

Step 2: (Test for optimality.) If so, the current BFS is optimal and the corre-
sponding allocation is the revenue sharing allocation. If not, go to Step
3.

Step 3: (Choose an entering basic variable.) Select f e
ij to be a new basic variable

by the rule of the Simplex method. Go to Step 4.

Step 4: (Choosing a departing basic variable.) Select fd
ij to become a non-basic

variable by the rule of the Simplex method. Go to Step 5.

11We omit the detail on how to deal with the issues of degeneracy and cycling with the
Simplex Algorithm. See Garfinkel and Nemhauser (1972).
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Step 5: (Pivoting.) Pivot at the (e, d) entry in the Simplex tableau and divide
the revenue r(f e

ij)f
e
ij equally between airlines in A(f e

ij) and reduce an
equal amount of the total revenue r(fd

ij)f
d
ij from all the airlines in A(fd

ij).
Also adjust the revenue allocation to the airlines associated with the
other basic variables according to their changes due to the pivoting.
After all these changes are made, then go to Step 2.

Consider again Example 2 in the last section. The algorithm would
generate the optimal solution f ∗13 = 10, f ∗24 = 10 with the maximum revenue
15, 000 + 18, 000 = 33, 000. In the meantime, the algorithm produces the
revenue shares for the three airlines that coincide with that by the rule (1).
That is

xa = (1/2)× 15, 000 = 7, 500,

xb = (1/2)× 15, 000 + (1/2)× 18, 000 = 16, 500, (18)

xc = (1/2)× 18, 000 = 9, 000.

We demonstrate below how the Simplex Algorithm implements the above
solution.

First, it is easy to find an initial BFS. We simply take all the single-leg
flights as a staring BFS. Rewrite the objective function with the non-basic
variables

R = 25, 000 + 200f13 + 300f14 + 600f24.

The BFS(1) is
f12 = 10, f23 = 20, f34 = 10,

and
x(a) = 5, 000, x(b) = 16, 000, x(c) = 4, 000.

The Simplex Tableau, ST(1), is
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A(fij) {a} {a, b} {a, b, c} {b} {b, c} {c}
f f12 f13 f14 f23 f24 f34
r 500 1,500 2,000 800 1,800 400

f12 = 10 1 1 1 0 0 0
f23 = 20 0 1 1 1 1 0

f34 = 10 0 0 1 0 1 1
25, 000 0 -200 -300 0 -600 0

xa = 5, 000 5,000 0 0 0 0 0
xb = 16, 000 0 0 0 16,000 0 0
xc = 4, 000 0 0 0 0 0 4,000

Note that row 7 is the optimality test row.

The next tableau after f24 becomes the basic variable while f34 becomes
a non-basic variable, is

A(fij) {a} {a, b} {a, b, c} {b} {b, c} {c}
f f12 f13 f14 f23 f24 f34
r 500 1,500 2,000 800 1,800 400

f12 = 10 1 1 1 0 0 0
f23 = 10 0 1 0 1 0 -1
f24 = 10 0 0 1 0 1 1
31, 000 0 -200 300 0 0 600

xa = 5, 000 5,000 0 0 0 0 0
xb = 17, 000 0 0 0 8,000 9,000 0
xc = 9, 000 0 0 0 0 9,000 0

Since A(f24) = {b, c} and r(f24)f24 = 18, 000, and f23 = 10, thus,

x(a) = 5, 000,

x(b) = 800× 10 + 18, 000× (1/2) = 17, 000,

x(c) = 18, 000× (1/2) = 9, 000.

Then, the next tableau after f13 becomes the basic variable while f12 be-
comes a non-basic variable, is
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A(fij) {a} {a, b} {a, b, c} {b} {b, c} {c}
f f12 f13 f14 f23 f24 f34
r 500 1,500 2,000 800 1,800 400

f13 = 10 1 1 1 0 0 0
f23 = 0 -1 0 -1 1 0 -1
f24 = 10 0 0 1 0 1 1
33, 000 200 0 500 0 0 600

xa = 7, 500 0 7,500 0 0 0 0
xb = 16, 500 0 7,500 0 0 9,000 0
xc = 9, 000 0 0 0 0 9,000 0

Now the numbers in the optimality test row are all nonnegative and there-
fore the current solution is optimal. And the corresponding revenue alloca-
tion is the following

x(a) = 7, 500,

x(b) = 9, 000 + 7, 500 = 16, 500,

x(c) = 9, 000.

This is exactly as given by (18).

9 Conclusion

In this paper, we take an axiomatic approach to the airline alliance revenue
sharing problem. We model the problem as a revenue sharing problem on a
tree network, in which various paths between pairs of nodes are flights that
generate revenues. Each airline owns a part of the network and the whole
network is jointly shared by all airlines in the alliance. We propose and
characterize a simple sharing rule that allocates the revenue of each flight
equally among the airlines that are the carriers in that flight. Moreover, we
show that the rule coincides with the Shapley value of the game associated
with the problem. Then, we provide two extensions of the rule, allowing
it to depend on the lengths or the capacities of the legs. We provide a
characterization for each of these extensions.

We also consider the problem of sharing the maximum revenue of the
airline alliance. To apply the duality theory in LP, we show in a lemma
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(Lemma 1) that the ILP of the problem and its LP Relaxation have the
same set of solutions. Based on this result, we then show that the Owen set
of the problem is nonempty. Solutions in the Owen set can be considered
as solutions to the maximum revenue sharing problem. We also propose
an alternative approach-the Simplex Algorithm approach. Specifically, we
modify the Simplex Algorithm to implement the simple rule proposed in the
beginning of the paper.

Here, we repeat our caution on the use of the Owen set as a revenue
sharing solution. Since for Integer Linear Programming problems, a small
change in the capacity constraints can cause a relatively large change in the
value of the optimal solutions, we should avoid using dual variables if possible.
On the other hand, there is no such issue in the algorithmic approach.

Finally, for future research we can include the demand constraints in the
maximum revenue problem and modify the algorithm again to implement
the simple or other revenue sharing rules.
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