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ABSTRACT: This paper considers a trading problem on a network
with incomplete information. We consider a simple water trading problem in
which three agents are located in a linear order along a river. Upper stream
agents can sell some amount of the water to their downstream but not the
other way around. The middle agent can be both a seller and a buyer. Agents
have private information on their utility of water, which we assume is non-
linear. We ask if there is an efficient trading mechanism for the allocation of
water. We show that if agents have highly asymmetric initial endowments
of water, incentive-compatible, individually rational, budget-balanced mech-
anisms exist that are also ex-post efficient.

JEL classification: C72, D82.
Keywords: Network; Incomplete Information; Water Trading; Mechanism
Design
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1 Introduction

Many real life trading problems are restricted not only to certain groups
of agents but unidirectional within a group. In a supply chain of certain
product, upstream firms sell their products to their downstream counterparts
in one direction. In the allocation of water along a river, upstream agents
sell water to their downstream neighboring agents. Even within a free trade
union, for a given product, countries trade with each other along a value-
added chain in one direction. In almost all practical trading, trading is often
organized in certain order or structure.

In this paper, we focus on a specific trading problem on a linear network.
We consider the problem of water trading along a river. A river flows through
a number of regions (e.g., villages, municipalities, or countries, called agents
hereafter). Due to various weather and geological conditions, some agents
may receive more water (for example, from rainfall) than others. On the other
hand, different agents may have different needs of water. Thus, it might
be more efficient to allow upstream agents sell water to their downstream
neighbors. Will this restricted trading always lead to an efficient allocation
of water?

In the complete information version of the problem, Wang (2011) proposes
a “downstream trading mechanism” that implements the unique efficient al-
location of water and in the meantime generates a welfare distribution that
is in the core of the associated game of the problem. In fact, there is a
large literature on the efficient allocation of water along a river. Based on
the game-theoretic approach, Ambec and Sprumont (2002) provide a dif-
ferent welfare distribution than Wang (2011) by the so-called “downstream
incremental distribution”. Ambec and Ehlers (2008a, b) provide another al-
ternative “upstream incremental distribution”. On the other hand, using the
market-based approach, there are Young et al. (2000), Chong and Sunding
(2006), Dinar and Wolf (1994), Giannias and Lekakis (1997), Lekakis (1998),
and more.

The above two approaches all assume that agents’ utility functions and
the amount of water they each initially receive (and thus control) are com-
mon knowledge. While the latter is not an unrealistic assumption as one
can always estimate accurately how much water or rainfall an agent (region)
would receive in a given period of time, the former assumption of complete
information on agents’ utility functions may not be realistic because these
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functions are private information. Since the information on agents’ utility
functions is needed in determining the efficient allocation, the above two ap-
proaches that both depend on this information may be vulnerable to agents’
misreporting the information. Now the question is under this incomplete
information on agents’ utility functions, can an efficient allocation of water
still be achievable?

To address this question, we begin with a simple model. We assume that
each agent’s utility function is quadratic with the marginal utility at zero
consumption being a privately known parameter called as this agent’s type.
This parameter uniquely determines the agent’s peak demand (optimal con-
sumption of water) for the family of quadratic functions (a subset of the
set of all concave and single-peaked functions). We consider direct mecha-
nisms (allocation rules) by which agents report simultaneously their types
(or equivalently their peak demands) to a coordinator who then determines
a feasible allocation of water as well as the monetary transfers between the
agents.

Following the traditional approach in the mechanism design literature, we
first provide a standard necessary and sufficient condition that guarantees the
existence of such a mechanism (Theorem 1). Then, we focus on two cases,
one with two agents and another with three agents, respectively. We show
that if the initial distribution of water is not too symmetric, then there exists
an incentive-compatible, individually rational, and budget-balanced direct
mechanism that allocates the water efficiently (Propositions 1 and 2).

The key assumption of our model is that agents have quadratic utility
functions. There are two main reasons for this assumption. First, this type of
utility functions has been often used in the literature. For example, in Ambec
and Sprumont (2002), agents’ utility functions are assumed to be concave. In
Ambec (2008), Ambec and Ehlers (2007, 2008),1 agents’ utility functions are
assumed to be both concave and single-peaked. Single-peakedness implies
that agents each have their optimal levels of consumption and may have
negative marginal utilities as they consume more than their optimal amounts
(e.g, assuming no free disposal as we do in this paper, too much water may
cause flooding). Second, it allows us to derive our results analytically.

Our paper departs from the literature originated by Myerson and Sat-

1Ambec and Ehlers (2007, 2008) have mentioned the quadratic utility functions in their
papers.
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terthwaite (1983) in two aspects. First, there is a linear order relation on
the agents that only upstream agents can sell water to their respective down-
stream agents and an agent in between two other agents can act both as a
seller and a buyer. Second, in our model agents have (strictly) nonlinear
utility functions.

This paper is an extension of an earlier paper by Lu and Wang (2010), in
which a trading problem with nonlinear utility is considered. In that paper,
no restriction on whom a trader can trade with is imposed. Here, trading
are restricted by a linear network.

This paper is also related to Kranton and Minehart (2001) and Blume
et al. (2009). In Kranton and Minehart, sellers each own one-unit of an
indivisible good and buyers own none. In Blume et al., they also assume
that goods are indivisible and that buyers and sellers can trade only through
intermediaries (traders). In our paper, goods (water) are divisible and agents
trade directly between each other. More importantly, agents have nonlinear
utility.

2 The Problem

We consider essentially the same model proposed by Ambec and Sprumont
(2002) except the following incomplete information assumptions on agents’
benefit functions. A river follows through a finite number of countries (called
agents hereafter), N = {1, 2, ..., n}, from upstream to downstream: i < j
means that i is upstream from j. Denote Pi = {1, ..., i} and P 0i = Pi \ {i}
the set of upstream agents and strict upstream agents of agent i, respectively.
Denote Si = {i, ..., n} and S0i = Si \ {i} the set of downstream agents and
strict downstream agents of agent i, respectively.

Assume that each agent i ∈ N picks up ei volume of water along the river
(Figure 1). Assume that e1 > 0. Agents consume certain amount of water
and may sell some water to their downstream neighbors. For each agent,
money is available in unbounded quantities to make payments. Agents value
water and money. Agent i’s utility from consuming xi units of water and
making payment ti is

ui(xi, ti, vi) = vixi −
1

2
γx2

i − ti,
2 (1)

2At certain levels of consumption agent may have negative marginal benefit, e.g., those
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where vi is agent i’s type and assumed to be his private information, drawn
independently from the distribution F with support [v, v] and positive con-
tinuous density function f , and γ > 0 is a constant. Except vi, i ∈ N , both
F and γ are common knowledge.

It is easy to see that, for each agent i ∈ N , benefit function (1) has the
following maximum (peak demand) that is uniquely determined by vi.

x̂i =
vi
γ

B
B
B
BBN

e1

1

B
B
B
BBN

e2

2

B
B
B
BBN

e3

-
3

· · · -

B
B
B
BBN

en

n

Figure 1. A Schematic Description of A Linear River Network.

A (water allocation) problem is a list (N, e, u), where e = (e1, ..., en) and
u = (u1, ..., un). An allocation is a vector x = (x1, ..., xn) ∈ RN

+ .
In this paper, we are interested in trading mechanisms that will determine

who will purchase additional amounts of water and who will sell some part
of their initial endowments, and how much transfer from each agent should
be made. The Revelation Principle (e.g., Myerson, 1979) allows us to fo-
cus on direct mechanisms in which agents simultaneously report their types
v = (v1, v2, · · · , vn) (or equivalently their peak demands) to a coordinator
who then determines an allocation x(v) = (x1(v), · · · , xn(v)) and a payment
t(v) = (t1(v), · · · , tn(v)), where xi(v) is agent i’s consumption of water and
ti(v) is the net money transfer from agent i. We call the pair of outcome
functions {x, t} a trading mechanism.

We require first that an allocation x(v) be feasible:

i∑
j=1

xj(v) ≤
i∑

j=1

ei, for i = 1, ..., n, ∀v ∈ [v, v̄]n.

levels that are higher than the satiated level which may cause disutility such as flooding.
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The rest of this section is standard in the mechanism design literature.
For completeness we repeat it below. The reader can also see Lu and Wang
(2010) for a similar model without a network structure.

Denote−i = N\{i}. Denote E−i[ · ] the expectation operator with respect
to v−i. Denote Xi(vi) = E−i[xi(vi, v−i)]. Denote agent i’s expected payment
as Ti(vi) = E−i[ti(vi, v−i)]. When agent i announces vi as his type, his
expected payoff is

Ui(vi) = E−i[ui(xi(v), ti(v), vi)] = E−i[vixi(vi, v−i)−
1

2
γx2

i (vi, v−i)]− Ti(vi).

The trading mechanism {x, t} is called incentive compatible if it is optimal
for each type of each agent to report his type truthfully when others report
truthfully:

Ui(vi) ≥ E−i[vixi(v̂i, v−i)−
1

2
γx2

i (v̂i, v−i)]−Ti(v̂i) ∀i ∈ N ∀vi, v̂i ∈ [v, v]. (2)

The trading mechanism {x, t} is called individually rational if all types of
all agents are better off or no worse off by participating in the mechanism (in
terms of their expected payoffs) than not participating and consuming their
initial endowments:

Ui(vi) ≥ viei −
1

2
γe2i ∀i ∈ N, ∀vi ∈ [v, v]. (3)

An allocation x is implementable if there exists a transfer function t such
that {x, t} is an incentive compatible and individually rational mechanism.
The following lemma characterizes the set of incentive compatible trading
mechanisms. The standard proof of the lemma is omitted.

Lemma 1 If the trading mechanism {x, t} is incentive compatible, then for
every i ∈ N

Ui(vi)− Ui(v
∗
i ) =

∫ vi

v∗i

E−i[xi(u, v−i)] du ∀vi, v∗i ∈ [v, v]. (4)

Given an incentive compatible mechanism {x, t}, equation (4) implies
that the expected utility Ui(vi) is absolutely continuous and non-decreasing
in vi, with nonnegative derivative E−i[xi(vi, v−i)] almost everywhere.
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The continuity of Ui implies that the expected net utility Ui(vi)− (viei −
(1/2)γe2i ) has a minimum over vi ∈ [v, v].3 Suppose that Ui(vi) − (viei −
(1/2)γe2i ) is minimized at v∗i ∈ [v, v]. Call v∗i the worst-off type of agent i
under allocation x. It is easy to see that if the individual rationality condition
(3) is satisfied for v∗i , then it is satisfied for all the other types as well. Thus
the trading mechanism {x, t} is individually rational if and only if

Ui(v
∗
i ) ≥ v∗i ei − (1/2)γe2i i = 1, ..., n. (5)

Moreover, if v∗i ∈ (v, v), then v∗i must satisfy the first-order condition:

E−i[xi(v
∗
i , v−i)] = ei. (6)

Equation (6) implies that the worst type agent just consumes what he
gets ei from his endowment.

Given an incentive compatible mechanism {x, t} and a worst-off type v∗i ,
let

η(vi|v∗i ) =


vi +

F (vi)
f(vi)

if vi < v∗i ,

v∗i if vi = v∗i ,

vi +
F (vi)−1
f(vi)

if vi > v∗i .

(7)

We call η(vi|v∗i ) the virtual valuation under allocation x.4 Note that, since

vi+
F (vi)−1
f(vi)

< vi < vi+
F (vi)
f(vi)

for all vi, an agent’s virtual valuation is distorted

downward (upward) to be below (above) his true valuation when his type vi
is higher (lower) than v∗i .

For a given implementable allocation x, let R be the maximum expected
revenue or gains from water trading from any incentive compatible and indi-
vidually rational mechanism implementing x. Lemma 2 below characterizes
implementable allocations.

Lemma 2 For any implementable allocation x,

R =
n∑

i=1

E[η(vi|v∗i )xi −
1

2
γx2

i ]−
n∑

i=1

[v∗i ei −
1

2
γe2i ], (8)

3From (4), the utility function Ui(vi) is solely determined by the allocation xi with the
exception of a constant, hence the minimizer v∗i ∈ argminvi{Ui(vi) − viei − 1

2γe
2
i } only

depends on xi and ei.
4Myerson (1981) introduced the concept of virtual valuation for ex ante identified

traders. Lu and Robert (2001) extended this concept to the model with ex ante unidenti-
fied traders.
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where v∗i is the worst-off type for agent i under x.
Furthermore, for any allocation x(v) such that xi(vi, v−i) is non-decreasing

in vi for all i ∈ N , there exists a payment function t(v) satisfying the budget
balance condition

∑n
i=1 ti(v) = 0 such that {x, t} is incentive compatible and

individually rational if and only if R defined in (8) is nonnegative.

The proof of the lemma can be found in Lu and Wang (2010) and is
omitted.

We say that a trading mechanism {x, t} is (ex post) efficient if for each
vector of types v = (v1, · · · , vn) the outcome of the mechanism {x(v), t(v)}
is Pareto efficient. We call a trading mechanism an efficient trading mech-
anism if it is incentive-compatible, individually rational, budget balanced,
and efficient.

The main question we address in this paper is: Is there an efficient trading
mechanisms for the water allocation problem?

3 The Two-Agent Case

Assume that there are only two agents as shown in Figure 2 below.

B
B
B
BBN

e1

1

B
B
B
BBN

e2

2

Figure 2. A Two-Agent Case.

An allocation of water is a vector x = (x1, x2) ∈ R2
+. An allocation x is

feasible if

x1 ≤ e1,

x1 + x2 = e1 + e2.
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For simplicity, for the rest of the paper we assume that v = 1, v = 2 and
that F is the uniform distribution on [1, 2]. We also assume that e1 + e2 ≥
1/γ.5

In the two-agent case, agent 1 must be a seller and agent 2 a buyer.
Therefore, the worst type for agent 1 is v∗1 = 2 and for agent 2 v∗2 = 1.

Note that the total amount of water is e1+e2 units and that the maximum
amount agent 1 can consume, is less than or equal to e1 and the maximum
amount agent 2 can consume, is less than or equal to e1 + e2. The efficient
allocation is then given by

v1 − γx1 = v2 − γx2 (9)

if
v1 − γe1 ≤ v2 − γe2.

or
x1 = e1, x2 = e2,

if
v1 − γe1 > v2 − γe2.

It is easy to check that the efficient allocation is always feasible.

Lemma 3 For any v = (v1, v2), there exists a unique efficient allocation
x(v) = (x1(v), x2(v)) where each xi(vi, vj) is strictly positive and non-decreasing
in vi for i = 1, 2.

Proof. From the definition of efficient allocation, it is easy to see that

x1 =
e1 + e2

2
+

1

2γ
(v1 − v2), (10)

x2 =
e1 + e2

2
+

1

2γ
(v2 − v1), (11)

if
v1 − γe1 ≤ v2 − γe2.

5This condition guarantees that agents consume nonnegative amounts in the efficient
allocation in Lemma 3.
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And
x1 = e1, x2 = e2, (12)

if
v1 − γe1 > v2 − γe2.

Thus, each xi(vi, vj) is strictly positive and non-decreasing in vi for i = 1, 2.
The lemma is proved. Q.E.D.

The following theorem characterizes the conditions under which an effi-
cient trading mechanism exists.

Theorem 1 There exists an efficient trading mechanism if and only if

R =
2∑

i=1

E[η(vi|v∗i )xi(v)−
γ

2
x2
i (v)]−

2∑
i=1

(v∗i ei −
γ

2
e2i ) ≥ 0, (13)

where x is the efficient allocation and v∗i the worst-off type for agent i under
xi.

Proof : By Lemma 3, xi(v), i = 1, 2 is non-decreasing in vi, i = 1, 2.
Invoking lemma 2, it follows that there exists an efficient trading mechanism
if and only if the condition (13) holds. The theorem is proved. Q.E.D.

The following proposition shows that efficient trading mechanisms exist
if the upstream agent has a relatively larger initial amount of water than the
downstream agent.

Proposition 1 Suppose that

e1 ≥ e2 +
2

γ
. (14)

Then there exists an efficient trading mechanism.

Proof: (i) By assumption (14), we have v1 − γe1 ≤ v2 − γe2. Therefore
the efficient allocation is given by (10, 11). Now we calculate R in condition
(13).
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First, note that the variance of the distribution F is 1/12. Use integration
by parts we have

E[η(vi|v∗i )xi(vi, vj)] =
∫ 2

1
(2vi − 1)Xi(vi) dvi −

∫ 2

v∗i

Xi(vi) dvi

= v∗iXi(v
∗
i )−

∫ 2

1
vi(vi − 1) dXi(vi) +

∫ 2

v∗i

vi dXi(vi)

= v∗iXi(v
∗
i )−

1

2γ

∫ 2

1
vi(vi − 1) dvi +

1

2γ

∫ 2

v∗i

vi dvi

= v∗iXi(v
∗
i )−

1

4γ
v∗i

2 +
1

4γ
((
3

2
)2 +

1

12
).

Secondly, by the independence of the distributions, we have

E[(xi(vi, v−i))
2]

= E

[
(e1 + e2)

2

4
+

2(e1 + e2)

4γ
(vi − vj) +

1

4γ2
(vi − vj)

2

]

=
(e1 + e2)

2

4
+

1

4γ2
E
[
v2i − 2vivj + v2j

]
=

(e1 + e2)
2

4
+

1

2γ2

1

12
.

Thus, substituting into the right-hand side of equation (13), we obtain

R =
2∑

i=1

{
v∗i (Xi(v

∗
i )− ei) +

1

4γ
((
3

2
)2 − v∗i

2) +
γ

2

(
e2i −

(e1 + e2)
2

4

)}
. (15)

Since

X1(v1) = Ev2x1(v1, v2) =
e1 + e2

2
+

1

2γ
(v1 −

3

2
),

X2(v2) = Ev1x2(v1, v2) =
e1 + e2

2
+

1

2γ
(v2 −

3

2
),

and
v∗1 = 2, v∗2 = 1,

plugging in (15) we obtain that

R =
1

8γ
+

γ(e1 − e2)
2

4
− e1 − e2

2
.
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Thus, if 0 ≤ e1 − e2 ≤ 4−2
√
2

4γ
or e1 − e2 ≥ 4+2

√
2

4γ
, then R ≥ 0. But we assume

that e1 − e2 ≥ 2/γ ≥ 4+2
√
2

4γ
. Thus, the proposition is proved. Q.E.D.

Example 1. Suppose that there are two agents i = 1, 2 with γ = 1/2.
Suppose that (e1, e2) = (4, 0). Then the efficient allocation is given by

x1(v1, v2) = 2 + v1 − v2,

x2(v1, v2) = 2 + v2 − v1.

Because 1/γ = 2 < e1 + e2 = 4 and e1 = 4 ≥ e2 + 2/γ, by Proposition 1,
efficient trading mechanism exists. In fact, it is easy to calculate that the
net transfer functions are as follows:6

t1(v) =
v21 − v22

4
− v1 − v2

4
− 1,

t2(v) = −v21 − v22
4

+
v1 − v2

4
+ 1.

To see why, note that the marginal valuation of agent i for a quantity x
is vi − x

2
. For example, when agent 1 receives e1 = 4 and agent 2 receives

e2 = 0, the marginal benefit of agent 1 at e1 is at most 2 − 4
2
= 0, while

the marginal benefit of agent 2 with e2 = 0 is at least 1 − e2
2
= 1, which is

greater than 0. Thus, the expected gains from trade is positive, ensuring the
existence of efficient trading mechanisms.

Suppose that v1 = 3/2, v2 = 1. Then, agent 1’s peak amount is v1/γ = 3
and agent 2’s is v2/γ = 2. The efficient allocation is x1 = 5/2, x2 = 3/2 and
the monetary transfers are t1 = −13/16, t2 = 13/16. On the other hand, if
v1 = 1, v2 = 3/2, then, agent 1’s peak amount is v1/γ = 2 and agent 2’s is
v2/γ = 3. The efficient allocation is x1 = 3/2, x2 = 5/2 and the monetary
transfers are t1 = −19/16, t2 = 19/16. If v1 = v2, then x1 = x2 = 2 and
t1 = −1, t2 = 1.

If we suppose that v1 = v2 = 2, then

u1(e1, 0, v1) = 2× 4− 1

2
× 1

2
× 42 = 4,

6We relegate the calculation in the Appendix.
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and
u2(e2, 0, v2) = 0.

With the efficient allocation (x1, x2) = (2, 2) and the transfers (t1, t2) =
(−1, 1), we have

u1(2,−1, v1) = 2× 2− 1

2
× 1

2
× 22 + 1 = 4,

and

u2(2, 1, v2) = 2× 2− 1

2
× 1

2
× 22 − 1 = 2.

Therefore agent 2 is strictly better off.

4 The Three-Agent Case

We maintain the assumptions that [v, v] = [1, 2] and F is the uniform prob-
ability distribution on [1, 2]. Note that, in the three-agent case the second
agent can be both a seller and a buyer.

B
B
B
BBN

e1

1

B
B
B
BBN

e2

2 3

B
B
B
BBN

e3

Figure 3. A Three-Agent Case.

A feasible allocation is a vector x = (x1, x2, x3) ∈ R3
+ satisfying

x1 ≤ e1,

x1 + x2 ≤ e1 + e2,

x1 + x2 + x3 = e1 + e2 + e3.

Under the assumption on the agents’ benefit functions, it is easy to see
that the efficient allocation x is given by the following three possibilities:
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(1) Trading between all three agents {1, 2, 3}.

v1 − γx1 = v2 − γx2 = v3 − γx3 (16)

if
x1 < e1, x3 > e3, x1 + x2 + x3 = e1 + e2 + e3.

The efficient allocation is

x1 =
1

3
(e1 + e2 + e3) +

1

3γ
(2v1 − v2 − v3),

x2 =
1

3
(e1 + e2 + e3) +

1

3γ
(2v2 − v1 − v3),

x3 =
1

3
(e1 + e2 + e3) +

1

3γ
(2v3 − v1 − v2).

(2) Trading between agents 1 and 2 only.

v1 − γx1 = v2 − γx2 > v3 − γe3 (17)

if
x1 < e1, x2 > e2, x1 + x2 = e1 + e2, x3 = e3.

The efficient allocation is

x1 =
1

2
(e1 + e2) +

1

2γ
(v1 − v2),

x2 =
1

2
(e1 + e2) +

1

2γ
(v2 − v1),

x3 = e3.

(3) Trading between agents 2 and 3 only.

v1 − γe1 > v2 − γx2 = v3 − γx3 (18)

if
x1 = e1, x2 < e2, x3 > e3, x2 + x3 = e2 + e3.

The efficient allocation is
x1 = e1.
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x2 =
1

2
(e2 + e3) +

1

2γ
(v2 − v3),

x3 =
1

2
(e2 + e3) +

1

2γ
(v3 − v2).

Lemma 4 The efficient allocation xi(v) is non-decreasing in vi for each i =
1, 2, 3. The worst-off type for trader i under x in the case that all three agents
engage in trading is v∗i = 1 when ei ≤ Xi(1), v

∗
i = X−1

i (ei) ∈ (1, 2) when
Xi(1) < ei < Xi(2), and v∗i = 2 when ei ≥ Xi(2).

Proof. It is easy to see that xi(v) is non-decreasing in vi for each i =
1, 2, 3. Now we show the second part of the lemma. Note that agent i’s
expected net utility can be written as

Ui(vi)− (viei −
1

2
γe2i ) = Ui(v

∗
i ) +

∫ vi

v∗i

Xi(u)du− viei +
1

2
γe2i

= Ui(v
∗
i )− (v∗i ei −

1

2
γe2i ) +

∫ vi

v∗i

(Xi(u)− ei)du.

Since Xi(vi) is strictly increasing in vi, then Ui(vi) − (viei − 1
2
γe2i ) is mini-

mized at v∗i = 1 when ei ≤ Xi(1), at v
∗
i = X−1

i (ei) when Xi(1) < ei < Xi(2),
and at v∗i = 2 when ei > Xi(2). Q.E.D.

Proposition 2 In the following three cases, efficient trading exists:

(1)

e1 >
e2 + e3

2
+

1

γ
, e3 <

e1 + e2
2

− 1

γ
,

and

0 <
e1 + e2 + e3

3
− 1

3γ
< e2 <

e1 + e2 + e3
3

+
1

3γ
.

(2)

e1 ≥ e2 +
2

γ
, e3 ≥

e1 + e2
2

+
1

γ
.
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(3)

e1 ≤
e2 + e3

2
− 1

γ
, e2 ≥ e3 +

2

γ
.

Proof: We only prove the first case. The proofs for the other two cases
are identical to the proof for Proposition 1 and are omitted.

By Lemma 2, we need to calculate R in (8), in which x is the efficient
allocation.

Under the assumption on e1, e2 and e3, we have for any vi ∈ [1, 2], i =
1, 2, 3,

x1(v) =
1

3
(e1 + e2 + e3) +

1

3γ
(2v1 − v2 − v3)

≤ 1

3
(e1 + e2 + e3) +

1

3γ
(2× 2− 1− 1)

=
1

3
(e1 + e2 + e3) +

2

3γ

=
1

3
[e1 + e2 + e3 +

2

γ
]

<
1

3
[e1 + 2e1]

= e1,

and similarly
x3(v) > e3.

Thus, in equilibrium allocation we must have

x1 =
1

3
(e1 + e2 + e3) +

1

3γ
(2v1 − v2 − v3),

x2 =
1

3
(e1 + e2 + e3) +

1

3γ
(2v2 − v1 − v3),

x3 =
1

3
(e1 + e2 + e3) +

1

3γ
(2v3 − v1 − v2).

17



Now we compute

R =
3∑

i=1

E[η(vi|v∗i )xi(v)−
γ

2
x2
i (v)]−

3∑
i=1

(v∗i ei −
γ

2
e2i ). (19)

First, we compute

E[η(vi|v∗i )xi(vi, vj)] =
∫ 2

1
(2vi − 1)Xi(vi) dvi −

∫ 2

v∗i

Xi(vi) dvi

= v∗iXi(v
∗
i )−

∫ 2

1
vi(vi − 1) dXi(vi) +

∫ 2

v∗i

vi dXi(vi)

= v∗iXi(v
∗
i )−

2

3γ

∫ 2

1
vi(vi − 1) dvi +

2

3γ

∫ 2

v∗i

vi dvi

= v∗iXi(v
∗
i )−

1

3γ
v∗i

2 +
7

9γ
.

Second, by the independence of distributions, we can show that

E[(xi(vi, v−i))
2] =

(e1 + e2 + e3)
2

9
+

1

2γ2

1

9
.

Plugging into (19), we obtain

R =
3∑

i=1

{
v∗i (Xi(v

∗
i )− ei) +

1

3γ
((
3

2
)2 − v∗i

2) +
γ

2

(
e2i −

(e1 + e2 + e3)
2

9

)}
(20)

Because

e1 >
e2 + e3

2
+

1

γ

>
e2 + e3

2
+

1

2γ
,

we have

2e1 > e2 + e3 +
1

2
,

or equivalently

3e1 > e1 + e2 + e3 +
1

γ
,

18



i.e.,

e1 >
1

3
(e1 + e2 + e3) +

1

3γ
= X1(2).

By Lemma 4, the last inequality implies v∗1 = 2.
Similarly, we can show that

e3 <
1

3
(e1 + e2 + e3)−

1

3γ
= X3(1),

which, by Lemma 4, implies v∗3 = 1, and the assumption on e2 implies

X2(1) < e2 < X2(2),

therefore,
v∗ = X−1

2 (e2),

where

X2(v2) =
1

3
(e1 + e2 + e3) +

1

3γ
(2v2 − 3).

Plugging v∗1, v
∗
2 and v∗3 into (20), we obtain that

R = 2[
e1 + e2 + e3

3
+

1

3γ
(4− 3)− e1] +

1

3γ
(
9

4
− 4) +

γ

2
(e21 −

(e1 + e2 + e3)
2

9
)

+
1

3γ
(
9

4
− 3− γ(e1 + e2 + e3)

2
) +

γ

2
(e22 −

(e1 + e2 + e3)
2

9
)

(
e1 + e2 + e3

3
+

1

3γ
(2− 3)− e3) +

1

3γ
(
9

4
− 1) +

γ

2
(e23 −

(e1 + e2 + e3)
2

9
)

=
e1 + 7e2 + e3

6
+

1

12γ
+

γ

2
[e21 + e22 + e23 −

(e1 + e2 + e3)
2

3
] > 0

The proposition is proved, Q. E. D.

Example 2. Assume that N = {1, 2, 3} and that e = (e1, e2, e3) =
(6, 4, 2). Assume also that γ = 1/2. Then it is easy to check that e satisfies
the efficiency assumption in Proposition 2. Thus, there is an efficient trading
mechanism. For example, suppose that v1 = 1, v2 = v3 = 2. Then

x1(v) = 4 +
2

3
(2v1 − v2 − v3) = 8/3,
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x2(v) = 4 +
2

3
(2v2 − v1 − v3) = 14/3,

x1(v) = 4 +
2

3
(2v3 − v1 − v2) = 14/3.

Note that agents peak demands are (v1/γ, v2/γ, v3/γ) = (2, 4, 4) with the
total amount of 10. Thus, in the efficient allocation, the three agents share
equal amount of the extra 2 units. The calculation of the transfers are tedious
and thus omitted. But we can see that in this oversupply of water case, agent
3 should be compensated by a negative transfer because the oversupply is
caused by the upper stream agent 1.

The following figure describes the three possible configurations of initial
amounts of water e that allow efficient trading of water.

e1

e2

e3

e1

e2

e3

e1

e2

e3

Figure 4. Three Possible Cases That Guarantee the Efficient Trading.

5 Concluding Remarks

In general, trading problems involving incomplete information often result in
inefficiency. This was demonstrated in its simplest form in the seminal paper
by Myerson and Satterthwaite (1983). However, in practice, trading often
takes place in certain organized form. We impose a linear network structure
on a trading problem with incomplete information. Specifically, we consider
a water trading problem along a river. Under the assumption of concave and
single-peaked benefit functions commonly used in water sharing problem and
the assumption that agents have not too symmetric distribution of the initial
amounts of water, we show that efficient trading mechanisms exist that are
incentive-compatible, individually rational and budget balanced.
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Our model can be extended to other trading network problems in which
agents have single-peaked preferences and agents’ peak levels are private
information.
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Appendix

Transfers (t1(v), t2(v)) in Example 1:

Note that in the proof of Lemma 2, we have

ti(v) = si(vi)− sj(vj)− ci, (21)

where

si(vi) = Ej[vixi(vi, vj)−
1

2
γx2

i (vi, vj)−
∫ vi

v∗i

xi(u, vj) du]

and

ci =
1

2
R + v∗i ei −

1

2
γe2i − E[η(vj|v∗j ))xj(v)−

1

2
γx2

j(v)].

First, we compute s1(v1). Recall that γ = 1/2, v∗1 = 2, v∗2 = 1.

s1(v1) = E2[v1x1(v1, v2)−
1

2
γx2

1(v1, v2)−
∫ v1

v∗1

x1(u, v2) du]

= v1[
e1 + e2

2
+ (v1 −

3

2
)]

−1

4
E2[

(e1 + e2)
2

4
+ (e1 + e2)(v1 − v2) + (v1 − v2)

2]

−E2[
∫ v1

2
[
e1 + e2

2
+ (u− v2)]du]

=
e1 + e2

2
v1 + v21 −

3

2
v1 −

1

4
[
(e1 + e2)

2

4

+(e1 + e2)
∫ 2

1
(v1 − v2)dv2 +

∫ 2

1
(v1 − v2)

2dv2]

−
∫ 2

1
[
e1 + e2

2
(v1 − 2) +

1

2
(u− v2)

2|v12 ]dv2

=
1

4
v21 +

3

4
v1 −

(e1 + e2)
2

16
+ (e1 + e2)

11− 2v1
8

− 19

12
.

Similarly,

s2(v2) = E1[v2x2(v1, v2)−
1

2
γx2

2(v1, v2)−
∫ v2

v∗2

x2(v1, u) du]

= E1[v2x2(v1, v2)−
1

4
x2
2(v1, v2)−

∫ v2

1
x2(v1, u) du]
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=
1

4
v22 +

3

4
v2 −

(e1 + e2)
2

16
+ (e1 + e2)

7− 2v2
8

− 19

12
.

Thus,

s1(v1)− s2(v2) =
v21 − v22

4
+

3(v1 − v2)

4
+

e1 + e2
2

− (e1 + e2)(v1 − v2)

4
.

Now we compute c1

c1 =
1

2
R + v∗1e1 −

1

2
γe21 − E[η(v2|v∗2))x2(v)−

1

2
γx2

2(v)].

In Proposition 1, we have calculated that

R =
1

8γ
+

γ(e1 − e2)
2

4
− e1 − e2

2

=
1

4
+

(e1 − e2)
2

8
− e1 − e2

2

And

[E[η(v2|v∗2)x2(v1, v2)] = v∗2X2(v
∗
2)−

1

2
v∗2

2 +
1

2
((
3

2
)2 +

1

12
)

=
e1 + e2

2
+ (1− 3

2
)− 1

2
+

7

6

=
e1 + e2

2
+

1

6

E[(x2(v1, v2))
2] =

(e1 + e2)
2

4
+

1

6
.

Thus,

c1 =
(e1 − e2)

2

16
+

(e1 + e2)
2

16
− e21

4
+

5e1 − e2
4

=
e22 − e21

8
+

5e1 − e2
4

Finally,
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t1(v) = s1(v1)− s2(v2)− c1

=
v21 − v22

4
+

3(v1 + v2)

4
+

((e1 + e2)(2 + v2 − v1)

4

−e22 − e21
8

− 5e1 − e2
4

.

Therefore, if e1 = 4, e2 = 0, we have

t1(v) =
v21 − v22

4
− v1 − v2

4
− 1,

and thus

t2(v) = −v21 − v22
4

+
v1 − v2

4
+ 1.
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