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ABSTRACT: This paper considers the cost sharing problem on a fixed
tree network. It provides a characterization of the family of cost sharing
methods satisfying the axioms of Additivity and the Independence of Irrele-
vant Costs. Additivity is a classical axiom. The Independence of Irrelevant
Costs axiom is new and replaces the traditional Dummy axiom to capture
the network structure of the model.

JEL classification: C71, D70.
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1 Introduction

Recently, there has been a renewed interest in the cost sharing problem on
a fixed network. The problem can be traced back to the well-known airport
landing fee problem (Littlechild and Owen, 1973). Koster et al. (2001) have
considered the core allocations for cost sharing problems on a tree network.
Moulin and Laigret (2011) and Moulin and Hougaard (2012) have considered
cost sharing problems on more general networks.

This paper reconsiders the cost sharing problem on a fixed tree network.
A finite number of agents are located on a tree network with a source. Each
link (edge) has a cost and the total costs of all links must be shared among
the agents.

We consider two axioms on cost sharing methods. We retain the classical
axiom of Additivity (Shapley, 1953; Wang, 1999; Moulin, 2002) and introduce
a new axiom called the Independence of Irrelevance Costs (IIC). The IIC
requires that an agent’s cost share should not be affected by those links’ costs
that the agent is not “related to”. To be precise, call an agent a predecessor
of another agent if he is on the path that connects the source to the latter.
Call an agent a follower of another agent if he has the latter as a predecessor.
For a given agent and a given link that connects a pair of nodes (agents),
if both nodes are the predecessors or followers of the agent, we say that the
link (and the associated cost) is related to the agent (or the agent is relevant
to the link as we interchangeably call). The IIC says that an agent should
not be responsible for the costs of those links that are irrelevant to him.1

A family of simple methods, called the location labeled methods, satisfy
Additivity and the IIC. A location labeled method simply allocates each
link’s cost to an agent who is related to the link. Thus, by a location labeled
method, an agent is only responsible for those link costs that he is related
to but not beyond. Apparently, any convex combination of these methods
satisfies Additivity and the IIC axioms.

The main result of this paper shows that no other methods than the above
family satisfy Additivity and the IIC axioms. Precisely, the set of additive

1Think of the following example. A network of oil pipelines connects a number of
countries. If some part of the pipelines needs repair, the associated cost should be shared
among the countries that are related to the repaired part. Other countries that are not
related to the part shouldn’t bear any that cost. This axiom rules out the equal division
of the total costs.
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methods that satisfy the Independence of Irrelevant Costs axiom is the set of
all convex combinations of the location labeled methods.

The next step is to introduce additional axioms that are relevant to the
particular network cost sharing problems we are concerned with. We will
not pursue that here. Instead, we conclude the paper by reconsidering the
airport landing fee problem and proposing a new method for the problem.
The method is chosen from the family of methods characterized above and it
has the property that an airline pays a relatively less proportion for a distant
cost component.

2 The Model

Consider a graph T = {N ∪ {0}, E} where N = {1, 2, ..., n} (n > 0 is
a positive integer) is the set of nodes each representing an agent and the
node {0} is a source that provides certain service to all the agents, and
E = {e = {i, j}|i, j ∈ N} is the set of links that connect all the agents to
the source, either directly or indirectly, without forming cycles. The graph
T is called a tree. Assume that there is cost associated with each link in E.
Formally, a cost function (on T ) is a mapping C : E → R+. Note that the
number of links in E, denoted as |E|, is n. We denote C(T ) =

∑
e∈E C(e)

the total cost of T .
A cost sharing problem (on a fixed tree network) is a triple (N, T, C). A

solution to a problem (N, T, C) is a vector x = (x1, ..., xn) ∈ RN
+ such that∑

i xi = C(T ), where xi is the cost share assigned to agent i. A method is
a mapping x that assigns to each problem (N, T, C) a solution x(N, T, C).
When N and T are fixed, a cost sharing problem can be written as a cost
vector C ∈ RN

+ and a solution as x(C).
For any given T and any node i ∈ N , there is a unique path P =

{i0 = 0, i1, ..., ik−1, ik = i} in T connecting the source 0 and i in which
(im, im+1) ∈ E for m = 0, 1, ..., k − 1. Call the nodes 0, i1, ..., ik−1 predeces-
sors of i and denote the set of predecessors of i as P (i). Call j a follower of
i if i is a predecessor of j. Denote the set of followers of i as F (i). Denote
A(i) = {i} ∪P (i)∪F (i). Note that any agent in A(i) is either a predecessor
or a follower of i and is considered relevant or related to agent i. Since each
agent i ∈ N has a unique predecessor i−1, denote ci = C({i−1, i}).
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Now we introduce the following two axioms on cost sharing methods.

Additivity: For any C1, C2 ∈ RN
+ , x(C1 + C2) = x(C1) + x(C2).

Independence of Irrelevant Costs (IIC): For any given T , any k ∈ N
and any ck ∈ R+, if

Ck = (0, . . . , 0, ck, 0, . . . , 0),

then ∑
j∈A(k)

xj(C
k) = ck.

or equivalently,
xj(C

k) = 0, j /∈ A(k).

The IIC says that the cost of a link should only be shared among its
relevant or related agents. In other words, no agent should be charged for
any cost that is irrelevant to him. Note that in this paper, the IIC plays a
similar role as the traditional Dummy axiom (Moulin, 2002).

3 The Representation Theorem

First, we need the following definition.

Definition 1 For a given problem (N, T, C), a labeling L is a mapping from
N to N such that L(i) ∈ A(i) for each i ∈ N . Given a labeling L, define a
cost sharing method, called a location labeled method, as follows.

φL(C) =
∑
k∈N

ck · eL(k) (1)

where eL(k) is an n-dimensional unit vector whose L(k)-th component is 1
and all other components are 0.

It is easy to check that a location labeled method is additive and satis-
fies the IIC. Denote by conv(CL) the set of all convex combinations of the
location labeled methods. It is easy to see that all methods in conv(CL) are
also additive and satisfy the IIC.

Denote by Φ the set of all additive methods that satisfy the IIC. We now
state our main theorem.
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Theorem 1 The set of additive methods that satisfy the Independence of
Irrelevant Costs axiom is the set of all convex combinations of the location
labeled methods, i.e.,

Φ = conv(CL). (2)

The proof of Theorem 1 relies on the following two lemmas. The proofs
of the two lemmas are omitted and available from the authors upon request.

Lemma 1 If x satisfies Additivity and Independence of Irrelevant Costs,
then x has the following representation:

xi(C) =
∑

k∈A(i)

wi
kck, i = 1, ..., n, (3)

where 0 ≤ wi
k ≤ 1, and ∑

i∈A(k)

wi
k = 1, k = 1, ..., n. (4)

A column stochastic matrix is a matrix that all entries are nonnegative
and that the sum of the entries in each column is one. A unit column stochas-
tic matrices is a column stochastic matrix that in each column there is one
nonzero entry that is equal to 1. The following lemma shows that any col-
umn stochastic matrix can be decomposed as a convex combination of unit
column stochastic matrices.2

Lemma 2 Any column stochastic matrix can be written as a convex combi-
nation of the unit column stochastic matrices.

Now we are ready to prove the main theorem.

Proof of Theorem 1. We have already known that Φ ⊇ conv(CL). We
now prove that Φ ⊆ conv(CL).

2The reader may immediately recall the well-known double stochastic matrix. A matrix
is double stochastic if it is both column stochastic and row stochastic (the entries in
each row of the matrix are nonnegative and sum to one). The well-known Birkhoff-
von Neumann Theorem (Birkhoff, 1946) states that any double stochastic matrix can be
written as a convex combination of the permutation matrices. A permutation matrix has
a single nonzero entry, equal to 1, in each row and column. Note that Lemma 2 implies
the Birkhoff-von Neumann Theorem but not the other way around.
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Let φ ∈ Φ. From Lemma 1, φ corresponds to a weight system:

((w1
k)k∈A(1); (w2

k)k∈A(2); . . . ; (wj
k)k∈A(j); . . . ; (wn

k )k∈A(n))

satisfying
∑

j∈A(k)w
j
k = 1 for all k ∈ N . Rearrange it as

W ≡ ((wj
1)j∈A(1); (wj

2)j∈A(2); . . . ; (wj
k)j∈A(k); . . . ; (wj

n)j∈A(n)). (5)

It is clear that the rearrangement is unique.
Extend the weight system W into an n× n matrix, also denoted as, W .

This is done by expanding each column into an n-vector:

Wjk =

{
wj

k, ifj ∈ A(k)
0, otherwise.

(6)

Now the matrix W is a column stochastic matrix. By Lemma 2, it can
be written as a convex combination of the unit column stochastic matrices,
Bi1i2···in , where in column j the ij’th entry is equal to 1 and ij ∈ A(j). But
each unit column stochastic matrix Bi1i2···in corresponds to a location labeled
method associated with the labeling L(j) = ij, j = 1, ..., n. Therefore, φ can
be written as a convex combination of the location labeled methods, i.e.,
Φ ⊆ conv(CL).

The theorem is proved. Q.E.D.

We conclude the paper by reconsidering the well-known airport landing
fee problem (Littlechild and Owen, 1973; Littlechild and Thompson, 1977).
We use the following simple example.

c1
1 c2

2 c3
3

Figure 1. An Airport Problem

The following method is well-known.

xA1 (C) =
1

3
c1,

xA2 (C) =
1

3
c1 +

1

2
c2, (7)

xA3 (C) =
1

3
c1 +

1

2
c2 + c3,
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Now, we propose the following method. It is easy to check that it is a
convex combination of the location-labeled methods.

x1(C) =
6

11
c1,

x2(C) =
3

11
c1 +

3

5
c2, (8)

x3(C) =
2

11
c1 +

2

5
c2 + c3,

Note that in (8) agent 1 pays more and agent 3 pays less compared to
their corresponding cost shares in (7). Indeed, each agent pays a relatively
larger share of his own cost with the entire cost as an upper bound, and less
proportions for distant cost components. This reflects the consideration that
agents should pay more for the (e.g., relatively intensive) use of their local
network.3
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