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Abstract

Suppose that a group of agents have demands for some good. Each one of them owns a
technology allowing to produce the good, with these technologies varying in their effectiveness.
We consider technologies exhibiting either increasing return to scale (IRS) or decreasing returns to
scale (DRS). In each case, we solve the issue of the effi cient allocation of the production between
the agents. In the case of IRS, we prove that it is always effi cient to centralize the production of the
good, whereas effi ciency in the case of DRS typically requires to spread the production. We then
show that there exist stable cost sharing mechanisms whether we have IRS or DRS. Finally, we
characterize a family of stable mechanisms exhibiting no price discrimination (agents are charged
the same price for each unit demanded). Under some specific circumstances, our method generates
the full core of the problem.

JEL classification numbers: C71, D63

Keywords: cost sharing, effi ciency, stability, production allocation, returns to scale

1 Introduction

We examine the cooperative games (with transferable costs) that arise in the context where multiple
agents have distinct technologies allowing to produce homogeneous goods (e.g., autonomous regions
in the same country produce electricity using fossil fuels, hydropower, nuclear power, etc.; with each
region having its own technology and demand for electricity. Thus, effi cient regions will produce more
than their own demands in order to sell electricity to less effi cient ones). We use the phrase production
allocation game (PAG) to refer to any such problem. Other interesting applications (besides the
production of utilities) of our model include the cases of: a multinational firm trying to allocate its
production between its plants over the world; family members/colleagues/neighbors dividing tasks
among themselves. Two interesting questions arise in any PAG. First, one needs to determine the
cost-minimizing allocation of the production. Secondly, the participants need to share that minimum
cost, with notions of fairness and stability imposing restrictions on how to operate.
The structure of the available technologies greatly influences how these two underlying issues may

be resolved. On the production side, if technologies exhibit decreasing returns to scale (DRS), the
optimal plan typically spreads the production by having many producers contribute small quantities.
In contrast, in the case of increasing returns to scale (IRS), we prove that it is always advantageous to
centralize the production. For the cost sharing issue, the procedure allowing to find sensible rules also
varies depending on the returns to scale, although in both cases we are concerned with compensating
agents who produce for others with less effi cient technologies.
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In both cases, we define a set of stable allocations that are very natural and intuitive: we consider
a unit price p, and any agents who consume units that they have not produced have to pay that price
p for any such unit. On the other hand, each agent producing units they do not consume is awarded
the amount p for any such unit. Finally, agents who produce exactly their demand simply have to pay
their stand-alone cost. We define lower and upper bounds for this p by using the stability requirement.
These definitions differ if we are in the increasing or decreasing returns to scale case. In the DRS
case, if demands are in {0, 1}, our method generates the full core and allows to solve for the general
equilibria of the economy induced by the PAG.
The model shares similarities with the literature on cost sharing with technological cooperation

(Trudeau (2009a), Bahel and Trudeau (2013)), where agents put not only their demands but also their
technologies in common when cooperating. That literature considers very general models, where the
non-vacuity of the core is not even guaranteed. The model considered here is much more structured,
and it can be viewed as a type of network flow problems (Quant et al. (2006), Trudeau (2009b)). In
network flow problems, we have to deliver various quantities of a good to agents located at different
points in space. There is a cost function for each link (between agents or between an agent and the
source) that describes how much it costs to transport any quantities on the given link. If all of these
functions are convex, the core is always non-empty (Quant et al. (2006)), a result that carries over to
our PAGs under DRS. If all functions are concave, the core of a network flow problem may be empty.
Interestingly, given the simplified structure of our PAGs under IRS, we are able to prove that they
always exhibit a non-empty core.1

The paper is structured as follows. Section 2 presents the Production Allocation Games. PAGs
with decreasing returns to scale are studied in Section 3. In Section 4, we look at PAGs with increasing
returns to scale. Some additional results are presented in the Appendix.

2 The model

Let N = {1, ..., n} be the finite set of agents, with n ≥ 2. Each agent i ∈ N demands the amount
xi ∈ N of the same good. The demand profile is thus x ≡ (xi)i∈N and, for any coalition S ⊆ N , the
aggregate demand can be written as XS ≡

∑
i∈S xi. We define X ≡ XN .

Each agent can produce any quantity q of the good at cost Ci(q), with the function Ci : N → R+

being increasing and satisfying Ci(0) = 0. We denote by C the set of all such cost functions Ci. Let
C = (Ci)i∈N .

It will be convenient at times to use the marginal cost functions, which describe the incremental
costs of the agents. Agent i’s marginal cost function, ci, is defined by ci(q) ≡ Ci(q)−Ci(q− 1), for all
q = 1, 2, .... In the following definition and throughout the paper, we assume that the set of agents N
is fixed. For any demand profile x ∈ NN and any coalition S ⊆ N , let ∆(x, S) ≡ {q ∈ NS :

∑
i∈S qi =

XS}. A vector q ∈ ∆(x, S) is a production plan that allows the production of the aggregate demand
of the members of S within the facilities of its members.

Definition 1
Let x ∈ NN and C ∈ CN . We call production allocation game (PAG) associated with (x,C) the
cooperative cost game with player set N and characteristic cost function C̃x(·) defined by:

C̃x(S) = min
q∈∆(x,S)

∑
i∈S

Ci(qi), for all S ⊆ N.

The above definition means that, in a PAG, the best action available to every coalition S is to split
the production of its aggregate demand XS between the plants it owns so as to minimize the total cost

1Another well-known member of the family of network flow problems is the shortest path problem, where we have
either a single demander or linear cost functions. Rosenthal (2013) and Bahel and Trudeau (2014) study the issues of
fairness and stability in shortest path problems.
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of producing XS . We will often abuse terminology by referring to a pair (x,C) as a PAG. There is no
ambiguity, since N is fixed and each pair (x,C) induces a unique PAG in the sense of Definition 1.
For every PAG, there are two underlying issues that a mechanism designer ought to address. The

first one is about effi ciency: the optimal allocation of the whole demand X between the plants must
minimize the total cost of production. The second one has to do with incentives: if possible, the cost
of producing X has to be split between the agents in a way that prevents any subgroup of players from
defecting. In the following definition, we introduce the mechanisms used to split the cost between the
agents in N .

Definition 2
A Cost Sharing Method (CSM) is a mapping y : NN × CN → RN such that, for every PAG (x,C),∑

i∈N yi(x,C) = C̃x(N) = min
q∈∆(x,N)

∑
i∈N Ci(qi).

Note from Definition 2 that we allow for negative cost shares. Indeed, some agents may be com-
pensated if (for example) they have a demand of zero and their plant is used to produce the other’s
demands. Also observe that we only consider effi cient mechanisms; the designer hence needs to know
the solution to the effi ciency problem before assigning shares to the agents. An example of a cost shar-
ing method is the proportional rule, ypr, which splits the minimum cost of producing X in proportion
to the agents’demands. Precisely, the proportional rule is defined by ypri (x,C) = xi

X C̃
x(N), for any

i ∈ N and x ∈ NN s.t. X > 0.2

Throughout the paper, we are interested in finding core allocations. The notion of the core is
crucial in game theory and goes back to Gillies (1953). It contains the set of allocations satisfying the
property that no group of agents can do better by splitting away from the grand coalition. Formally,

Core(x,C) =
{
y ∈ RN

∣∣∣y(S) ≤ C̃x(S) for all S ⊂ N and y(N) = C̃x(N)
}
.

We say that a CSM y(x,C) satisfies core selection if y(x,C) ∈ Core(x,C) for all PAG (x,C). In
addition we will say that y(x,C) is individually rational if, for any i ∈ N , yi(x,C) ≤ Ci(xi) always
holds. Obviously, core selection implies individual rationality.

3 PAGs with convex cost functions (DRS)

In this section we examine the case of PAGs (x,C) such that all the Ci are (weakly) convex. That is
to say, for all i ∈ N and q ≥ 1, we have ci(q) ≤ ci(q + 1). For all such PAG, we discuss the issues of
effi ciency and stability.
A convex PAG is illustrated in the following example.

Example 1 Consider the PAG described in Figure 1.

Figure 1: Convex PAG example

2Effi ciency and individual rationality require that ypri (x,C) = 0 whenever X = 0.
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In this case where N = {1, 2}, one can see that effi ciency requires to split the total amount to
produce [X = 6] equally between the two plants – as indicated in Figure 1. That is to say, the lowest
production cost is C̃x(N) = C1(3) + C2(3) = 9 + 18 = 27. The cost shares associated with the
proportional rule, defined in the previous section, are thus ypr1 (x,C) = 18 and ypr2 (x,C) = 9.

3.1 Finding the optimal production plan

Given the particular structure of our problem, we first show that we can assign production in an
incremental manner. We use the following notation: For any i ∈ N let ei ∈ RN+ be such that eij = 1 if
i = j and 0 otherwise.

Lemma 1 Consider a PAG (x,C) s.t. Ci is convex for all i ∈ N and X ≥ 1. Pick j s.t Cj(1) =
mini∈N Ci(1) and k s.t. xk ≥ 1; and let C ′j(l) = Cj(l + 1) − Cj(1) for l ∈ N, C ′ =

(
C ′j , C{−j}

)
,

x′ = x− ek.
Then we have: q∗ ∈ arg maxq∈∆(x′,N)

∑
i∈N C

′
i(qi) implies that q

∗+ej ∈ arg maxq∈∆(x,N)

∑
i∈N Ci(qi).

Proof. We proceed by contradiction. Suppose that q∗ ∈ arg maxq∈∆(x′,N)

∑
i∈N C

′
i(qi) but that

q∗+ ej /∈ arg maxq∈∆(x,N)

∑
i∈N Ci(qi). Then, there exists q̊ ∈ arg maxq∈∆(x,N)

∑
i∈N Ci(qi) such that∑

i∈N
Ci (q̊i) <

∑
i∈N\j

Ci (q∗i ) + Cj(q
∗
j + 1)

<
∑
i∈N\j

C ′i (q∗i ) + C ′j(q
∗
j ) + Cj(1)

It is easy to see that we must have that q̊j > 0. Suppose otherwise. Then given the facts that
Cj(1) = mini∈N Ci(1) and that all Ci are convex, we have that the production plan q̊ − ei + ej is less
expensive than q̊, for any i s.t. q̊i > 0.3 Thus, we can rewrite the above inequality as∑

i∈N\j

Ci (q̊i) + Cj (q̊j) <
∑
i∈N\j

C ′i (q∗i ) + C ′j(q
∗
j ) + Cj(1)

∑
i∈N\j

Ci (q̊i) + C ′j(q̊j − 1) + Cj(1) <
∑
i∈N\j

C ′i (q∗i ) + C ′j(q
∗
j ) + Cj(1)

∑
i∈N\j

C ′i (q̊i) + C ′j(q̊j − 1) <
∑
i∈N\j

C ′i (q∗i ) + C ′j(q
∗
j )

which contradicts the fact that q∗ solves the cost minimization of (x′, C ′)
Applied multiple times, the above Lemma implies that once we have found how to optimally produce

k units, we do not need to start over to find how to produce k′ > k units. Finding how to allocate the
remaining k′ − k units is suffi cient.
Inspired by this, we describe an algorithm allowing to find an optimal allocation of the production

X > 0 between the agents in N .
Stage 1. Pick i1 ∈ argmin

i∈N
ci(1)4 and write C∗(N, 1) = ci1 . Next, let q̂

1 = ei1 and update the cost

functions: ĉ2i1 = ci1(2); ĉ2i = ci(1), for all i ∈ N \ {i1}. Proceed to stage 2 if X > 1.

Stage k ≥ 2. Pick ik ∈ argmin
i∈N

ĉki , and let q̂
k = q̂k−1 + eik . Write the cost of producing the first

k units of demand as C∗(N, k) = ĉkik + C∗(N, k − 1). The cost functions are then updated as follows:
ĉk+1
i = ci(q̂

k
i + 1), for all i ∈ N . Proceed to stage k + 1 as long as k < X.

3Note that there exists i ∈ N\j such that q̊i > 0 since
∑
i∈N q̊i = X ≥ 1.

4 In case many agents i have the lowest marginal cost, we pick the one with the lowest label.
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The procedure ends at step k = X, that is to say, when the amount X to produce has been fully
allocated between the plants in N ; and the allocation of the production is then given by the profile
q̂X . In addition, the production cost associated with the procedure is given by C∗(N,X). As stated
by the following result, q̂X is an effi cient allocation of the production between the agents.

Theorem 1 For any PAG (x,C) ∈ NN × CN , the allocation of the production q̂X described by the
algorithm solves the problem

min
q∈∆(x,N)

∑
i∈N

Ci(qi);

and the minimum cost to produce X, given the technologies (Ci)i∈N , is C∗(N,X).

Proof. For k = 1, it is clear that q̂1 is an optimal way to produce one unit. It follows from Lemma
1 that if q̂k is an optimal way to produce k units, q̂k+1 is an optimal way to produce k + 1 units, for
any k ∈ N.

Effi ciency requires that
∑

i∈N yi(x,C) = C∗(N,X) and the algorithm can be used to determine its
value.
It is worth pointing out that our method is an adaptation to our discrete setting of the natural

method used in the presence of continuous demands, which allows to find the optimal production plan
by equalizing the marginal costs of all agents. It is also important to note that, at the end of the
algorithm (k = X), the vector

(
ĉXi
)
i∈N\iX

gives the amount it would cost to produce an additional
unit by some agent other than iX . We illustrate the method with an example.

Example 2 Suppose that N = {1, 2, 3, 4, 5} and the demand profile is x = (0, 0, 1, 1, 2). In addition,
consider the cost functions given in the following table (for the first three units produced).

k C1(k) C2(k) C3(k) C4(k) C5(k)
1 5 9 6 10 10
2 13 19 16 20 20
3 23 29 26 30 30
The results obtained with the algorithm are summarized in the following table.

c1 c2 c3 c4 c5 ik q̂k C∗(N, k)
Stage 1 5 9 6 10 10 1 (1,0,0,0,0) 5
Stage 2 8 9 6 10 10 3 (1,0,1,0,0) 11
Stage 3 8 9 10 10 10 1 (2,0,1,0,0) 19
Stage 4 10 9 10 10 10 2 (2,1,1,0,0) 28

3.2 Finding stable allocations

We can use a result of Quant et al. (2006) to show that for any convex PAG, the core is always
non-empty.

Theorem 2 For all PAG (x,C) with Ci convex for all i ∈ N, Core(x,C) is non-empty.

Proof. Quant et al. (2006) prove that the core of a convex network flow problem is always non-empty.
PAGs can be modelled as network flow problems where Ci(t) is the cost to send t units of goods from
a source to agent i, and where there is no shipping cost to send units from an agent i to an agent j.
Given that the functions Ci(t) are all convex, convex PAGs are convex network flow problems (and
thus have a non-empty core).
The proof of Quant et al. (2006) is not constructive and does not allow us to gain any insight on

the allocations in the core. In the following, we introduce some methods that satisfy core selection.

Lemma 2 Consider a PAG (x,C) ∈ NN × CN and suppose that q̂Xi = xi, for all i ∈ N . Then, for
any CSM y that satisfies core selection, we have:

yi(x,C) = Ci(xi), for all i ∈ N.
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Proof. The result follows directly from individual rationality and effi ciency.

Thus, the interesting case is when some agents produce more (less) units than they demand, that
is to say, q̂Xi > xi for some i ∈ N . In this case, we provide a non-empty set containing stable cost
shares.
For any p ≥ 0, define the cost allocation yp by:

ypi (x,C) = Ci
(
q̂Xi
)
− p

(
q̂Xi − xi

)
. (1)

It is easy to check that the share profile yp(x,C) satisfies effi ciency. In addition, compute the two
(nonnegative) numbers

p̄L ≡ min
i∈N

ĉXi and p̄H ≡ min
i∈N\iX

ĉXi .

They are the marginal costs of (respectively) the last unit (produced by iX) and a hypothetical extra
unit (produced by some agent other than iX). By the properties of ĉki , it is easy to see that p̄L ≤ p̄H ,
allowing us to define a continuum of cost allocations as follows:

YD(x,C) ≡ {yp(x,C) : p ∈ [p̄L, p̄H ]}.
One can then state the following result.

Theorem 3 Consider a convex PAG (x,C). Then we have:
a) ∅ 6= YD(x,C) ⊆ Core(x,C). That is to say, YD(x,C) is a non-empty set of stable cost allocations.
b) If xi ∈ {0, 1} for any i ∈ N and |{i : q̂Xi > xi}| > 1, then

YD(x,C) = Core(x,C).

Proof. Let (x,C) be a convex PAG.
a) Given the problem (x,C), it is obvious that YD(x,C) is nonempty, since p̄H ≥ p̄L. If q̂Xi = xi, for

all i ∈ N , it is easy to see from Eq. (1) that YD(x,C) consists of a single allocation which is the unique
element of the core (by Lemma 2). Otherwise, we have coalitions that produce more than they consume
(net producers) and coalitions that consume more than they produce (net buyers). If a coalition is a
net producer

(∑
i∈S q̂

X
i > XS

)
, the coalition cannot benefit from seceding, as the extra units are sold

at a price no smaller than their marginal cost of production (as p ≥ p̄L = min
i∈N

ĉXi ). If a coalition is a

net buyer
(∑

i∈S q̂
X
i < XS

)
, the coalition cannot benefit from seceding, as the extra units are bought

at a price no larger than their marginal cost to produce them internally
(
as p ≤ p̄H = min

i∈N
ĉX+1
i

)
.

Agents that consume as much as they produce have trivially no incentives to deviate.
b) Suppose that (x,C) is such that xi ∈ {0, 1} for any i ∈ N and |{i : q̂Xi > xi}| > 1.
A priori, not necessarily all units sold by a producer have the same price. Suppose that one unit

sold by j (to some t) has a price p and another unit sold by k (to some s) has a price p′ > p. Then,
letting Bj be the (possibly empty) set containing all agents buying from j (other that t), the coalition
{j, s}∪Bj can deviate by setting a price p′′ s.t. p′ > p′′ > p for the unit sold by j to s (with unchanged
prices for the units sold to agents in Bj). Therefore, in a stable allocation, any two distinct producers
must sell each of their units at the same price. And as a consequence, since we have at least two net
producers, any two units sold by the same producer must have the same price as well. Let p be that
unique price.
If p < p̄L = min

i∈N
ĉXi , the producer of the last unit would like to deviate by kicking a net demander

of the last unit out, as she loses money on the production of that last unit.
If p > p̄H = min

i∈N\iX
ĉXi , the agent that can produce an extra unit at cost p̄H = min

i∈N\iX
ĉXi could

deviate with a net demander by selling that unit at a price p′ such that p̄H ≤ p′ < p.
We thus have three groups of agents: those that produce their demand and nothing else, those

that produce more than they demand (the producers) and those that produce less than they demand
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(the buyers). We have a unique price at which the producers sell to the buyers. That price cannot be
below the marginal cost of the last unit of demand, while competition between producers keeps the
price below (or equal to) the marginal cost of an extra unit of demand.

Example 3 We revisit Example 2. The allocation yp is (13− 2p, 9− p, 6, p, 2p).
We have that p̄L = min

i∈N
ĉXi = 9 and p̄H = min

i∈N\iX
ĉXi = 10. One thus obtain that yp̄L = (−5, 0, 6, 9, 18)

and yp̄H = (−7,−1, 6, 10, 20) .

In the Appendix we describe the core for cases where we have a single producer. Note that the
combination of Theorem 3-b and Theorem A.1 (in the Appendix) gives the description of the entire
core for all convex PAGs where each agent demands at most one unit.

3.3 Interpretation as market equilibrium

The simple allocations yp (defined by Eq. (1)) can be used to find the competitive equilibria of an
economy with 2 commodities, where the technologies are given by the n cost functions. These equilibria
forbid any form of price or quantity discrimination. We illustrate this through an example. The first
commodity (X) is the good that the agents demand, and the second commodity (Y) is the numeraire,
in units of which the production cost will be expressed. Let xi be the (discrete) quantity consumed
of good X and yi be the expenditure in terms of the numeraire Y. Suppose that each agent has a
quasi-linear utility function Ui(xi, yi) = ui(xi) − yi, with ui (weakly) increasing and concave. We
assume that each agent has an endowment of zero of the consumption good X, and an amount of the
numeraire Y that is suffi cient for them to purchase their demand of X.
The preferences (and the effi cient technology) allow us to determine the demands x̂. We then show

that supply and demand for the consumption good are in equilibrium if and only if the price p for
good X is such that p̄L ≤ p ≤ p̄H .

Example 4 Recall the 5 agents (and their marginal costs) of Example 2and suppose that the utility
functions ui (for 3 units or less) are given by

xi u1(x1) u2(x2) u3(x3) u4(x4) u5(x5)
1 8 7 20 12 13
2 16 14 28 20 24
3 24 21 36 28 32

In the following table we slightly modify the procedure of the algorithm in Subsection 3.1 by assigning
each unit produced at stage k to the agent (jk) whose marginal utility at that stage is maximal. The
variable q̂i (x̂i) denotes the number of units produced (consumed) by i at the end of stage k. Note that
x̂k is the vector of assigned consumptions at the end of stage k and u′i stands for i’s marginal utility
(of consumption x̂i) at the beginning of stage k.

k c1, u
′
1 c2, u

′
2 c3, u

′
3 c4, u

′
4 c5, u

′
5 ik, jk q̂k x̂k

1 5, 8 9, 7 6, 20 10, 12 10, 13 1,3 e1 e3

2 8,8 9,7 6,8 10,12 10,13 3,5 e1 + e3 e3 + e5

3 8,8 9,7 10,8 10,12 10,11 1,4 2e1 + e3 e3 + e4 + e5

4 10,8 9,7 10,8 10,8 10,11 2,5 2e1 + e2 + e3 e3 + e4 + 2e5

5 10,8 10,7 10,8 10,8 10,8 - - -
At the end of Stage 4 (k = 4), it is easy to see that the effi cient consumption profile is x̂4 =

e3 + e4 + 2e5 = (0, 0, 1, 1, 2) and the effi cient production profile is q̂4 = 2e1 + e2 + e3 = (2, 1, 1, 0, 0).
Indeed, at Stage 5, it is not effi cient to produce a fifth unit, since the minimum marginal cost (10) is
higher than the maximum marginal utility (8).
It is then easy to see from the above table that our upper and lower prices are p̄L = 9 and p̄H = 10.

At any price p ∈ [p̄L, p̄H ], agents 1,2,3 maximize their profits by producing the respective amounts 2, 1,
1; and agent 4,5 each maximize their profits by producing nothing. On the demand side, at any such
price p, agents 1 and 2 will obviously not consume any unit of X, while agents 3,4,5 will respectively
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consume 1,1 and 2. Hence, supply and demand are both equal to 4; and all agents are optimizing given
the fixed price p. Therefore, the tuples ((q̂4, x̂4), yp), p), with p ∈ [p̄L, p̄H ], are general equilibria; and
one can check that there are no other equilibria. It is easy to see that our algorithm (with some minor
adjustments) allows to find the general equilibria for any such economy.

4 PAGs with concave cost functions (IRS)

In this section we examine the case of concave PAGs, that is to say, the case of PAGs (x,C) such that
the cost functions Ci are all (weakly) concave:5 For all i ∈ N and q ≥ 1, we have ci(q) ≤ ci(q + 1). In
other words, the marginal cost of each agent is a decreasing function of the amount to produce. We
first state a few preliminary results that follow from the concavity of the respective cost functions.

Lemma 3
Suppose that C = (Ci)i∈N is a collection of concave cost functions. Then, for each agent i ∈ N , we
have:

Ci(q)

q
≥ Ci(q + 1)

q + 1
≥ ci(q + 1), for all q ∈ {1, 2, 3, . . .}.

Proof. Let i ∈ N and q ≥ 1. We can write:

Ci(q + 1)

q + 1
=

Ci(q)︷ ︸︸ ︷
ci(1) + . . .+ ci(q) +ci(q + 1)

q + 1
=
qCi(q)q + ci(q + 1)

q + 1
(2)

Since Ci is concave, we have: ci(k) ≥ ci(q + 1) for k = 1, . . . , q; and it follows that Ci(q)
q =

ci(1)+...+ci(q)
q ≥ ci(q + 1). We can thus conclude that any weighted average

[
ωCi(q)q + (1− ω)ci(q)

]
of

the two numbers
[
Ci(q)
q and ci(q))

]
satisfies: Ci(q)

q ≥ ωCi(q)q + (1− ωci(q)) ≥ ci(q), for all ω ∈ [0, 1].

Taking ω = q
q+1 and recalling (2), one can write:

Ci(q)

q
≥ Ci(q + 1)

q + 1
=

ω︷ ︸︸ ︷
q

q + 1

Ci(q)

q
+

1−ω︷ ︸︸ ︷
1

q + 1
ci(q + 1) ≥ ci(q + 1).

The above lemma states the known result that, for any concave cost function, the associated average
cost function is decreasing and everywhere above the marginal cost function. In the remainder of this
section, we consider a fixed concave PAG (x,C) s.t. x 6= 0N .

4.1 Finding the optimal production plan

For any k ≥ 1, let i∗k ∈ arg mini∈N Ci(k) be (one of) the agent(s) whose cost is lowest when the
total demand to produce is k units.6 In addition, we will use the notation i∗ ≡ i∗X , that is, agent i∗
minimizes the cost of producing the total demand for the problem (x,C),
It is not diffi cult to show that, in the case of concave PAGs, it is always optimal to centralize the

production in one of the facilities so as to take advantage of the increasing returns to scale. This result
is formally stated as follows.

5Recall that the notation ci stands for agent i’s marginal cost function, that is to say, ci(q) = Ci(q)− Ci(q − 1), for
any q = 1, 2, ....

6Such an agent always exists because N is a finite set. And even though we may have many such agents, our results
apply regardless of which one is picked.

8



Theorem 4 For the concave PAG (x,C), the cost of production is minimized by the production plan
q̄ ∈ INN s.t. q̄i∗ = X and q̄i = 0, for all i 6= i∗. That is to say,

Ci∗ (X) = min
q∈∆(x,N)

∑
i∈N

Ci(qi).

Proof. Given the fixed concave PAG (x,C), let q̄ ∈ ∆(x,N) ≡ {q ∈ INN :
∑
i∈N

qi = X}. Since

Ci(0) = 0 for any agent i, one can write:∑
i∈N

Ci(q̄i) =
∑

i∈N :q̄i>0

Ci(qi) (3)

=X
∑

i∈N :q̄i>0

q̄i
X

Ci(q̄i)

qi

=X
∑

i∈N :q̄i>0

ωi
Ci(q̄i)

q̄i
,

where ωi = q̄i
X ∈ [0, 1]. Note that we have

∑
i∈N

ωi = 1, given that q̄ ∈ ∆(x,N). Since q̄i ≤ X for any

i ∈ N , it follows from Lemma 3 that:

Ci(q̄i)

qi
≥ Ci(X)

X
≥ Ci

∗(X)

X
≡ min

i′∈N

Ci′(X)

X
, (4)

for any i ∈ N s.t. q̄i > 0. Plugging (4) into (3) then gives∑
i∈N

Ci(q̄i) = X
∑

i∈N :q̄i>0

ωi
Ci(q̄i)

q̄i
≥ X

∑
i∈N :q̄i>0

ωi
Ci∗(X)

X
= Ci∗(X).

In other words, Ci∗ (X) = min
q∈∆(x,N)

∑
i∈N Ci(qi).

Interestingly, Theorem 4 means that, in order to effi ciently allocate the production X, one just
needs to compute and compare the n numbers corresponding to the respective costs of producing the
total demand in each of the different plants. This is in contrast with the case of convex cost functions
where one typically needs to spread the production over the different plants.

4.2 Finding stable allocations

We assume in what follows that X−xi∗ > 0 – at least one player other than i∗ has a positive demand.
Otherwise, there is only one (trivial) core cost allocation where all players other than i∗ pay zero. For
any p ≥ 0, define the cost allocation yp by:7

ypi∗ = Ci∗ (X)− p (X − xi∗) ;

ypi = pxi, for all i 6= i∗.

Notice that the expressions above are simplifications of the formula for yp given in the DRS case
of Section 3. These simplifications are possible under IRS because we always have a single producer,
as stated in Theorem 4.
In addition, compute the two (nonnegative) numbers

p̃L ≡
Ci∗(X)

X
and p̃H ≡

min
i 6=i∗

Ci (X − xi∗)

X − xi∗
.

7Note that yp is a well-defined allocation. Indeed, since
∑
i∈N

ypi = Ci∗ (X), it satisfies effi ciency.
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Using Lemma 3, it is easy to see that we have p̃L ≤ p̃H . This observation allows us to define a

continuum of cost allocations as follows.

YI(x,C) ≡ {yp : p ∈ [p̃L, p̃H ]}.

One can then state the following result.

Theorem 5 Given the concave PAG (x,C), we have ∅ 6= YI(x,C) ⊆ Core(x,C). That is to say,
YI(x,C) is a nonempty set of stable cost allocations.

Proof. Given the concave problem (x,C), it is obvious that YI(x,C) is nonempty, since p̃L ≤ p̃H . To
prove that YI(x,C) ⊆ Core(x,C), it is enough to show that both yp̃L and yp̃H are stable (recall that
the core is a convex set).
Fix a nonempty coalition S ⊂ N and let i∗S ∈ arg mini∈S Ci(XS). We know from Theorem 4

that Ci∗S (XS) = min
q∈∆(x,S)

∑
i∈S

Ci(qi); and therefore the stand-alone cost of the coalition S is given by

Ci∗S (XS).

1- Stability of yp̃L

Under the allocation yp̃L , each player is charged p̃L = Ci∗ (X)
X per unit demanded. Therefore, we have∑

i∈S
yp̃Li =

∑
i∈S

Ci∗(X)

X
xi =

Ci∗(X)

X

∑
i∈S

xi =
Ci∗(X)

X
XS .

Using Lemma 3, we can write Ci∗ (X)
X ≤ Ci(XS)

XS
, for all i ∈ S; and hence we have:

∑
i∈S

yp̃Li =
Ci∗(X)

X
XS ≤

(
min
i∈S

Ci(XS)

XS

)
XS = min

i∈S
Ci(XS) ≡ Ci∗S (XS) .

Thus, no coalition S jointly pays more than its stand-alone cost; and hence yp̃L is stable.
2- Stability of yp̃H

Under the allocation yp̃H , each agent other than i∗ is charged a unit price of p̃H=
min
i6=i∗

Ci(X−xi∗ )

X−xi∗ . We
will therefore distinguish 2 cases: (a) i∗ /∈ S; and (b) i∗ ∈ S.

(a) Suppose that i∗ /∈ S. Then we have i∗ 6= i∗S ∈ S and XS ≤ X − xi∗ . It thus follows from
Lemma 3 that ∑

i∈S
yp̃Hi =

min
i 6=i∗

Ci (X − xi∗)

X − xi∗
XS ≤

Ci∗S (XS)

XS
XS = Ci∗S (XS)

Thus, no such coalition S will object to yp̃H .

(b) Suppose now that i∗ ∈ S. In this case, since p̃H ≥ p̃L, we have:∑
i∈S

yp̃Hi =Ci∗ (X)− p̃H
∑
i 6=i∗

xi + p̃H
∑
i/∈S

xi

=Ci∗ (X)− p̃H
∑

i∈S\{i∗}

xi

≤Ci∗ (X)− p̃L
∑

i∈S\{i∗}

xi =
∑
i∈S

yp̃Li ≤ Ci∗S (XS).

Note that the last inequality comes from the stability of yp̃L (which was shown earlier). In conclusion,
yp̃H is stable.
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It is interesting to note that yp̃L is the proportional cost allocation – which charges yp̃Li (x,C) =
xi
XCi∗(X) = p̃Lxi to any i ∈ N . Using the fact that yp̃L belongs to the set YI(x,C), we hence
conclude that the proportional allocation is always stable in a concave PAG. This is another noteworthy
difference with the case of convex PAGs – where the proportional allocation is typically not stable.8

Example 5 Let N = {1, 2, 3} and x = (0, 1, 2). The cost functions for agents 1 and 2 are as follows.
k C1(k) C2(k)
1 6 4
2 6 7
3 6 9
Agent 3 has a very ineffi cient technology of production (which is why we do not give her cost

function). The effi cient production plan is to have agent 1 produce all 3 units.
We have that p̃L = C1(3)

3 = 2 and p̃H= C2(3−0)
3−0 = 3. Thus, we have that yp̃L = (0, 2, 4)and

yp̃H = (−3, 3, 6). It is easy to verify that these allocations are stable, as stated by Theorem 5.

5 Conclusion

Production Allocation Games are extremely natural, as they cover multiple cases where agents need
to effi ciently organize the production of goods or services, before sharing their costs. While production
is centralized if we have increasing returns to scale and (usually) decentralized with decreasing returns
to scale, we propose for both cases similar families of simple core allocations. These allocations are
obtained by defining the value of a unit being produced by agents who have effi cient technologies for
others who do not. The respective expressions of the minimum and maximum prices differ in the IRS
and DRS cases. However, in the particular case of constant returns to scale (i.e., linear cost functions)
our two approaches both apply and, in fact, they each generate the entire core of the problem.
Interestingly, in the case of decreasing returns to scale, the allocations we propose are closely related

to the general equilibria of the economy where the two commodities are the output and input of the
production allocation game, and whose producers and consumers are the players.
In terms of cost sharing methods, it is to expect that in addition to the allocations corresponding

to the upper and lower bounds (respectively the most advantageous allocations for net producers and
net buyers), an interesting allocation would be obtained by using the average of these two bounds as
the unit price. This particular allocation could be viewed as one where the benefits from cooperation
are equally divided between net producers and net buyers in a production allocation game. Studying
the properties of such allocation methods is left for subsequent studies.
We conclude this work by pointing out that our analysis can be used to solve the problem of stable

and effi cient allocation of multiple (divisible and independent) tasks between coworkers, firms in a
partnership, and so on. A simple adjustment to our framework allows to include each such problem as
a sum of independent production allocation games (to which our results apply).
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A Appendix: PAGs with decreasing returns and a single pro-
ducer

We describe the core in the (rare) cases where even though we have decreasing returns to scale, an
agent has a superior technology that makes him the single producer.

Consider a fixed PAG (x,C) such that {i ∈ N \ j : q̂Xi > 0} = {j}; and let

A ≡ {i ∈ N \ j : xi = 0};
B ≡ {i ∈ N \ j : xi = 1 and ci(1) ≤ min

k 6=i,j
ck(xk + 1)};

B′ ≡ {i ∈ N : xi = 1 and ci(1) > min
k 6=i,j

ck(xk + 1)}.

Theorem A.1
Suppose xi ∈ {0, 1} for any i ∈ N and {i ∈ N : q̂Xi > 0} = {j}, then a cost allocation y is stable iff

yi = 0 if i ∈ A; (5)

yi ∈ [cj(X), ci(1)] if i ∈ B; (6)

yi ∈
[
cj(X),min

{
min

k∈A∪B
Ck(xk + 1)− yk, ci(1)

}]
if i ∈ B′; (7)

yj = Cj(X)−
∑
i 6=j

yi. (8)

Proof. Only if. It is not diffi cult to see that any stable allocation must satisfy the conditions of the
theorem.
If. Suppose now that y is an allocation satisfying the conditions of the theorem. Then we have the

following.
(a) No single-player coalition can do better on its own.
Obviously, agents in A pay their stand-alone cost of zero. An agent i ∈ B∪B′ pays less than ci(1),

his stand-alone cost. We have that yj ≤ Cj(X) − (X − xj) cj(X). If xj = 0, by the convexity of the
cost function, yj ≤ 0, her stand-alone cost. If xj = 1, yj ≤ Cj(1), her stand-alone cost.
(b) No other coalition can do better on its own.
It is clear by the upper bounds of what agents in B ∪B′ can pay that any coalition not containing

j has no incentives to deviate. We consider a coalition S such that j ∈ S. We have
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y(S) =

X∑
q=1

cj(q)− y(N\S)

= Cj(XS) +

X∑
q=XS+1

cj(q)− y(N\S)

= Cj(XS) +

X∑
q=XS+1

cj(q)−
∑

i∈N\(S∪A)

yi

We have that |N\(S ∪A)| = X −XS . Since yi ≤ cj(X) for all i ∈ B ∪B′,

∑
i∈N\(S∪A)

yi ≥
X∑

q=XS+1

cj(q)

and thus y(S) ≤ Cj(XS), the stand-alone of coalition S.
In that case, the (unique) producer can price discriminate and charge different prices to the buyers.

Notably, the maximum price it can charge to agent i decreases with the effi ciency of agent i’s technology.
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