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Abstract

We consider an extension of minimum cost spanning tree (mcst) problems where some agents do
not need to be connected to the source, but might reduce the cost of others to do so. Even if the cost
usually cannot be computed in polynomial time, we extend the characterization of the Kar solution
(Kar (2002, GEB)) for classic mcst problems. It is obtained by adapting the Equal treatment
property: if the cost of the edge between two agents changes, their cost shares are a¤ected in the
same manner if they have the same demand. If not, their changes are proportional to each other.
We obtain three variations on the Kar solution, that are di¤erentiated and characterized using
stability, fairness and manipulation-proofness properties.

JEL Classi�cation: C71, D63
Keywords: Minimum cost spanning tree; Steiner tree; cost sharing; Shapley value

Minimum cost spanning tree (mcst) problems study situations in which a group of agents need to
connect to a source in order to obtain a good or service. There is a cost to be paid for each edge in the
network that is used. That cost is independent of the number of agents that use that edge to connect
to the source. There is a large literature on the associated cost-sharing problem, with the �rst use of
game-theoretic tools appearing in Bird (1976). That article showed that the core is always non-empty
and proposed a method, now known as the Bird solution, that is always in the core.
We propose an extension to the mcst model: instead of assuming that all agents desire to be

connected to the source, we allow for a subset of agents to be indi¤erent to such a connection. While
these agents have no demand, they still may have an impact on the cost of the project as their
cooperation might allow other agents to connect to the source at a cheaper cost. We then have the
non-trivial problem of potentially compensating these agents for their contributions to lowering cost.
This extension allows us to cover a wide range of problems. Obviously, if all agents want to be

connected, we are back in the classic mcst problem. If only one agent wants to be connected, this turns
out to be equivalent to a shortest path problem. The problem considered is also close to Steiner tree
problems (see Hwang and Richards (1992) for a review), in which some freely available nodes can be
used by anyone. Steiner tree problems and the general problem considered here share the undesirable
characteristics that the minimum cost of the project usually cannot be computed in polynomial time
and that the core can be empty. Bergantinos et al. (2011) attempts to provide cost-sharing solutions
to Steiner tree problems. The di¤erence with our setup is that we do not consider these nodes as
unoccupied, and we allow for compensation to their owners. If such compensations were disallowed,
the problem would become a Steiner tree problem.1

The relevance of the extension is not only theoretical: the minimum cost spanning tree problem
applies well to physical distribution networks of goods like water, gas or electricity. However, most of
these projects involve states or cities that do not want the good (or are not its main destination) but

1 In Trudeau (2012), there is a distinction between the common and the private property approaches. In the former,
a coalition can use the location of any of its neighbours to connect to the source, while in the latter the coalition can
only use the locations of its members.
Using the common property approach with indi¤erent agents would be equivalent to disallowing compensations to

indi¤erent agents. Throughout the paper, we use the private property approach.
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that host part of the network. Con�icts with these agents are frequent, as the use of their territory
usually requires compensation.2

The cooperation among agents that need to be connected to the source and agents that can provide
them with cheaper connections shares similarities with the general technological cooperation models
(Trudeau (2009a), Bahel and Trudeau (2013)) in which agents provide an unspeci�ed service (sharing
patents, know-how, providing access to suppliers, etc.) that reduces the overall cost. These issues
have been raised for the mcst problems, notably when discussing if it is acceptable to subsidize some
agents, as the Kar solution does (Bergantinos and Vidal-Puga (2007), Trudeau (2012)).
Three of the main cost sharing solutions in the minimum cost spanning tree literature (the Bird

solution, the folk solution (Feltkamp et al. (1994), Bergantinos and Vidal-Puga (2007)) and the cycle-
complete solution (Trudeau (2012))) are designed to be in the core. Given that in our context the core
can be empty, there is limited appeal in extending these methods to our context. We therefore focus
on the Kar solution (Kar (2002)), which is the Shapley value of the stand-alone game.
Kar (2002) characterizes his solution with Group Independence, which implies that if there are

never any gains for two groups to cooperate on the construction of the network, then we can compute
the cost shares independently for each group. It also uses the property of Equal Treatment, which
implies that if the cost of edge (i; j) goes down, the cost shares of agents i and j should change by
the same amount. This notion is very natural as the edge that generates the saving is jointly owned
by the two agents. If Group Independence can be extended easily to our context, it is not trivial
to adapt Equal Treatment. It seems natural to keep the requirement if i and j are identical with
respect to their desire to connect to the source, as that edge can be used to connect i or j to the
source. If i wants to be connected but not j; it does not seem as natural to require them to have equal
changes in their cost shares, as the agents play di¤erent roles. In particular, the edge can only be used
to connect i. Therefore, we only require that the changes be proportional to each other. This is a
consistency requirement, as this guarantees that the way we treat demanders versus non-demanders
remains constant throughout. In particular, that treatment does not depend on the magnitude of the
change in cost, the way it a¤ects the optimal con�guration or the identity of the agents involved.
When we adapt Equal Treatment to cases in which agents have di¤erent desire to connect to the

source, if we require that a demander and a non-demander be both (strictly) a¤ected by the change in
cost of the edge between them, we characterize a family of weighted Shapley values. We then describe
three interesting weighted Shapley values. The �rst one is obtained by requiring that when the cost
of an edge between a demander and a non-demander decreases, both agents are a¤ected in the same
manner. The other two methods considered are limits of the characterized family of weighted Shapley
values when the impact on one type of agents tends to zero.
We then introduce a series of properties to di¤erentiate the three solutions. These properties are

related to stability, the rent given to non-demanders and the non-manipulability of demands. The
properties are used to characterize the three weighted Shapley values.
The paper is divided as follows: Section 2 describes the model and provides an example of how the

optimal con�guration is computed. Section 3 shows that the core can be empty. Section 4 describes and
characterizes the family of methods obtained by extending Kar�s characterization for mcst problems.
Section 5 di¤erentiates and characterizes three of those methods. As our model covers many di¤erent
cases explored in the literature, links with these models are clari�ed in Section 6.

1 The model

In order to de�ne mcst problems with indi¤erent agents, we �rst de�ne classic mcst problems.

2Negative externalities coming with the network are another reason for con�ict. This aspect of the problem is not
modelled here.
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1.1 Minimum cost spanning tree problems

Let N = f1; 2; :::g be the set of potential participants and N � N be the set of actual participants
that need to be connected to the source, denoted by 0. Let N0 = N [ f0g : For any set Z � N [ f0g ;
de�ne Zp as the set of all non-ordered pairs (i; j) of elements of Z: In our context, any element (i; j)
of Zp represents the edge between i and j: We often write a generic element of Zp; an edge, as e: Let
c = (ce)e2Np

0
be a vector in RN

p
0

+ with ce representing the cost of edge e: Let �(N) be the set of all cost
vectors when the set of agents is N , with N � N . Let � be the set of all cost vectors, for all possible
N . Since c assigns a cost to all edges e, we often abuse language and call c a cost matrix. A minimum
cost spanning tree problem is a triple (0; N; c): Since 0 does not change, we omit it in the following
and simply identify a mcst problem as (N; c); with N � N and c 2 �(N):
A cycle pll is a set of K � 3 edges (ik; ik+1); with k 2 [0;K � 1] and such that i0 = iK = l and

i1; :::; iK�1 distinct and di¤erent than l: A path plm between l and m is a set of K edges (ik; ik+1); with
k 2 [0;K � 1] ; containing no cycle and such that i0 = l, iK = m and i1; :::; iK�1 distinct and di¤erent
than l and m: A spanning tree is a non-orientated graph without cycles that connects all elements of
N0: A spanning tree t is identi�ed by the set of its edges. Its associated cost is

P
e2t ce:

In a classic mcst problem, the minimum cost of connecting N to the source and the associated
minimum cost spanning tree is obtained using Prim�s algorithm, which has jN j steps. First, pick an
edge (0; i) such that c0i � c0j for all j 2 N . We then say that i is connected. In the second step, we
choose an edge with the smallest cost connecting an agent in Nn fig either directly to the source or
to i; which is connected. We continue until all agents are connected, at each step connecting an agent
not already connected to an agent already connected or to the source. Let Ĉ(N; c) be the associated
cost. Let cS be the restriction of the cost matrix c to the coalition S0 � N0: Let Ĉ(S; c) be the cost of
the mcst problem (S; cS):
For a mcst problem (N; c); a cost allocation y 2 RN assigns a cost share to each agent, and the

budget balance condition is
P

i2N yi = Ĉ(N; c):
A cost sharing solution (or rule) assigns a cost allocation y(N; c) to any admissible mcst problem

(N; c): The Kar solution (Kar (2002)) is the Shapley value of the stand-alone cost game Ĉ : yK(N; c) =
Sh(Ĉ(�; c)):

1.2 Minimum cost spanning tree problems with indi¤erent agents

To de�ne minimum cost spanning tree problems with indi¤erent agents, we need to distinguish agents
that need a connection to the source from those that do not. Let Nd � N be the set of players that
desire a connection to the source. Let N t � NnNd be the set of players that are not interested in
being connected to the source but are ready to let others use their locations to connect to the source.
Again, since 0 does not change, we omit it in the following and simply identify a mcst problem with
indi¤erent agents as ((Nd; N t); c); with Nd [N t = N � N and c 2 �(N):
To obtain the cost for a mcst problem with indi¤erent agents ((Nd; N t); c), we proceed as follow.

First, we compute the cost function Ĉ of the mcst problem as if all agents wanted to be connected to
the source. Then, for a coalition S � N; the cost C(S; ((Nd; N t); c) is the cost to connect agents in
S\Nd, with the help of agents in S\N t: Therefore, C(S; ((Nd; N t); c) = minT�(Nt\S) Ĉ(S\Nd[T; c)
with the convention that Ĉ(;; c) = 0: Given these de�nitions, we say that C is the stand-alone cost
function associated with the problem ((Nd; N t); c):
Figure 1 shows an example with 3 players, with identity of the players appearing in bold. Other

numbers are the cost of the corresponding edges. Here are the corresponding values for Ĉ and C, �rst
when both agents 2 and 3 want to be connected, then when only agent 3 has such a demand.
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Figure 1: Example with 3 players

S Ĉ(S) C(S; ((f2; 3g ; f1g); c) C(S; ((f3g ; f1; 2g); c)
f1g 5 0 0
f2g 9 9 0
f3g 10 10 10
f1; 2g 6 6 0
f1; 3g 9 9 9
f2; 3g 11 11 10
f1; 2; 3g 8 8 8

For example, to compute C(f1; 3g ; ((f2; 3g ; f1g); c); either agent 3 connects without help at a cost
of Ĉ(f3)g = 10 or with the help of agent 1 at a cost of Ĉ(f1; 3)g = 9:
A cost sharing solution assigns a cost allocation y((Nd; N t); c) to any admissible mcst problem

with indi¤erent agents ((Nd; N t); c):

2 Possible emptiness of the core

As in the Steiner tree problem, and unlike in minimum cost spanning tree problems, the core can
be empty for mcst problems with indi¤erent agents. This means that we might not be able to �nd
an allocation that removes for all coalitions the incentives to secede from the large group. Formally,
the core is the set of allocations y 2 RN such that

P
i2S yi � C(S; (Nd; N t); c) for all S � N andP

i2N yi = C(N; (N
d; N t); c): The following example shows that it can be empty.3

We have an illustration of cost matrix c in Figure 2, with represented edges having a cost of one
while unrepresented edges have a cost of ten. Suppose that Nd = f1; 2; 3g and N t = f4; 5; 6g : It is
easy to see that the cost for the grand coalition is 5; while the costs for coalitions f1; 2; 5g ; f1; 3; 4g

3This example was provided by Gustavo Bergantinos, Juan Vidal-Puga, Maria Gomez-Rua and Leticia Lorenzo during
a visit at the University of Vigo.
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Figure 2: Example with empty core

and f2; 3; 6g are all of 3. This generates the following core constraints:

y1 + y2 + y5 � 3

y1 + y3 + y4 � 3

y2 + y3 + y6 � 3:

Summing these up, we obtain

2(y1 + y2 + y3) + y4 + y5 + y6 � 9

y1 + y2 + y3 � 4 (using
6X
i=1

yi = 5)

This means that y4 + y5 + y6 � 1: However, since N t = f4; 5; 6g ; C(f4; 5; 6g ; (Nd; N t); c) = 0:
Thus, the core is empty.

3 Extending Kar�s characterization

Kar�s characterization uses two properties: Group Independence and Equal Treatment.4 Group Inde-
pendence conveys the idea that if two groups of agents always connect to the source in an independent
manner, then computing the cost shares on the whole group or independently on the two groups makes
no di¤erence. This is a natural property, without which one group might subsidize the other for costs
for which it is clearly not responsible. The concept applies as well to our problem as it does to mcst
problems. To formally de�ne the property we de�ne irrelevant edges as follows: for i; j 2 N; we say
that (i; j) is an irrelevant edge if cij � c0i; c0j : Otherwise, we say it is a relevant edge. Relevant edges
will be used by coalition fi; jg if both agents want to connect to the source and nobody cooperates
with them. Irrelevant edges will not be used in that situation, or in any other.

4To be exact, Group Independence is divided in two distinct properties in Kar (2002). However, a solution satis�es
these two properties if and only if it satis�es Group Independence.
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Group Independence: if there exists S � Nd and T � N t such that (i; j) is an irrelevant
edge for all i 2 S [ T; j 2 Nn(S [ T ), then yi((Nd; N t); c) = yi((S; T ); c

S[T ) if i 2 S [ T and
yi((N

d; N t); c) = yi((N
dnS;N tnT ); cNn(S[T )) if i 2 Nn (S [ T ) :

Figure 3: Illustration of Equal treatment

Consider the cost matrix illustrated in Figure 3 in which the represented edges have a cost of 2,
with the others having a cost of 10. Suppose that all agents want to be connected to the source. The
mcst is exactly the set of represented edges and has a total cost of 8: Suppose that the cost of one of
the edges in f(1; 2); (2; 3); (3; 4)g decreases to 1. This generates a saving of 1. How should we allocate
this saving? In particular, how should the two agents at the extremities of this edge be a¤ected?
Kar (2002) uses the Equal Treatment principle: since the agents have an equal property right to an
edge between them, they should be a¤ected equally so both agents receive the same reduction in their
cost share. Notice that this principle does not mean that each agent gains half of the savings: the
shares of other agents could also be a¤ected, with the combined changes to the shares of the agents at
the extremities possibly larger or smaller than the savings. Formally, we adapt the Equal Treatment
principle to our setting as follows:
Equal Treatment: Let c; c0 be such that c0ij < cij for i; j 2 N and c0e = ce for e 6= (i; j): Then,

yi((N
d; N t); c0)� yi((Nd; N t); c) = yj((N

d; N t); c0)� yj((Nd; N t); c):

What makes this property particularly attractive for mcst problems is the fact that in addition to
a pair of agents having equal property rights to the edge that runs between them, they also have an
equal desire to be connected to the source, which further justi�es that they should be a¤ected in the
same manner.
Consider again the cost matrix illustrated in Figure 3, but now suppose that Nd = f3; 4g : If the

cost of the edge (3; 4) decreases, it seems very natural to impose Equal Treatment. When used, the
edge (3; 4) allows the two agents to pay for a single connection from them to the source, instead of
two, generating a surplus for both agents. It also seems very natural to impose Equal Treatment if it
is the cost of the edge (1; 2) that decreases. Since these two agents are indi¤erent to a connection to
the source, this edge can only be used in a joint bid to o¤er a cheaper connection to agents that want
to be connected to the source. We formalize this idea as follows:
Equal Treatment for Equal Demanders (ETED): Let c; c0 be such that for i; j 2 N; c0ij < cij

and c0e = ce for e 6= (i; j): If i; j 2 Nd or i; j 2 N t, then

yi((N
d; N t); c0)� yi((Nd; N t); c) = yj((N

d; N t); c0)� yj((Nd; N t); c):
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By contrast, suppose that it is the cost of edge (2; 3) in Figure 3 that decreases to 1. Should the
cost shares of agents 2 and 3 change in the same manner? This is not as clear. One could argue that
the demander should receive a greater discount, as without the demand of agent 3, the edge (2; 3) is
not valuable. Alternatively, the argument can be made that the non-demander should receive a greater
discount: in particular, if we believe that such an agent, who has no desire to be connected to the source,
might back out of the project, or if we believe that the good or service is undesirable (for example if
the good is a pollutant). We are thus trying to weight the value of the desire of the demanders to
be connected to the source against the value of the locations of the non-demanders. Equal treatment
imposes that we weight these equally, something we might not want to do. However, once we have
determined how the change of the demander compares to the change of the non-demander, it seems
appropriate to proceed in the same manner whenever we face a similar situation in which we need
to divide a surplus between a demander and a non-demander. Suppose that for every unit of savings
that the demander obtains, the non-demander gets �: Holding this ratio constant is a consistency
property: the weight we put on demanders versus non-demanders, whatever it is, remains constant in
all circumstances. This leads to the following property:
Consistent Treatment for Unequal Demanders (CTUD): Let c; c0 such that for i 2 Nd and

j 2 N t; c0ij < cij and c
0
e = ce for e 6= (i; j): For all such pairs of matrices c; c0; we have

�
�
yi((N

d; N t); c0)� yi((Nd; N t); c)
�
= (1� �)

�
yj((N

d; N t); c0)� yj((Nd; N t); c)
�

with � 2 [0; 1] :
With � � 1��

� ; we can write the above equality as�
yi((N

d; N t); c0)� yi((Nd; N t); c)
�
= �

�
yj((N

d; N t); c0)� yj((Nd; N t); c)
�

which �ts with the description given above. However, our choice of notation allows us to de�ne three
interesting cases. If � = 0; then j 2 N t is una¤ected by the change. If � = 1; then the cost share of
i 2 Nd stays constant. Finally, if � = 1

2 ; it is just as if we applied Equal Treatment to agents that do
not have the same demand.
We restrict the possible values of � to [0; 1] : In addition to being di¢ cult to interpret, any value of �

outside of the interval would lead the share of one agent to increase and the other to decrease. Suppose
that we start with a case in which all edges are irrelevant, meaning that by Group Independence all
agents pay their stand-alone cost. If an edge between a demander and a non-demander becomes
cheaper, by CTUD with � =2 [0; 1] ; one of the two agents would end up with a share larger than its
stand-alone cost.
The solutions satisfying Group Independence, Equal Treatment for Equal Demanders and Consis-

tent Treatment for Unequal Demanders are weighted Shapley values. We adapt the de�nition of Kalai
and Samet (1987) to our context.
Let �(N) be the set of permutations of N: Let B(i; �) represent the set of agents coming in before

i in �: We have, for � 2 (0; 1) and i 2 N; that

WS�i ((N
d; N t); c) =

X
�2�(N)

p(�)
�
C(B(i; �) [ fig ; (Nd; N t); c)� C(B(i; �); (Nd; N t); c)

�
where

p(�) =
n�1Y
k=0

w�n�kPn�k
l=1 w�l

is the weight of permutation �; with

wi =

�
� if i 2 N t

1� � if i 2 Nd :

The solution WS� is the weighted Shapley value of game C(�; (Nd; N t); c) in which each agent
i 2 Nd has a weight of 1� � and each agent i 2 N t has a weight of �: Notice that the weights help us
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determine who is added to the group last. If we have only two agents, a demander and a non-demander,
the demander is added last with probability 1 � �: As an illustration if N = f1; 2; 3g ; to obtain the
permutation � = (3; 2; 1), we need to pick agent 1 �rst, which happens with probability w1

w1+w2+w3
:We

also need to pick agent 2 second, which then occurs with probability w2
w2+w3

: The weight (probability)
of permutation (3; 2; 1) is thus w1

w1+w2+w3
w2

w2+w3
:

We show that with Group Independence, the adaptations of Equal Treatment imply a unique
solution (for each value of the parameter in CTUD). Since ETED, CTUD and budget balance give us
a system of equations relating the cost shares to each other, the strategy of the proof is to write this
system in matrix form and to show that it has a unique solution, with this solution being a weighted
Shapley value. To prove the main result, we �rst need the following technical result on a family of
matrices that appear in the proof.

Lemma 1 Let 	 be the set of square matrices such that if M 2 	 is of dimension m�m; we have

Mll > 0 for l = 1; :::;m

Mkl � 0 for l > k

Mkl = 0 for l < k < m

Mml = 1 for l = 1; :::;m

Then, for any M 2 	; det(M) > 0:

We are now ready for the main result.

Theorem 1 For a given value � 2 (0; 1) ; with � the parameter in Consistent Treatment for Unequal
Demanders, WS� is the unique cost sharing solution satisfying Group Independence, Equal Treatment
for Equal Demanders and Consistent Treatment for Unequal Demanders.

Proof. Lemma 3 in Appendix shows that WS� satis�es all properties. We show that the properties
imply a unique solution.
First, suppose that c has no relevant edges. By multiple applications of Group Independence and

budget balance, we have yi(
�
Nd; N t

�
; c) = yi((fig ; ;) ; cfig) = c0i if i 2 Nd and yi(

�
Nd; N t

�
; c) =

yi((;; fig); cfig) = 0 if i 2 N t:
By Group Independence, we can suppose that for any S in N; there exists a relevant edge (i; j); with

i 2 S and j 2 NnS: (If this was not the case we could apply Group Independence and yi(
�
Nd; N t

�
; c) =

yi(
�
Nd \ S;N t \ S

�
; cS) for all i 2 S:):

The above assumption means that there is a tree t in N such that all edges on the tree are relevant.
Suppose that for k; l 2 N; (k; l) is a relevant edge. Let ckl be such that cklkl = max fc0k; c0lg and

ckle = ce for all e 6= (k; l): In the following,
�
Nd; N t

�
is �xed. To simplify the notation, we write y(c)

for y(
�
Nd; N t

�
; c) where there is no confusion.

The strategy of the proof is as follows. Suppose we have n agents and a tree of relevant edges
linking all agents. One by one, we modify the cost of each edge to make it irrelevant. ETED or CTUD
give us an equation linking the changes in the shares of the agents at the extremities of the a¤ected
edge. Combined with the budget balance, this gives us n equations. We show that the system of
equations always has a unique solution.
i) we have n agents and n� 1 relevant edges
This case is such that there is a single tree with relevant edges that links all agents together. We

show that the system of equations has a unique solution by using a recursive argument on the number
of agents. Suppose that we have a unique solution whenever we have m� 1 or less agents and there is
a single tree of relevant edges linking these agents.
We build the system of equations algorithmically as follows:
Step 1: take an agent i such that i belongs to only one edge in t and relabel him agent 1. By

the de�nition of a tree, there exists such agent. Let q(1) 2 N be the agent such that (1; q(1)) 2 t:
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By ETED or CTUD, there exists an equation linking y1(c) � y1(c1;q(1)) and yq(1)(c) � yq(1)(c1;q(1)):
We have that in c1;q(1); agent 1 has no relevant edge to anybody else, and for the remaining agents,
there is a single tree of relevant edges linking all of them. By Group Independence and the recursive
argument, the values y(c1;q(1)) are well de�ned. Rewrite the equation as A1y1(c) +B1yq(1)(c) = X1:
Step k: Let tk be the tree t to which we have removed the agents labeled as 1 through k� 1 in the

corresponding steps. Notice that since at each step we are removing a leaf (for the current tree), tk is
also a tree.
Take an agent i such that i belongs to only one edge in tk and relabel him agent k. By the

de�nition of a tree, there exists such an agent. Let q(k) be the agent such that (k; q(k)) 2 tk: By
ETED or CTUD, there exists an equation linking yk(c) � yk(ck;q(k)) and yq(k)(c) � yq(k)(ck;q(k)): By
Group Independence and the recursive argument the values y(ck;q(k)) are well de�ned. Rewrite the
equation as Akyk(c) +Bkyq(k)(c) = Xk:
Conclude at step n� 1.
Notice that by de�nition, q(k) > k for all k = 1; :::; n � 1: Build a matrix Z of dimension n � n

in the following manner. At line k; insert Ak in position k; Bk in position q(k) and 0 otherwise, for
k = 1; :::; n � 1: The nth equation is the budget balance condition: insert 1 at position (n; i) for each
i = 1; :::; n. Let XN = C(N; (Nd; N t); c) and X the column vector of (X1; :::; XN ): We have that
Zy = X: To solve for y, we need to inverse Z:
Notice �rst that the possible values for Ak are f1; �; 1� �g 5 and are all strictly positive by the

assumption that � 2 (0; 1) : The possible values for Bk are f�1;��; �� 1g and are all strictly negative
since � 2 (0; 1) : Therefore, Zll = Al > 0 and Zkl = Bl < 0 if k = q(l) and Zkl = 0 otherwise, for
l < n: Thus, Z 2 	. By Lemma 1, det(Z) > 0 and, therefore, the system of equations in Zy = X has
a unique solution. By the recursive argument, since it is true for one agent, we have a unique solution
for any number of agents n if we have n� 1 relevant edges connecting them.
ii) we have n agents and m � n relevant edges
This case is such that we have many trees made of relevant edges that connect all agents. We show

that the system of equations has a unique solution by proceeding recursively on the number of relevant
edges. Suppose that we have a unique solution whenever we have less than m relevant edges. Notice
that for n� 1 relevant edges, the cost sharing values were found in i).
Build the matrices Z and X as in step i). At any step k of the algorithm, ck;q(k) contains m � 1

relevant edges. If there it does not contain a tree in N such that all edges on the tree are relevant, we
can apply Group Independence and step i) to �nd the values y(ck;q(k)): If ck;q(k) containsa tree in N
such that all edges on tree are relevant, by i) and the recursive argument the values y(ck;q(k)) are well
de�ned.
As in i), Z 2 	 and the system of equations in Zy = X has a unique solution.
From i) and ii) we can conclude that we have a unique solution for any number of agents and any

number of relevant edges, thus covering all possible cases.
Lemma 4 in Appendix shows that the properties are independent.
Remember that while de�ning the CTUD property, we identi�ed three natural values for � : 0; 12

and 1: When � = 1
2 ; we have a weighted Shapley value in which demanders and non-demanders have

the same weight. Thus, we are back with a standard Shapley value. The resulting solution is nothing
more than a straightforward extension of the Kar solution, i.e. the Shapley value of C(�; (Nd; N t); c)):
Formally, let

yK((Nd; N t); c) = WS
1
2 (C(�; (Nd; N t); c))

= Sh(C(�; (Nd; N t); c)):

Unfortunately, Theorem 1 does not cover the cases in which � 2 f0; 1g : In fact, for these values,
CTUD tells us that when the cost of an edge drops, one agent at its extremities is una¤ected, but we

5 If we use ETED, we have that Ak = Bk = 1. If we use CTUD and k 2 Nd; we have that Ak = � and Bk = �� 1:
If we use CTUD and k 2 Nt; we have that Ak = 1� � and Bk = ��:

9



learn nothing about the e¤ect on the other agent. We thus lose uniqueness since many methods can
satisfy CTUD for these values of the parameter.
A closer look at the de�nition of weighted Shapley values helps us solve this problem. In the

de�nition of p(�); the weight of permutation �; we have that the probability of picking agent �n�k as the
kth-before-last agent in the permutation is

w�n�kPn�k
l=1 w�l

: If � 2 f0; 1g ; we might have that
Pn�k

l=1 w�l = 0;

in which case the probability is not well de�ned. If � = 0; that case would occur if all remaining
agents belong to N t: For � = 1; it is when all agents belong to Nd: In both cases, since agents in the
same group have the same weight, it would be natural to de�ne that probability as 1

m ; where m is the
number of remaining agents. We adjust our de�nition for this. We have, for � 2 [0; 1] ; that

WS
�

i ((N
d; N t); c) =

X
�2�(N)

p(�)
�
C(B(i; �) [ fig ; (Nd; N t); c)� C(B(i; �); (Nd; N t); c)

�
with

p(�) =

8>>>><>>>>:

�k�1Y
k=0

w0�n�kPn�k
l=1 w0�l

n��kY
l=1

1
l if

Pn�m
l=1 w0�l = 0 for all n� 1 � m � �k

n�1Y
k=0

w0�n�kPn�k
l=1 w0�l

otherwise

wi =

�
� if i 2 N t

1� � if i 2 Nd :

We de�ne y0 as a variant of the Shapley-Shubik method that disregards the contributions of agents
in N t: Let �C be de�ned for all S � Nd and such that �C(S; (Nd; N t); c) = C(S [ N t; (Nd; N t); c):
Then, y0i ((N

d; N t); c) = Shi( �C(�; (Nd; N t); c)) for all i 2 Nd and y0i ((N
d; N t); c) = 0 for all i 2 N t:

Notice that to compute �C; we assume that demanders can always use the locations of non-demanders
as they wish, without providing compensations. We can verify that y0 =WS

0
:

Finally, we de�ne y1 as a solution that takes the opposite stand and assigns all of the gains com-
ing from technological cooperation to the agents in N t: Let CN

d

be de�ned for all S � Nd and
such that CN

d

(S; (Nd; N t); c) = C(S; (Nd; N t); c): Let ~C be de�ned for all S � N t and such that
~C(S; (Nd; N t); c) = C(S[Nd; (Nd; N t); c)�C(Nd; (Nd; N t); c): Then, y1i ((N

d; N t); c) = Shi(C
Nd

(�; (Nd; N t); c))

for all i 2 Nd and y1i ((N
d; N t); c) = Shi( ~C(�; (Nd; N t); c)) for all i 2 N t: Here, CN

d

is as if deman-
ders never had access to the locations of non-demanders. ~C is the function assigning the cost savings
generated by the locations of any coalition of non-demanders. We can verify that y1 =WS

1
:

It is also easy to verify that WS
0
and WS

1
are the limits of WS� when � tends to zero and one,

respectively.
We verify in Lemma 5 that y0 and y1 satisfy Group Independence, ETED and CTUD for, respec-

tively, � = 0 and � = 1:

Example 1 We provide an example to illustrate the solutions proposed above. We �nd in Figure 4
the structure, with agents appearing in bold. Other numbers are the cost of the corresponding edges.
{Insert Figure 4: Illustration of cost sharing}
The following table provides the cost shares prescribed by y0; yK and y1; as well as for the case

with a generic �: Shares are computed for two cases, �rst when only agent 3 wants to be connected,
then when agents 2 and 3 need to be connected.

Nd = f3g Nd = f2; 3g
y0 (0; 0; 4)

�
0; 32 ;

5
2

�
yK

�
� 11
18 ;�

11
18 ;

47
9

� �
� 5
6 ;

5
3 ;

19
6

�
y1

�
� 3
2 ;�

3
2 ; 7
� �

�1; 32 ;
7
2

�
WS�

�
��[3�2+2�+1]

(1+�)2
;��[3�2+2�+1]

(1+�)2
;
2[3�3+4�2+5�+2]

(1+�)2

� �
3�2�4�
2�� ; 6���2�

2

2(2��) ;
10+��4�2
2(2��)

�
10



Figure 4: Illustration of cost sharing

A �rst observation is that � enters the cost shares in a non-linear fashion and thus yK is not a
weighted average of y0 and y1. When Nd = f1; 2; 3g ; we have a classic mcst problem. In this case,
CTUD is not necessary, as all agents have an equal desire to be connected to the source. Thus, all
methods prescribe the same cost shares of

�
1
6 ;

7
6 ;

8
3

�
. It is also interesting to see that even though we

have the intuition that a higher � is more favorable to agents in N t; cost shares for these agents are not
necessarily decreasing in �: For example, y1((f2; 3g ; f1g); c) reaches a minimum at � = 6�2

p
3

3 � 0:845:
Figure 5 illustrates the weights on the various permutations, as a factor of �: In our example, agent
1 gets nothing in the permutations in which he comes in �rst. The probability of such permutations
decreases monotonically with �: He gets �1 in permutations in which he comes last, and the probability
of such permutations increases monotonically with �: However, agent 1 has its most advantageous
imputation (�2) when � = (3; 1; 2): He gets -1 for the imputation � = (2; 1; 3): The weights for these
permutations are zero for � 2 f0; 1g ; increase on

�
0; 2�

p
2
�
and decrease on

�
2�

p
2; 1
�
: Thus, agent

1 does not always prefer � to increase. Stated otherwise, in y1; non-demanders get the credit for their
contributions when we add them to the whole group of demanders, but not for their contributions to
any subgroup of demanders, for which the value of the location of the non-demander might be higher.

4 Characterizing the three solutions

In order to distinguish the three particular methods de�ned in the previous section, we de�ne a set of
simple properties. We start with properties that take advantage of the di¤erences between demanders
and non-demanders. In general, when an agent wants to be connected to the source, we take into
account two di¤erent factors to compute her cost share: how costly it is to connect her to the source,
for which she should pay a positive share, and how much is saved by letting others connect through her
location, for which she could receive a subsidy. For an agent that does not want to be connected to the
source, only the second consideration matters. Following these observations, the next two properties
are very natural.
Demand Monotonicity: Let c 2 �(N) and i 2 N t: We have that yi((Nd [ fig ; N tn fig); c) �

yi((N
d; N t); c):

Demand Ranking: Let c 2 �(N) and i 2 N t; j 2 Nd: If cik = cjk for all k 2 N0n fi; jg ; then

11



Figure 5: Weights on the various permutations

yi((N
d; N t); c) � yj((Nd; N t); c):

Demand Monotonicity imposes the condition that if an agent indi¤erent to a connection to the
source suddenly desires such a connection, his change of mind cannot decrease his cost share. In
standard cost sharing models, it was introduced by Moulin (1995) and used, among many others, by
Friedman and Moulin (1999) and Moulin and Sprumont (2006). Demand Ranking requires that if
two agents are located in symmetric locations but only one of them wants to be connected to the
source, that agent cannot pay less than the other agent. The property is similar in nature to the Fair
Ranking property of Moulin and Shenker (1992). In addition to making agents responsible for their
demand, Demand Monotonicity and Demand Ranking are also required if the agents can manipulate
their (reported) demand to pay a smaller share.6

The �nal two properties deal with the rent that demanders pay to non-demanders for the use of
their locations. Since we have seen that the core can be empty, we propose a weaker stability condition
that requires the rent paid by demanders to non-demanders to be no larger than the savings they
generate as a group. Stated otherwise, the demanders, as a group, should not be worse o¤ when they
cooperate with non-demanders. The property was introduced by Bahel and Trudeau (2013).
Fair Rent: Let c 2 �(N): We have that

P
i2Nd yi((N

d; N t); c) � C(Nd; (Nd; N t); c):
One trivial way of satisfying Fair Rent is to never subsidized any of the non-demanders. Our �nal

property requires that solutions sometimes subsidize non-demanders. It thus eliminates solutions that
completely ignore the presence of non-demanders.
Positive Rent : There exists Nd; N t; c 2 �(N) and i 2 N t such that yi((Nd; N t); c) < 0:
The following Lemma describes which properties are satis�ed by our three solutions.

Lemma 2 i) y0 satis�es Demand Ranking and Fair Rent but fails Demand Monotonicity and Positive
Rent.
ii) yK satis�es Demand Monotonicity, Demand Ranking and Positive Rent but fails Fair Rent.
iii) y1 satis�es Fair Rent and Positive Rent but fails Demand Monotonicity and Demand Ranking.

Proof. In Appendix.
The properties can also be used to characterize the solutions.
6 In the mcst context, manipulability in the form of merging was studied in Gomez-Rua and Vidal-Puga (2011).
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Theorem 2 A cost sharing solution WS
�
satis�es

i) Demand Ranking and Fair Rent if and only if y = y0:
ii) Demand Monotonicity if and only if y = yK :
iii) Fair Rent and Positive Rent if and only if y = y1:

Proof. Consider the cost matrix c 2 � (f1; 2; 3g) such that c01 = c02 = 0 and ce = 1 else. Let ci be
the matrix in which we change the cost of (i; 3) to zero and c1;2 the cost matrix in which edges (1; 3)
and (2; 3) both have a cost of zero. The shares for these cost matrices are given in Appendix, for a
generic � (the parameter in CTUD) and for N t = f1; 2g and f1g :
Consider c1;2: We have that WS

�

1 ((f2; 3g ; f1g); c1;2) = ��(1��)
2�� and WS

�

2 ((f2; 3g ; f1g); c1;2) =
� �
2(2��) : Notice that 1 and 2 have the same cost to connect to the source and to agent 3. We can thus

apply Demand Ranking, which imposes that WS
�

1 ((f2; 3g ; f1; 2g); c1;2) � WS
�

2 ((f2; 3g ; f1g); c1;2):
Demand Ranking is thus satis�ed in that case if � 2

�
0; 12

�
:

By Fair Rent, we must have that WS
�

1 ((f2; 3g ; f1g ; c1;2) � 0; (as agents 2 and 3 can connect
independently at a cost of zero). Fair Rent is thus satis�ed in that case if � 2 f0; 1g :
Consider c2: We have that WS

�

2 ((f2; 3g ; f1g); c2) = � 1
2 and that WS

�

2 ((f3g ; f1; 2g); c2) = ��:
Demand Monotonicity imposes that WS

�

2 ((f3g ; f1; 2g); c2) �WS
�

2 ((f2; 3g ; f1g); c2); or � � 1
2 :

Consider c0 2 �(f1; 2; 3; 4g) such that c004 = 1 and c0e = 0 else. Consider the problem ((f2; 3; 4g ; f1g); c0) :
If agent 4 comes �rst and agent 1 just after him, the imputation of agent 1 is -1. In all other per-
mutations, the imputation of agent 1 is zero. Therefore, we need only to �nd the probabilities of
permutations (4; 1; 2; 3) and (4; 1; 3; 2): These probabilities are

1� �
3� 2�

1� �
2� ��:

Thus, WS
�

1 ((f2; 3; 4g ; f1g ; c0) =
�2�(1��)2
(3�2�)(2��) : Suppose now that agent 1 wants to be connected. The

problem becomes ((f1; 2; 3; 4g ; f;g); c0) : The probabilities of permutations (4; 1; 2; 3) and (4; 1; 3; 2)
become

1

4

1

3

1

2
=
1

24

andWS
�

1 ((f1; 2; 3; 4g ; f;g); c0) = � 1
12 : By Demand Monotonicity, we must have thatWS

�

1 ((f2; 3; 4g ; f1g ; c0) �
WS

�

1 ((f1; 2; 3; 4g ; f;g); c0) ; or
�2�(1� �)2
(3� 2�)(2� �) � �

1

12
:

Within the interval [0; 1] ; the inequality is satis�ed when � 2
h
19�

p
73

24 ; 12

i
:

i) The restrictions imposed by Demand Ranking and Fair Rent leave us with WS
0
= y0 as our

only candidate: By Lemma 2, y0 satis�es all properties.

ii) The restrictions imposed by Demand Monotonicity leave us with WS
1
2 = yK . By Lemma 2, yK

satis�es all properties.
iii) The restrictions imposed by Fair Rent leaves usWS

0
= y0 andWS

1
= y1 as our only candidates:

By Lemma 2, y0 fails Positive Rent while y1 satis�es it. y1 also satis�es the other properties.
The previous theorem allows for interesting contrasts between the solutions. If we fear manipula-

tions and require Demand Monotonicity, yK is the only solution. This should come as no surprise, as
yK ; because it satis�es Equal Treatment, makes no distinction between demanders and non-demanders
and simply looks at the cost they generate. If we put the accent on a stability property like Fair Rent
but still want to remunerate non-demanders, y1 is the only choice. We obtain y0 by combining an
incentive property (Demand Ranking) and a stability property (Fair Rent). This result can be seen as
the impossibility of combining Fair Rent, Demand Ranking and Positive Rent.
Combining the results of Theorems 1 and 2, we obtain a characterization of yK with the properties

of Group Independence, ETED, CTUD and Demand Monotonicity.
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5 Linear network, shortest path and Steiner problems

The case in which Nd = N is the well-known minimum cost spanning tree model. It turns out that
at the opposite end of the spectrum, when

��Nd
�� = 1; we have another well-known model. In that

case, we only need to connect one agent to the source, with the (potential) help of other members of
N: In our model, it means that we need to �nd the cheapest path from the source to i: The problem
thus becomes a shortest path problem, solvable in polynomial time (Dijkstra (1959)). As for the mcst
problem, the corresponding stand-alone cost game always has a non-empty core.
We can also see that it is equivalent to a much more general problem: suppose that agents in N

have a demand q 2 RN+ . They need to be connected to the source to obtain these units, which have
to be transported from the source to the nodes of these agents. We still have the cost matrix c; but
now the cost to send x units of goods on edge (i; j) is cijx: A linear network problem is (N; c; q);
the set of agents, the cost matrix and the demand vector. It is easy to see that it is also a shortest
path problem. For each agent i; we �nd the shortest path connecting him to the source. The optimal
network con�guration for N is obtained by combining the individual shortest paths. See Trudeau
(2009b) and Rosenthal (2013) for a discussion of this case. Since the network can be built in a
decentralized manner, it seems very natural to impose that cost shares could also be decentralized and
that y(N; c; q) =

P
j2N y(N; c; e

j)qj ; where ej 2 RN+ is such that e
j
k = 1 if j = k and e

j
k = 0 otherwise.

Therefore, assigning cost shares to the whole linear network problem can be done by assigning cost
shares for individual units of demand and summing up. But then, the linear network problem (N; c; ej),
which consists in �nding the shortest path between the source and j to send him one unit of demand,
is identical to the mcst problem with indi¤erent agents ((fjg ; Nn fjg); c); where we need to build a
mcst from the source to j:
It is worth noting that in that case, yK corresponds to the Shapley value studied in Rosenthal

(2013). The linear network model is also very similar to the model in Trudeau (2009a), which is a
general technological cooperation model with constant returns to scale. The only di¤erence is that
there is no underlying network structure. For cases in which we do not want to reward demanders
(for instance if it generates pollution), a method is proposed that starts by assigning each agent its
stand-alone cost before giving rebates related to the savings generated by its technology. It corresponds
to y1 for linear network problems. For cases such that

��Nd
�� > 1; y1 is a very natural extension of the

solution of Trudeau (2009a) that deals with economies of scale.
As mentioned in the introduction, we can view the minimum cost Steiner tree problem of Berganti-

nos et al. (2011) as our model with the added constraint that yi = 0 for all i 2 N t: If we add to this
constraint Group Independence and ETED, we characterize y0; which is nothing but the Shapley value
for such problems.
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A Appendix

A.1 Proof of Lemma 1

Proof. The proof is by induction.
Suppose that m = 2: Then, det(M) =M11 �M12 > 0, since M11 > 0 and M12 � 0:
Suppose that we have shown that det(M) > 0 whenever the dimension is not larger than k: We

show that it implies that det(M) > 0 whenever the dimension is k + 1:
Suppose that m = k + 1. To compute the determinant, decompose the matrix along line k. By

de�nition, Mkl = 0 for all l < k: Thus, det(M) = Mkk det(M
kk) �Mk;k+1 det(M

k;k+1); where M ij

is the matrix M to which we have removed the ith line and jth column. By de�nition, both Mkk

and Mk;k+1 are in 	: Since they are of dimension k; by the induction argument, det(Mkk) > 0 and
det(Mk;k+1) > 0: Since Mkk > 0 and Mk;k+1 � 0; we have that det(M) > 0:

A.2 Weighted Shapley values WS� satisfy the properties of Theorem 1

Lemma 3 The weighted Shapley value WS� satis�es Group Independence, Equal Treatment for Equal
Demanders and Consistent Treatment for Unequal Demanders, with � 2 (0; 1) the parameter in CTUD.

Proof. Suppose that for any i 2 S; j 2 NnS; cij � max(c0i; c0j): Let � 2 �(N) and �0 2 �(S) be
such that B(i; �0) = B(i; �)\S:We have that C(B(i; �)[fig ; (Nd; N t); c)�C(B(i; �); (Nd; N t); c) =
C(B(i; �0) [ fig ; (Nd; N t); cS) � C(B(i; �); Nd \ S;N t \ S); cS): Therefore, the presence of agents in
NnS do not a¤ect the shares of agents in S and thus WS� satis�es Group Independence.
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Suppose that the cost matrices c; c0 2 �(N) are such that c0ij < cij and c0e = ce else. Notice that
C(S [ fi; jg ; (Nd; N t); c0) � C(S [ fi; jg ; (Nd; N t); c) and C(S; (Nd; N t); c0) = C(S; (Nd; N t); c) for
all S � Nn fi; jg :
For S � Nn fi; jg ; notice that C(S [fi; jg) appears in WS�i only when associated to the permuta-

tions (�0; i; �), where �0 2 �(S[j) and � 2 �(Nn(S[fi; jg)); i.e. to permutations of N where the �rst
jSj + 1 agents are the agents in S [ fjg ; the (jSj+ 1)th player is agent i, with the remaining players
in Nn(S [ fi; jg): Similarly, C(S [ fi; jg) a¤ects agent j only when associated to the permutations
(�00; j; �), where �00 2 �(S [ i) and � 2 �(Nn(S [ fi; jg)):
We can writeWS�i =

P
S�N �i(S)C(S); where �i(S) is the weight of C(S) in the weighted Shapley

value formula for agent i: By the above discussion we have that

�i(S [ fi; jg) =
X

�02�(S[j)

X
�2�(Nn(S[fi;jg))

p((�0; i; �))

By the de�nition of p(�); we have, for a �xed � 2 �(Nn(S [ fi; jg)); thatX
�02�(S[j)

p((�0; i; �)) = p(i; �)

where p(i; �) is the probability of permutation (i; �) 2 �(Nn(S [ fjg)): Thus,

�i(S [ fi; jg) =
X

�2�(Nn(S[fi;jg))

p((i; �))

=
X

�2�(Nn(S[fi;jg))

n�jSj�3Y
k=0

w�n�k

(1� �)D + �T �
Pk�1

l=1 wl

wi
(1� �)DS[fi;jg + �TS[fi;jg

=
wi

(1� �)DS[fi;jg + �TS[fi;jg

X
�2�(Nn(S[fi;jg))

n�jSj�3Y
k=0

w�n�k

(1� �)D + �T �
Pk�1

l=1 wl

where DS =
��Nd \ S

�� and TS = jN t \ Sj are the number of demanders and non-demanders in S: We
have that D = DN and T = TN :
In the same manner, we have that

�j(S [ fi; jg) =
wj

(1� �)DS[fi;jg + �TS[fi;jg

X
�2�(Nn(S[fi;jg))

n�jSj�3Y
k=0

w�n�k

(1� �)D + �T �
Pk�1

l=1 wl
:

Let �C(S) = C(S; (Nd; N t); c0)�C(S; (Nd; N t); c): Given that C(S [fi; jg ; (Nd; N t); c0) � C(S [
fi; jg ; (Nd; N t); c) for all S � Nn fi; jg and C(R; (Nd; N t); c0) = C(R; (Nd; N t); c) otherwise, we have,
for k 2 fi; jg ; that

yk((N
d; N t); c0)� yk((Nd; N t); c) = wk

X
S�Nnfi;jg

A(S)�C(S [ fi; jg)

where

A(S) =
1

(1� �)DS[fi;jg + �TS[fi;jg

X
�2�(Nn(S[fi;jg))

n�jSj�3Y
k=0

w�n�k

(1� �)D + �T �
Pk�1

l=1 wl

Therefore, we have that

yi((N
d; N t); c0)� yi((Nd; N t); c)

yj((Nd; N t); c0)� yj((Nd; N t); c)
=
wi
wj
:
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If i; j 2 Nd or i; j 2 N t; wi = wj and thus

yi((N
d; N t); c0)� yi((Nd; N t); c) = yj((N

d; N t); c0)� yj((Nd; N t); c):

ETED is satis�ed. If i 2 Nd and j 2 N t; wi = (1� �) and wj = �: Thus,

�
�
yi((N

d; N t); c0)� yi((Nd; N t); c)
�
= (1� �)

�
yj((N

d; N t); c0)� yj((Nd; N t); c)
�

and CTUD is satis�ed.

A.3 Independence of the properties of Theorem 1

Lemma 4 The properties of Theorem 1 are independent.

Proof. We need to show that as soon as we remove one of the three properties in Theorem 1 (Group
Independence, Equal Treatment for Equal Demanders and Consistent Treatment for Unequal Deman-
ders), another solution appears.
Group Independence: Group Independence is needed in the proof of Theorem 1 to de�ne values

when we do not have any relevant paths. In such a case, de�ne yi((Nd; N t); c) = C(N;(Nd;Nt);c)
jN j for all

i 2 N: Follow the method described in the proof of Theorem 1 to de�ne a cost sharing solution that
satis�es ETED and CTUD but fails Group Independence.
Equal Treatment for Equal Demanders: Proceed as in the proof of Theorem 1, with the following

modi�cation. If we remove a relevant edge between i and j; with i; j 2 Nd or i; j 2 N t; use the
following equality instead to obtain the relevant equation between yi(c)� yi(cij) and yj(c)� yj(cij):

(1 + c0ic
2
0j)
�
yi((N

d; N t); c0)� yi((Nd; N t); c)
�
= (1 + c20ic0j)

�
yj((N

d; N t); c0)� yj((Nd; N t); c)
�

and follow the method described in the proof of Theorem 1. Notice that 1+c0ic20j > 0 and 1+c
2
0ic0j > 0;

assuring that the resulting matrix is still in 	: It de�nes a cost sharing solution that satis�es Group
Independence and CTUD but fails ETED.
Consistent Treatment for Unequal Demanders: Proceed as in the proof of Theorem 1, with the

following modi�cation. If we remove a relevant edge between i and j; with i 2 Nd and j 2 N t use the
following equality instead to obtain the relevant equation between yi(c)� yi(cij) and yj(c)� yj(cij):

yci ((N
d; N t); c0)� yci ((Nd; N t); c) = ycj((N

d; N t); c0)� ycj((Nd; N t); c) if min(c0i; c0j) = 0
1

3

�
yci ((N

d; N t); c0)� yci ((Nd; N t); c)
�
=

2

3

�
ycj((N

d; N t); c0)� ycj((Nd; N t); c)
�
if min(c0i; c0j) > 0

and follow the method described in the proof of Theorem 1. Notice that the resulting matrix is still
in 	: It de�nes a cost sharing solution that satis�es Group Independence and ETED but fails CTUD
(for any value of �).

A.4 y0 and y1 satisfy the properties of Theorem 1

Lemma 5 i) y0 satis�es Group Independence and Equal Treatment for Equal Demanders. It satis�es
Consistent Treatment for Unequal Demanders, with � the parameter in that property, equal to zero.
ii) y1 satis�es Group Independence and Equal Treatment for Equal Demanders. It satis�es Con-

sistent Treatment for Unequal Demanders, with � the parameter in that property, equal to one.

Proof. i) We show that y0 satis�es Group Independence, Equal Treatment for Equal Demanders and
Consistent Treatment for Unequal Demanders for � = 0:
Suppose that for all i 2 S; j 2 NnS; there are no relevant edges. Then, �C((R [ T )\Nd; (Nd; N t); c) =

�C(R \ Nd; (Nd; N t); c) + �C(T \ Nd; (Nd; N t); c) for all R � S and T � NnS: By the properties of
the Shapley value, Shi( �C(�; (Nd; N t); c)) = Shi( �C(�; (Nd \ S;N t \ S); cS)) for all i 2 S \ Nd and
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Shj( �C(�; (Nd; N t); c)) = Shj( �C(�; (NdnS;N tnS); cNnS)) for all j 2 NdnS: Since y0i ((Nd; N t); c) = 0
for all i 2 N t and all c; Group Independence is satis�ed.
Let c; c0 be such that for i; j 2 Nd; c0ij < cij and c0e = ce else. The edge (i; j) can only be

used by a coalition S if i; j 2 S: Therefore, �C(T; (Nd; N t); c0) = �C(T; (Nd; N t); c) for all T � N
such that fi; jg  T: By the properties of the Shapley value, y0i ((N

d; N t); c0) � y0i ((Nd; N t); c) =
y0j ((N

d; N t); c0)� y0j ((Nd; N t); c). Since y0i ((N
d; N t); c) = 0 for all i 2 N t and all c; the part of ETED

that applies to agents in N t is satis�ed trivially. Therefore, ETED is satis�ed.
Let c; c0 be such that for i 2 Nd and j 2 N t; c0ij < cij and c0e = ce else. Since y0j ((N

d; N t); c) =

y0j ((N
d; N t); c0) = 0; CTUD is satis�ed for � = 0:

ii) We show that y1 satis�es Group Independence, Equal Treatment for Equal Demanders and
Consistent Treatment for Unequal Demanders for � = 1:
Suppose that for all i 2 S; j 2 NnS; there are no relevant edges. Then, CNd

((R [ T )\Nd; (Nd; N t); c) =

CN
d

(R \Nd; (Nd; N t); c) + CN
d

(T \Nd; (Nd; N t); c) for all R � S and T � NnS. By the properties
of the Shapley value, Shi(CN

d

(�; (Nd; N t); c)) = Shi(C
Nd

(�; (Nd \ S;N t \ S); cS)) for all i 2 S \Nd

and Shj(CN
d

(�; (Nd; N t); c)) = Shj(C
Nd

(�; (NdnS;N tnS); cNnS)) for all j 2 NdnS: We also have
that ~C((R [ T )\N t; (Nd; N t); c) = ~C(R\N t; (Nd; N t); c)+ ~C(T \N t; (Nd; N t); c) for all R � S and
T � NnS: By the properties of the Shapley value Shi( ~C(�; (Nd; N t); c)) = Shi( ~C(�; (Nd\S;N t\S); cS))
for all i 2 S \ N t and Shj( ~C(�; (Nd; N t); c)) = Shj( ~C(�; (Nd \ T;N t \ T ); cNnS)) for all j 2 N tnS:
Group Independence is satis�ed.
Let c; c0 be such that for i; j 2 Nd; c0ij < cij and c0e = ce else. The edge (i; j) can only be used

by a coalition S if i; j 2 S: Therefore, CN
d

(T; (Nd; N t); c0) = CN
d

(T; (Nd; N t); c) for all T � N
such that fi; jg  T: By the properties of the Shapley value, y1i ((N

d; N t); c0) � y1i ((Nd; N t); c) =
y1j ((N

d; N t); c0) � y1j ((N
d; N t); c). Let c; c0 be such that for i; j 2 N t; c0ij < cij and c0e = ce

else. The edge (i; j) can only be used by a coalition S if i; j 2 S: Therefore, ~C(T; (Nd; N t); c0) =
~C(T; (Nd; N t); c) for all T � N such that fi; jg  T: By the properties of the Shapley value,
y1i ((N

d; N t); c0)� y1i ((Nd; N t); c) = y1j ((N
d; N t); c0)� y1j ((Nd; N t); c). Therefore, ETED is satis�ed.

Let c; c0 be such that for i 2 Nd and j 2 N t; c0ij < cij and c
0
e = ce else. Since C

Nd

(S; (Nd; N t); c) =

CN
d

(S; (Nd; N t); c0) for all S � Nd; we have that y1i ((N
d; N t); c) = y1i ((N

d; N t); c0): Therefore, CTUD
is satis�ed for � = 1:

A.5 Proof of Lemma 2

Proof. i) y0 satis�es Demand Ranking and Fair Rent but fails Demand Monotonicity and Positive
Rent.
Suppose that for i 2 Nd; j 2 N t; cik = cjk for all k 2 N0n fi; jg : By de�nition, we will thus have

that �C(S [ fig ; (Nd; N t); c) � �C(S; (Nd; N t); c) for all S � Ndn fig ; as the bene�ts that agents in S
can obtain by connecting through agent i�s location can already be obtained by connecting through
agent j�s location. By de�nition, y0i ((N

d; N t); c) � 0 = y0j ((Nd; N t); c): Therefore, Demand Ranking
is satis�ed.
Fair Rent is trivially satis�ed asX

i2Nd

y0i ((N
d; N t); c) = C(N; (Nd; N t); c) � C(Nd; (Nd; N t); c):

It also implies that Positive Rent is not satis�ed.
Consider c2 described in Section A.6. We have that y02((f3g ; f1; 2g); c2) = 0 and y02((f2; 3g ; f1g); c2) =

� 1
2 ; violating Demand Monotonicity.
ii) yK satis�es Demand Monotonicity, Demand Ranking and Positive Rent but fails Fair Rent.
For i 2 N t; we have that C(S[fig ; (Nd; N t); c) � C(S[fig ; (Nd[fig ; N tn fig); c) and C(S; (Nd; N t); c) �

C(S; (Nd[fig ; N tn fig); c) for all S � Nn fig : By the properties of the Shapley value, yi((Nd; N t); c) �
yi((N

d [ fig ; N tn fig); c): Demand Monotonicity is satis�ed.
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Suppose that for i 2 Nd; j 2 N t; cik = cjk for all k 2 N0n fi; jg : We have that C(S [
fig ; (Nd; N t); c) � C(S [ fjg ; (Nd; N t); c) for all S � Nn fi; jg : By the properties of the Shapley
value, yi((Nd; N t); c) � yj((Nd; N t); c): Demand Ranking is satis�ed.
Consider c1;2 described in Section A.6. We have that yK1 ((f2; 3g ; f1g); c1;2) = � 1

6 : However, by
Fair Rent, we should have that yK1 ((f2; 3g ; f1g); c1;2) = 0 as agents 2 and 3 can connect independently
at a cost of zero. Fair Rent is not satis�ed. It also shows that Positive Rent is satis�ed.
iii) y1 satis�es Fair Rent and Positive Rent but fails Demand Monotonicity and Demand Ranking.
Fair Rent is trivially satis�ed asX

i2Nd

y1i ((N
d; N t); c) = C(Nd; (Nd; N t); c):

Consider c1;2 described in Section A.6. We have that y11((f2; 3g ; f1g); c1;2) = 0; y12((f2; 3g ; f1g); c1;2) =
� 1
2 . Demand Ranking is not satis�ed
Consider a problem with N = f1; 2; 3; 4g and c0 such that c003 = c004 = 1 and c0e = 0 for all other

edges: We have that y12((f3; 4g ; f1; 2g); c0) = � 1
2 and y

1
2((f2; 3; 4g ; f1g); c0) = � 2

3 . The example shows
that Demand Monotonicity is not satis�ed but that Positive Rent is.

A.6 Shares for c; c1; c2 and c1;2 (from Theorem 2)

We are interested in the shares for the cases in which N t = f1; 2g and N t = f1g : The following
table gives the shares for a generic �; the parameter in CTUD. A discussion follows on how they were
obtained.

d y((f3g ; f1; 2g); d) y((f2; 3g ; f1g); d)
c (0; 0; 1) (0; 0; 1)
c1 (��; 0; �) (��; 0; �)
c2 (0;��; �) (0;� 1

2 ;
1
2 )

c1;2
�
� �2

�+1 ;�
�2

�+1 ;
2�2

�+1

� �
��(1��)

2�� ;� �
2(2��) ;

�(3�2�)
2(2��)

�
The cost shares for c are trivially obtained by Group Independence.
For c1; notice that agent 2 has no relevant edge to other agents, so we can look only at agents

1 and 3. The permutation (1; 3) assigns zero to both agents, but the imputation is (�1; 1) for the
permutation (3,1). The probability of that permutation, by de�nition of weighted Shapley values, is
�:
The results are similar for c2 : we can remove agent 1 by Group Independence, and the only non-

zero imputation occurs for the permutation (3; 2): The probability of the permutation is � if 2 2 N t

and 1
2 if 2 2 N

d:
Finally, for c1;2; the permutation (3; 1; 2) yields an imputation of (�1; 0; 1) while for the permutation

(3; 2; 1) it is (0;�1; 1): All other permutations give shares of zero to all agents. We need to compute
p(3; 1; 2) and p(3; 2; 1): If 2 2 N t; we have that p(3; 1; 2) = p(3; 2; 1) = �

2�+1��� =
�2

�+1 : If 2 2 N
d; we

have that p(3; 1; 2) = 1��
�+2(1��)� =

�(1��)
2�� and p(3; 2; 1) = �

�+2(1��)
1��
2(1��) =

�
2(2��) :
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