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Abstract

Summary. We establish a new envelope theorem in which the
choice variables are discrete and the objective function and the con-
straints are Lipschitz continuous with respect to the parameters. The
parameters can be finite or infinite dimensional vectors in a Banach
space. In an application, we revisit the principal-agent problem and
derive a weaker first-order condition than the traditional one in the
literature. In an insurance example, we use the condition to show an
insurance contract that is discontinuous at some level of the loss.

Keywords and Phrases: Envelope theorem, Discrete choice set, Lipschitz
continuity, Generalized gradients, Principal-agent problem.
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1 Introduction

Envelope theorem states that under certain conditions the optimal value
function of a parametric optimization problem with or without constraints
is differentiable and its derivatives (or partial derivatives) with respect to
the parameters can be computed by the corresponding derivatives of the
associated Lagrangian function of the problem. The theorem has many ap-
plications in the demand theory, the theory of production, and the general
comparative analysis in economics.1

Recently, the theorem has been applied in information economics, espe-
cially in mechanism design (e.g., Milgrom and Roberts, 1988, Milgrom and
Shannon, 1994, Athey, Milgrom, and Roberts, 2000). In these applications,
the theorem has been generalized in various ways, for example, by relaxing
some regularity properties on the choice set (Sah and Zhao, 1998, Milgrom
and Segal, 2002). These generalizations are useful because they make the
theorem more applicable in a wider range of problems.

1See Löfgren (2011) for a review on how Envelope Theorems have been used in eco-
nomics. For a review on the recent applications in optimal control theory, see Caputo
(1990). For a review on earlier applications since Samuelson (1947) and Viner (1931), see
Silberberg (1974).
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In these generalizations, they all require that the objective function and
the constraints are differentiable with respect to the parameters of the prob-
lem. However, it is not hard to see that the differentiability of these func-
tions is neither necessary nor sufficient to guarantee the differentiability of
the value function.

In this paper, we develop a new envelope theorem. We continue to assume
that the choice set is a discrete set2as in Sah and Zhao (1998) and Milgrom
and Segal (2002). But more importantly, we do not assume that the objective
function and the constraints are differentiable with respect to the parameters.
Instead, we assume that these functions are Lipschitz continuous. Moreover,
the parameters can be either finite or infinite dimensional vectors in a Banach
space.

As an application, we revisit the well studied principal-agent problem.
We use the new envelope theorem to derive a weaker first-order condition
than the traditional one in the literature. Roughly speaking, for an optimal
contract, the first-order condition is satisfied for almost all outcomes (e.g,
losses in an insurance problem) except a few, the set of which has a measure of
zero.3 In other words, the condition can be violated on some outcomes. Thus,
the optimal incentive-contract can be a discontinuous function of outcomes
rather than it has to be a continuous function implied by the traditional
first-order condition.4

The concept of generalized gradient, first introduced by Clarke (1983),
plays an important role in our generalization. This concept has been used be-
fore in the literature (e.g., Wang, 2007; Clausen and Strub, 2012). However,
this paper is the first to allow non-differentiable functions in the envelope
theorem.5

2We could easily extend our result to arbitrary set but we choose not to do it here.
3See Section 4 for the meaning of zero measure set.
4On the other hand, Mirrlees (1999) points out that there may exist many contracts

that satisfy the first-order condition but are not optimal. Thus, replacing the incentive-
compatibility condition by the first-order condition creates additional problems since it
alters the set of feasible contracts. It is worth noting that there has been an interesting
development in the literature of bilevel programming that is closely related to the principal-
agent problem. For example, Ye and Zhu (2010) combine the first-order condition approach
with the value function approach in a bilevel programming problem of which the principal-
agent problem is a special case.

5In many generalizations of the envelope theorem, it is assumed that all functions, often
including the value function, are differentiable. We argue that the differentiability of the
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2 The Generalized Gradients

It is helpful to briefly introduce the Lipschitz functions and the generalized
gradients of Lipschitz functions that we use in the paper. The reader can
find more details on them in Clarke (1983).

Let X be a Banach space, whose elements x are called vectors or points
and whose norm are denoted ∥x∥, and whose open ball is denoted B. Let
Y be a subset of X. A function f : Y → R is said to satisfy a Lipschitz
condition (on Y ) provided that, for some positive scalar L, one has

|f(y)− f(y′)| ≤ L∥y − y′∥, ∀y, y′ ∈ Y. (1)

We will say that f is Lipschitz of rank L near x if Y = B(x), where B(x) is
an open ball centered at x.

Let f be Lipschitz near a given point x, and let v be any other vector in
X. The generalized directional derivative of f at x in the direction v, denoted
f ◦(x; v), is defined as

f ◦(x; v) = lim sup
y → x
t → 0+

f(y + tv)− f(y)

t
. (2)

Proposition 1 (Clarke, 1983, P.25) Let f be Lipschitz of rank L near x.
Then, the function v → f ◦(x; v) is finite, positively homogeneous, and sub-
additive on X, and satisfies

|f ◦(x; v)| ≤ L∥v∥.

For convenience, for the rest of the paper we assume that the Banach
space X is a Hilbert space. The well-known Separating-Hyperplane Theorem
(Taylor, 1958; Balakrishnan, 1981) implies that any positively homogeneous

value function should be derived rather than assumed. Obviously, the differentiability of
the value function is related to the differentiability of the functions in the problem but is
not guaranteed by their differentiability. Additional constraints qualifications are needed.
On the other hand, it is also easy to find parametric optimization problems in which all
functions are not differentiable but the value function is differentiable.
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and subadditive functional on X majorizes some linear functional on X.6

Thus, under Proposition 1, there is at least one linear functional ξ : X → R
such that, for all v in X, one has f ◦(x; v) ≥ ⟨ξ, v⟩. It follows that ξ is
bounded, and belongs to the dual space X∗ of continuous linear functionals
on X. Now we can define the generalized gradient of f at x, denoted ∂f(x),
as the subset of X∗ given by

{ξ ∈ X∗ : f ◦(x; v) ≥ ⟨ξ, v⟩, ∀v ∈ X}. (3)

Denote by ∥ξ∥∗ the norm in X∗. We have the following proposition.

Proposition 2 (Clarke, 1983, P.27) Let f be Lipschitz of rank L near x.
Then

1 ∂f(x) is a nonempty, convex, weak*-compact subset of X∗ and ∥ξ∥∗ ≤
L for every ξ in ∂f(x).

2 For every v in X, one has

f ◦(x; v) = max{⟨ξ, v⟩ : ξ ∈ ∂f(x)}.

Example 1. Consider the Lipschitz function f(x1, x2) = |x1|+|x2|, (x1, x2) ∈
R2. It is easy to check that

∂f(0) = [−1, 1]× [−1, 1].

Recall the directional derivative f ′(x; v) defined by

f ′(x; v) = lim
t→0+

f(x+ tv)− f(x)

t
.

We say f is regular at x if

1. For all v, f ′(x; v) exists.

2. For all v, f ′(x; v) = f ◦(x; v).

6This has been considered in the literature as a easy corollary of a related or equivalent
Hahn-Banach theorem (Taylor, 1958). However, the author is not aware of any available
proof. For completeness, here we sketch one below. Define a convex set epi(f◦) = {(y, v) :
y ≥ f◦(x, v)}. Consider the point (y∗, v∗) = (0, 0) ∈ ∂epi(f◦) (the boundary set of the
graph epi(f◦)). By the Separating Hyperplane Theorem, there exists a vector (λ, ξ) where
λ ̸= 0 and ξ ̸= 0 such that 0 ≤ λf◦(x, v) + ⟨ξ, v⟩. Rearranging terms completes the proof.
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3 The Envelope Theorem

Now we establish our envelope theorem in which the choice variables are dis-
crete vectors and the objective function and constraints are only assumed to
be Lipschitz continuous in the parameter vector in a Hilbert space X (either
finite or infinite dimensional). Formally, consider the following problem:

V (a) = max f(x, a) s.t. gj(x, a) ≤ 0, x ∈ D, j = 1, ...,m. (4)

where x is a vector of choice variable in the discrete set D = {x1, x2, ..., xd} ⊂
Rn, and a is a vector of parameters in X. Assume that, for any x ∈ D,
f(x, a) and gj(x, a), j = 1, ...,m are Lipschitz continuous functions of a with
a common rank L.7 Let D(a) be the set of the maxima of (4). First, we have
the following lemma.

Lemma 1 For problem (4), for small change ∆a in a, we have8

D(a+∆a) = D(a), or D(a+∆a) ⊂ D(a).

Proof. It suffices to show that, for any ak → a, k → ∞ and yk ∈ D(ak),
yk → y, we have

y ∈ D(a).

By assumption, yk ∈ D(ak), we have yk ∈ D and

gj(yk, ak) ≤ 0, j = 1, ...,m,

and
f(yk, ak) ≥ f(x, ak),

for all x ∈ D, s.t.
gj(x, ak) ≤ 0, j = 1, ...,m.

Because yk → y, by the discrete nature of the set D, there must exist a K
such that for all k ≥ K,

yk = y.

Therefore, we have
f(y, ak) ≥ f(x, ak),

7If they all have different ranks, then choose the largest one as their common rank.
8We call the mapping D(a) upper semi-continuous. See Berge (1963).
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for all x ∈ D and gj(x, ak) ≤ 0, j = 1, ...,m, k ≥ K.
Taking limit k → ∞, by the (Lipschitz) continuity of f and gj, j = 1, ...,m

we obtain
f(y, a) ≥ f(x, a),

for all x ∈ D, gj(x, a) ≤ 0, j = 1, ...,m. This implies that

y ∈ D(a).

This proves the lemma.

Lemma 2 Problem (4) is equivalent to the following problem

V (a) = max
µ

∑
i∈I

µif(xi, a), (5)

s.t.
∑
i∈I

µig
j(xi, a) ≤ 0, j = 1, ...,m,∑

i∈I
µi = 1,

µi ≥ 0, i ∈ I,

where I = {i : xi ∈ D(a)}.

Proof. First, note that in Lemma 1, it is shown that set I either remains
the same or becomes smaller (subset) in a small neighborhood of a given a.
This implies that the problem (5) is well-defined since we can always use
the same I at a (I implicitly depends on a) if a varies little. Thus, we can
consider problem (5) as an equivalent formulation of problem (4). This com-
pletes the proof.

Now we are ready to prove our main theorem.

Theorem 1 Given problem (4), we have

∂V (a) ⊆ co{∂f(x, a), x ∈ D(a)} − ∪m
j=1cone{∂gj(x, a), x ∈ D(a)}, (6)

where “co” means the convex hull of a set and “cone” means the convex cone
of a set, ∂f(x, a) and ∂gj(x, a) are the generalized gradients of f and gj with
respect to the parameter vector a. If f(x, a), gj(x, a) are regular at a for each
x in D(a), then equality holds and V is regular at a as well.
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Proof. Define

C = {a :
∑
i∈I

µig
j(xi, a) ≤ 0, j = 1, ...,m},

and the indicator function of the set C,

ψC(a) =

{
0 if a ∈ C

+∞ otherwise

Note that by the definition of (5), we have

V (a) =
∑
i∈I

µif(xi, a)− ψC(a),

where µ is any vector such that µi ≥ 0, i ∈ I and
∑

i∈I µi = 1.
Therefore,

∂V (a) ⊆
∑
i∈I

µi∂f(xi, a)− ∂ψC(a), (7)

Since9

∂ψC(a) = {
m∑
j=1

λj
∑
i∈I

µi∂g
j(xi, a), λj ≥ 0, j = 1, ...,m},

replacing it into (7) proves the first part of the theorem.
The second part on the case when f and gj are regular at a, can be proved

using a similar argument as in Theorem 2.3.9 in Clarke (1983). We omit it.
This completes our proof.

It is easy to check that the following Sah and Zhao (1998) and Milgrow
and Segal (2002) are corollaries of Theorem 1. Note that their envelope the-
orems consider only parametric optimization problems without constraints.

Corollary 1 (Sah and Zhao, 1998) Consider the problem

e(θ) = f(n(θ), θ) = max{f(n.θ)|n ∈ D}, (8)

where θ ∈ R is a continuous parameter and D is finite set of consecutive
integers, and f(n, θ) is differentiable with respect to θ.

9See Clarke (1983).
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Let N(θ) be the set of optimal integers for (8) for a given θ. Then, we
have

∂e(θ) ⊆ co{fθ(n, θ) : n ∈ N(θ)}, (9)

where fθ(n, θ) is the derivative with respect to θ. Moreover, if fθ(n
′, θ) =

fθ(n
′′, θ) for any n′, n′′ ∈ N(θ), we have eθ(θ) = fθ(n, θ)|n∈N(θ).

Corollary 2 (Milgrow and Segal, 2002) Let D be the choice set and t ∈ [0, 1]
be the parameter. Let f : D× [0, 1] → R be the objective function. The value
function V and the optimal choice set X∗ are defined below:

(1) V (t) = maxx∈D f(x, t).

(2) X∗(t) = {x ∈ D : f(x, t) = V (t)}.

Then,

[V ′(t−), V ′(t+)] or [V ′(t+), V ′(t−)] ⊂ [ min
x∈X∗(t)

ft(x, t), max
x∈X∗(t)

ft(x, t)]. (10)

4 Revisiting the Principal-Agent Problem

We now apply Theorem 1 to the principal-agent problem. We use an insur-
ance problem as an example.

Consider a single insurance company and a single consumer. The con-
sumer might incur an accident resulting in a varying amount of loss, ranging
from 0 dollar through L dollars, depending on the severity of the accident
incurred. It is also possible that an accident is avoided altogether. It is con-
venient to refer to this latter possibility as an accident resulting in a loss of
0 dollars.

The probability distribution of incurring an accident resulting in a loss
of l or less is given by F (l, e) =

∫ l
0 f(l, e)dl, where f(l, e) > 0 for all l ∈ [0, L]

is the density function in which e is the amount of effort attempted to avoid
the accident. Assume that there a finite number of effort levels from lowest
e = 0 to the highest e =M .10

Assume that the consumer has a strictly increasing, strictly concave, von
Neumann-Morgenstern utility function, u(·), over wealth, and the initial

10Holmstrom and Milgrom (1991) have considered multi-dimensional effort.
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wealth equal to w > L. In addition, d(e) denotes the consumer’s disutil-
ity of effort, which we assume is an increasing function in e. Thus, for a
given effort level e, the consumer’s von Neumann-Morgenstern utility over
wealth is u(·)− d(e).

We assume that the insurance company can observe the amount of loss,
l, due to an accident, but not the amount of accident avoidance effort, e.
Consequently, the insurance company can only tie the benefit amount to the
amount of loss. Let B(l) denote the benefit paid by the insurance company to
the consumer when accident loss is l. Thus, a policy is a pair (p,B(l)), where
p denotes the price paid to the insurance company in return for guaranteeing
the consumer B(l) dollars if an accident loss of l dollars occurs. Note that a
policy can also be expressed as a net benefit function B0(l) = B(l)− p.

Our main question is: What kind of policy will the insurance company
offer the consumer? Specifically, what are the optimal conditions that an
optimal policy should satisfy?

Following the standard approach (e.g., Holmstrom [1979]), the insurance
company’s problem is

max
e,p,B(l)

p−
∫ L

0
f(l, e)B(l)dl, (11)

s. t.
∫ L

0
f(l, e)u(w − p− l +B(l))dl − d(e) ≥ u, (12)∫ L

0
f(l, e)u(w − p− l +B(l))dl − d(e) ≥

∫ L

0
f(l, e′)u(w − p− l +B(l))dl − d(e′),

∀e, e′ ∈ {0, 1, ...,M} and e ̸= e′, (13)

where u is the consumer’s reservation utility.
The above problem is a Bilevel Programming problem11 and can be dealt

with in the following two steps.12

11See Dempe (2002) for a survey on Bilevel Programming.
12This two-step approach reflects more clearly the moral hazard issue in the principal-

agent problem, in which agent chooses his action after seeing the contract proposal from
the principal. The traditional one-step approach in which the principal chooses both the
target effort level on behalf of the agent and the contract that induces the targeted effort
level blurs the implicit timing issue in contract design. Apparently, how we frame the
problem might affect the solutions. See Mirrlees [1999, p.6] for an example on this issue.
Our approach is more in line with Mirrlees.
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First, for any given policy (p,B(l)), consider the following problem

V (p,B(l)) = max
e∈{0,1,...,M}

p−
∫ L

0
f(l, e)B(l)dl,

s. t.
∫ L

0
f(l, e)u(w − p− l +B(l))dl − d(e) ≥ u,∫ L

0
f(l, e)u(w − p− l +B(l))dl − d(e) ≥

∫ L

0
f(l, e′)u(w − p− l +B(l))dl − d(e′),

where e, e′ ∈ {0, 1, ...,M} and e ̸= e′.

The Lagrangian of this problem is then

L = p−
∫ L

0
f(l, e)B(l)dl + λ[

∫ L

0
f(l, e)u(w − p− l +B(l))dl − d(e)− u],

+
∑

e′∈{0,1,...,M}
β(e′)[

∫ L

0
f(l, e)u(w − p− l +B(l))dl − d(e)

−
∫ L

0
f(l, e′)u(w − p− l +B(l))dl − d(e′)],

where λ, β(e′) are the multipliers corresponding to the constraints (12) and
(13), respectively.

Next, the Insurance Company solves the following problem,

max
p,B(l)

V (p,B(l)). (14)

The first-order conditions are

0 ∈ ∂pV (p,B(l))

0 ∈ ∂BV (p,B(l)),

where ∂pV and ∂BV denote the generalized gradients of V with respect to p
and the function B(·), respectively.

For simplicity, assume that there exists a unique optimal effort level
e(p,B(l)) for each policy (p,B(l)). Then, applying the envelope theorem
(Theorem 1), we have

∂pV (p,B(l)) = ∂pL,

∂BV (p,B(l)) = ∂BL.
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Therefore,

0 ∈ ∂pL,

0 ∈ ∂BL.

Using the result of generalized gradients on integral functions13, we have,
for almost every l ∈ [0, L] except a set of l’s with zero Lebesgue measure,
that

0 = 1−λ[
∫ L

0
(f(l, e)+

∑
e′∈{0,1,...,M}

β(e′)(f(l, e)−f(l, e′)))u′(w−p−l+B(l))dl],

(15)
0 = −f(l, e)+[λf(l, e)+

∑
e′∈{0,1,...,M}

β(e′)(f(l, e)−f(l, e′))]u′(w−p− l+B(l)).

(16)
Note that the first of these conditions (15) is implied by (16). Thus, we

focus on the latter.
To better compare with the traditional first-order condition, we look at

the special case where there are only two effort levels 0 and 1. Then, the
above first-order condition simplifies to the following familiar but slightly
different result.

1

u′(w − p+B(l)− l)
= λ+ β[1− f(l, 0)

f(l, 1)
], L-a.e. for l ∈ [0, L]. (17)

The traditional version of the above condition (i.e., for all outcomes l)
is well-understood (see Jehle and Reny (2011) for an interpretation of the
condition). Below, we show in an example that the new weaker condition
allow contracts that do not satisfy the traditional first-order condition.14

13Consider an integral functional F on a Banach space X defined by F (x) =
∫
f(l, x)dl.

Clarke (1983, pp. 75-76) shows that ∂F (x) ⊂
∫
∂xf(l, x)dl in the sense that, to every

ξ ∈ ∂F (x) there corresponds a mapping l → ξl from [0, L] to X∗ with ξl ∈ ∂xf(l, x) almost
everywhere relative to the Lebesgue measure (denoted L-a.e.) such that ⟨ξ, v⟩ =

∫
⟨ξl, v⟩dl

for all v ∈ X.
14Recall that the traditional first-order condition would restrict the solution B(l) to

be a differentiable function of l by the implicit function theorem. But in practice, many
contracts are often only piece-wisely differentiable or even not continuous. For example,
a wage contract could be a fixed salary plus a performance bonus after certain target has
been met.
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Consider the following example. Suppose the probability density function
is as follows.

f(l, 0) =

{
δ
l∗

l ∈ [0, l∗)
1−δ
L−l∗

l ∈ [l∗, L]

f(l, 1) =

{
1−ϵ
l∗

l ∈ [0, l∗)
ϵ

L−l∗
l ∈ [l∗, L]

where 0 < l∗ < L and δ and ϵ are two small numbers such that

δ

1− ϵ
<

1− δ

ϵ
.

Note first that f(l, 0)/f(l, 1) is not continuous at l∗. By the first-order
condition (17), we can show that there exist two constants d1 and d2 such
that d1 < d2 and

B0(l) = B(l)− p =

{
l − d1, for l ∈ [0, l∗),
l − d2, for l ∈ [l∗, L].

In words, with the full coverage contract, higher deductible is applied for
losses higher than the threshold level l∗.15 Note that the benefit function is
not monotonic.

Unlike the traditional first-order condition which allows only continuous
contract within the outcome domain, our condition allows discontinuous or
even non-monotone contracts. Ever since Mirrlees (1999), many efforts16 have
been made to strengthen the first-order condition. One drawback of the tra-
ditional approach is that it may rule out meaningful contracts, some of which
might depend on outcomes in a discontinuous way or non-monotonically.

Our “weaker” condition allows contracts that are not admissible under
the traditional first-order approach. This is important since for the principal-
agent problem, it is not about which contract should be selected, rather it
is more about what types of contracts we can possibly choose from by ruling
out those contracts that can never be optimal. For an optimization problem,
trying to make the necessary first-order condition become also sufficient helps
to find a solution. But, for the principal-agent problem, the question we

15It is assumed that f(l, e) and l∗ are common knowledge.
16See the recent Kirkegaard (2014).
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should ask about is what types of contracts should never be considered.
Therefore, we should “weaken” the necessary condition. The question of
which contract we shall actually choose is of secondary importance.

References

[1] Athey, S., Milgrom, P., and Roberts, J.: Robust Comparative Statics.
Princeton, Princeton University Press 2000

[2] Balakrishnan, A. V.: Applied Functional Analysis. Springer-Verlag, New
York, Heidelberg, Berlin 1981

[3] Berge, C.: Topological spaces. Oliver and Boyd, London 1963

[4] Caputo, M. R.: How to Do Comparative Dynamics on the Back of an
Envelope in Optimal Control Theory. J. Econ. Dynamics and Control 14,
655-683 (1990)

[5] Clausen, A., Strub, C.: Envelope theorems for non-smooth and non-
concanve optimization. Working Paper Series, Department of Economics,
University of Zurich, No. 62, (2012)

[6] Aubin, J. P.: Applied Functional Analysis. Wiley-Interscience, New York
1978

[7] Clarke, F. H.: A new approach to Lagrange multipliers. Math. Oper. Res.
1, 165-174 (1976)

[8] Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley-Interscience
Publication, New York 1983

[9] Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Pub-
lishers, Dordrecht 2002

[10] Grossman, S. J., Hart, O. D.: An analysis of the principal-agent prob-
lem. Econometrica 51, 7-45 (1983)

[11] Holmstrom, B.: Moral hazard and observability. Bell J. Econ. 10, 74-91
(1979)

14



[12] Holmstrom, B., Milgrom, P.: Multitask principal-agent analyses: Incen-
tive contracts, asset ownership, and job design. J. Law, Econ. Organ. 7,
24-52 (1987)

[13] Jehle, G. A., Reny, P. J.: Advanced Microeconomic Theory. Third Edi-
tion, Prentice Hall 2011

[14] Kirkegaard, R.: A Unifying Approach to Incentive Compatibility in
Moral Hazard Problems. Working Paper, University of Guelph 2014
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