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Abstract

In the discrete cost sharing model with technological cooperation (Bahel and Trudeau (IJGT,
2013)), we study the implications of a number of properties that strengthen the well-known Dummy
axiom. Our main axiom, which requires that costless units of demands do not affect the cost
shares, is used to characterize two classes of rules. Combined with anonymity and a specific
stability property, this requirement picks up sharing methods that allow the full compensation of
at most one technological contribution. If instead we strengthen the well-known Dummy property
to include agents whose technological contribution is offset by the cost of their demand, we are left
with an adaptation of the Shapley-Shubik method that treats technologies as private and rewards
their contributions. Our results provide two interesting axiomatizations for the adaptations of the
Shapley-Shubik rule to our framework.

1 Introduction

We consider the cost sharing problem where the cost of a project is to be split between the participating
agents and where agents have their own technology of production. The model, which was featured in
Bahel and Trudeau (2012), is a generalization of the discrete cost sharing model that was introduced in
Moulin (1995). In traditional cost sharing models, the gains (losses) from cooperation come exclusively
from the increasing (respectively, decreasing) returns to scale exhibited by the fixed technology. We
instead allow every coalition of agents to have their own technology. Technology is meant in a broad
way and can include patents (R&D), know-how (joint venture), information, negotiation power and
location (e.g. network formation). We are interested in methods allowing to share the joint costs of
production and particularly in the new aspects related to technology, such as how we should incorporate
the savings generated by technological improvements in the cost shares.
In the traditional discrete cost sharing model, Wang (1999) showed that the classic properties of

additivity and dummy characterize the so-called flow methods, which are represented by a unit flow
from the origin to the vector representing the full demand to produce. The share of an agent is then
a weighted average of his incremental costs, with the flows providing the weights. Bahel and Trudeau
(2012) provide a similar result in the more general context where technological cooperation is allowed.
They show that flow methods are the only cost sharing rules satisfying additivity, strong dummy (an
adaptation of the dummy axiom) and monotonicity with respect to demand increments (i.e., the share
of an agent should not decrease if her demand increments become costlier, with everything else kept
constant).
The Shapley-Shubik method (Shubik (1962)) is an adaptation of the Shapley value to the case

where the agents demand different quantities of (possibly heterogeneous) goods. While well studied in
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the model with continuous demands, it has received less attention in the discrete case. Moulin (1995)
characterizes the method as part of a larger family (that also includes the serial and pseudo average cost
methods). In Moulin and Sprumont (2007), it is characterized using the following property: removing
any costless units of demand (regardless of the agent they belong to) should not affect the cost shares.
That property is called ordinality and linked to the property of the same name used in the continuous
model (Sprumont (1998)): as we can add costless “half-units”without affecting shares, the choice of
units to compare the asymmetric goods that are demanded does not affect the cost shares. In this
paper we follow Sprumont (2008), who uses a similar property which only applies to the last units, and
call the property independence of dummy units. We use the requirement to adapt the characterization
of the Shapley-Shubik method to our framework. Since our model extends the traditional one, it is no
surprise that we find many anonymous methods that satisfy independence of dummy units, as there are
many ways to adapt the Shapley-Shubik method to our context. The various adaptations differ in the
way they allocate savings coming from the improvement of the technology. One of the contributions of
the present paper is to introduce fairness and stability properties as to the allocation of those savings;
these properties are combined with the axiom independence of dummy units to characterize some
remarkable rules.
The first property requires that the agents with positive demands benefit from the technological

cooperation of the others (fair rent), which leaves us with two noticeable methods (and their weighted
averages). The first one is the so-called public Shapley-Shubik method, which completely discards
technological contributions. The second one also has a Shapley-Shubik flavor but treats the technology
differently. Given an arbitrary ordering of the n agents, the first n−1 share their technologies and the
incremental costs are computed (according to the chosen ordering). The final agent is then assigned
the incremental benefit of his technology and the incremental cost of his demand.
We also examine the property “dummy over total cost”which states that an agent whose techno-

logical contributions are always offset by the increments due to his demand should pay nothing. Com-
bining this property with independence of dummy units, we find the private Shapley-Shubik method
that considers the effects of both the technology and the demand when computing incremental costs.
The paper is structured as follows: Section 2 formally describes the model and the basic properties

needed to obtain the unit-flow representation. Section 3 describes and illustrates different ways of
adapting the Shapley-Shubik method to our model. Section 4 provide the main characterization
results. Some discussion is provided in Section 5.

2 Preliminaries

2.1 The model

The framework we use is that of Bahel and Trudeau (2012). Let N = {1, ..., n} be the set of agents,
with n ≥ 2 being the number of agents. Each agent is endowed with a technology and has a demand
xi ∈ N for some specific good. Technology influences the cost and, when cooperating, the agents put
together not only their demands but also their technologies; as a consequence, each coalition possesses
a specific technology. Technologies are aggregated in a manner that we do not observe; we only observe
the effects of that aggregation on the costs.
Throughout the paper, we use the following convention for vector inequalities:

• x̄ = (x̄1, ..., x̄m) ≤ x̃ = (x̃1, ..., x̃m) iff x̄i ≤ x̃i, for every i = 1, ...,m;

• x̄ = (x̄1, ..., x̄m) < x̃ = (x̃1, ..., x̃m) iff [x̄ 6= x̃ and x̄i ≤ x̃i, for every i = 1, ...,m].

The cost function C(S, ·) is defined over the set NS . For any xS ∈ NS , C(S, xS) ∈ R+ represents
the cost of supplying the demand xS when all the agents in S cooperate on its production. Note that
some agents in S might demand zero while cooperating to produce the positive demands of the other
agents in S. We make the following assumptions on these cost functions:
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1. C (S1, xS1) ≥ C
(
S2,
(
xS1 , 0S2\S1

))
, where S1 ⊆ S2 ⊆ N, xS1 ∈ NS1 and

(
xS1 , 0S2\S1

)
∈ NS2

(more agents cooperating technologically can only improve the technology; therefore, for a fixed
demand profile to be produced, the cost cannot increase).

2. C(S, x̄S) ≤ C(S, x̃S) for any x̄S , x̃S ∈ NS s.t. x̄S ≤ x̃S (for a fixed technology, the cost is
non-decreasing in the demand profile).

3. C(S, 0S) = 0 for any S ⊆ N (for any technology, the cost of producing nothing is zero).

Let Γ be the set of cost functions C(·, ·) that satisfy conditions 1, 2 and 3. A cost sharing problem
is (C, x) such that C ∈ Γ and x ∈ INN . Denote the set of problems as Γ× NN .

Definition 1 A cost sharing method (CSM) y is a mapping defined from Γ × NN to RN such that∑
i∈N yi(C, x) = C(N, x), for any (C, x) ∈ Γ× NN .

A CSM is thus a mechanism which, for each cost sharing problem, assigns a cost share to each of
the agents, with the requirement that the shares sum up to the cost of producing the demand x when
all the agents are cooperating.

2.2 Basic properties and unit-flow representation

We start by recalling the results of Bahel and Trudeau (2012), on which we will build to define and
characterize new CSMs. Let us first introduce additivity and dummy, two of the most basic properties
in the cost sharing literature. Additivity says that whenever the cost function can be divided into
multiple subfunctions, the level of aggregation of the costs should not affect the shares.
Additivity: A CSM y meets additivity if y(C1 + C2, x) = y(C1, x) + y(C2, x), for any C1, C2 ∈ Γ

and any x ∈ NN .
The notion of “dummy agent” is well known in the literature and indicates that an agent has no

impact on the cost function. We extend the concept to agents for which neither the demand nor the
technological cooperation impacts the cost function.

Definition 2 For the cost function C ∈ Γ, we say that agent i is a

• demand-dummy if C(S ∪ {i} , (t, a))− C(S ∪ {i} , (t, a− 1) = 0 for all S ⊆ N\ {i}, t ∈ NS and
a = 1, 2, ...;

• technology-dummy if C(S ∪ {i} , {t, 0})− C(S, t) = 0 for all S ⊆ N\ {i} and t ∈ NS;

• dummy if she is both demand-dummy and technology-dummy.

The dummy axiom is a basic fairness requirement as it links an agent to the cost for which she is
responsible. If an agent does not have any impact on the cost, she should not be assigned any part of it.
In the present model, an agent is dummy if both her demand and her technology are inconsequential
to the cost.

Dummy: A CSM y meets dummy if, for any C ∈ Γ we have: yi(C, x) = 0, for any agent i who is
dummy for C.

In our context, the following (stronger) requirement is natural.
Strong Dummy: A CSM y meets strong dummy if, for any C ∈ Γ, we have the following properties:
i) yi(C, x) ≤ 0, for any agent i who is demand-dummy for C;
ii) yi(C, x) ≥ 0, for any agent i who is technology-dummy for C.
Next, we introduce a requirement which (along with additivity and strong dummy) is necessary

and suffi cient to characterize a well-defined family of CSM.

Monotonicity with respect to Demand-increment Costs (MDC): A CSM y meets MDC if,
for all x ∈ NN , Ĉ, C̄ ∈ Γ such that Ĉ(N, x) ≥ C̄(N, x) and any agent i, we have: yi(Ĉ, x) ≥
yi(C̄, x) whenever
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(i) Ĉ(S, x+ eiS)− Ĉ(S, x) ≥ C̄(S, x+ eiS)− C̄(S, x)
for all S s.t. i ∈ S ⊆ N and all x ∈ NS ;

(ii) Ĉ(S ∪ {i}, (x, 0))− Ĉ(S, x) = C̄(S ∪ {i}, (x, 0))− C̄(S, x)
for all S s.t. i /∈ S ⊆ N and all x ∈ NS .

MDC is a natural requirement: it means that the cost share of an agent should not decrease if the
increases in her demand become costlier while the cost reductions due to her technological cooperation
remain unchanged.
In the standard discrete model, Wang (1999) provided a useful characterization by showing that

every method satisfying additivity and dummy can be represented by a system of non-negative weights
associated with the incremental cost vectors. Furthermore, the author showed that this system of
weights can be represented by a unit-flow system. To allow for a unit-flow representation of cost
sharing rules, we re-express every cost function in Γ as follows. We define a vector z that encompasses
both technological cooperation and demand: the first unit of zi represents agent i’s technological
cooperation, the following units represent agent i’s demand. One can interpret any z ∈ NN \ {0N} as
follows: if zi > 0, then agent i cooperates in production; her demand (whether or not she cooperates)
is xi = max(0, zi − 1).

Let eS ∈ NN be such that eSj = 1 if j ∈ S and eSj = 0 otherwise. For i ∈ N , we will often write
ei instead of e{i}. Note that the mapping Φ which, to any (S, x) s.t. ∅ 6= S ⊆ N and x ∈ NS , assigns
z = (x, 0N\S)+eS is one-to-one. Indeed, denoting N(z) = {i ∈ N | zi > 0}, the (unique) inverse image
of any z ∈ NN \ {0N} is given by (S, x) s.t. S = N(z) and x = (z − eN(z))N(z).
We then have a cost function C∗ with a single argument z that accounts for both demand and

technology. Observe that the domain of C∗ is NN \ {0N}.
For any z ∈ NN and any S ⊆ N , define zS ∈ NN by (zS)i = zi if i ∈ S and (zS)i = 0 if i ∈ N\S.

We define zx as x+ eN .

Definition 3 A flow to zx is a mapping f(zx, ·) from [0, zx] to [0, 1]
N that has the following properties:

i)
∑
i∈N(r) fi(zx, r) =

∑
i∈N : ri<zi

fi(zx, r + ei) for all r ∈
[
0N , z

]
\
[
0N , eN

]
;

ii)
∑
i∈N

∑
t∈[ei,eN ] fi(zx, t+ ei) =

∑
i∈N fi(zx, zx) = 1;

iii) fi(zx, t) ≥ 0 for all t ∈
[
ei, zx

]
.

We interpret fi(zx, t) as the flow from node t − ei to node t, where ti > 0, and zx as the final
destination of these flows. Property i) is the flow-conservation property guaranteeing that the inflow
is equal to the outflow at each node. Property ii) states that there is a flow of one coming out of the
origin and arriving at zx. Condition iii) rules out negative flows. As stated in the following definition,
any arbitrary flow system can be used to define a specific CSM.

Definition 4 A CSM y(·, ·) is a flow method if for all (C, x) ∈ Γ × NN there exists a flow f(zx, ·)
to zx such that, for all i ∈ N, we have: yi(C, x) =

∑
t∈[ei,zx] fi(zx, t)∂iC

∗(t), where ∂iC∗(t) = C∗(t)−
C∗(t− ei).

The following result characterizes the set of flow methods in cost sharing models with technological
cooperation.

Theorem 1 (Bahel and Trudeau (2012)) A CSM satisfies additivity, strong dummy and MDC if and
only if it is a flow method.

As flow methods are characterized by the basic properties of additivity, strong dummy and MDC,
we always assume those in the remainder of the paper. We add to these three properties to characterize
noticeable subsets of flow methods.
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3 Extending the Shapley-Shubik method

In traditional cost sharing models where the cost is a function of the vector of demands, the Shapley-
Shubik method is the Shapley value of the game V (·) such that V (S) = C(xS) is the cost of meeting
the demands of S. Formally,

SSi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(V (S ∪ {i})− V (S)) .

There are many ways to adapt this rule to our framework, depending on how one treats the
technology. One possible adaptation, that we call the public Shapley-Shubik method, simply treats
technologies as public properties and assumes that everybody has access to the best technology (which,
in our case, is always the technology of the largest group, N). Therefore, the stand-alone cost for
coalition S is C(N,

(
xS , 0N\S

)
). The formula for the public Shapley-Shubik method is therefore

SSpubi (C, x) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

(
C(N,

(
xS∪{i}, 0N\(S∪{i})

)
)− C(N,

(
xS , 0N\S

)
)
)
.

We can write it in a more succinct way using C∗ :

SSpubi (C, x) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

(
C∗
(
zS∪{i} + eN\(S∪{i}

)
− C∗

(
zS + eN\S

))
.

At the opposite end of the spectrum, we can have situations where technologies are private proper-
ties, meaning that the technology of agent i can only be used by a coalition that includes i. Therefore,
when computing the stand-alone cost of coalition S, we assume that it can only use the technologies of
its members. As a result, the stand-alone cost for coalition S is C(S, xS). Applying the Shapley value
to the resulting stand-alone game generates the private Shapley-Shubik method, formally defined as
follows:

SSprivi (C, x) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

(
C(S ∪ {i} , xS∪{i})− C(S, xS

)
. (1)

If we use C∗ instead, we obtain:

SSprivi (C, x) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

(
C∗(zS∪{i})− C∗(zS

)
.

Example 1 Consider the cost sharing problem with 3 players where x = (2, 1, 0) and the cost function
C∗ illustrated in Figure 1. Notice that all nodes on the cube that contains the origin must have a cost
of zero, as it corresponds to the vectors z ≤ eN , where there is no demand. Figure 2 presents the
respective flows associated with the public and private Shapley-Shubik methods.
We obtain the following allocations:

SSpub = (3, 1, 0)

SSpriv = (5, 2,−3).

4 Characterization results

Suppose that an agent has a unit of demand that can always be provided at zero cost. Then, this
unit is not relevant and it should be possible to remove it from the problem without affecting the cost
shares. For example, if an agent gets his good from a supplier that offers a free unit for every 10
units bought (of this particular good), the 11th, 22nd, 33rd, etc. units will always be free and can
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be removed from the problem. Similarly, if the agent can always get the first unit for free but needs
to pay for subsequent units, we can remove that first unit from the problem. For any flow method,
a unit of demand can only generate a non-negative cost to its owner; removing that costless unit is
hence to the benefit of its owner. Notice also that if removing a costless unit changes the cost shares,
manipulations of the demand become a possibility in cases where agents can add or hide such costless
units.

Example 2 It is easy to see that in Example 1, the first unit of agent 1 is always free. Therefore, we
should be able to remove that unit from the problem without changing the cost shares. Let x′ = (1, 1, 0)
and C

′∗ be illustrated in Figure 3.
Consider now the problem (C ′′, x) with C ′′∗ illustrated in Figure 4. Observe that now it is the

second unit of agent 1 that is always free. If we remove it, we also obtain the problem (C ′, x′).

The following axiom formalizes the idea expressed above.

Independence of dummy units: A CSM y meets independence of dummy units if, y(C, x) =
y(C ′, (x−i, xi − 1)) whenever C(S ∪ i, (t, a)) = C(S ∪ i, (t, a + 1)) for some a ∈ {0, ..., xi − 1} and all
S ⊆ N\i, t ∈ NS , and where C ′(S ∪ i, (t, b)) = C(S ∪ i, (t, b + 1) if b ≥ a + 1, C ′(T, r) = C(T, r)
otherwise.
The changes from C to C ′ are illustrated in Figure 5. If C contains a flat portion between a and

a + 1 for all coalitions S and all production levels, then we can build and use C ′ that eliminates this
(a+ 1)th unit. Therefore, what was originally the (a+ 2)th unit in the original problem becomes the
(a+ 1)th unit in C ′.
Independence of dummy units restricts considerably the set of flow methods. It is satisfied only

by a subset of fixed-flow methods (Moulin and Sprumont (2005)), which have a particularly nice
interpretation. Suppose that the demand is x and that a CSM is represented by the flow f(zx, ·). If the
demand decreases to y ≤ x and the CSM is a fixed-flow method, then it is represented by a projection
of the flow f(zx, ·) onto the box

[
0N , zy

]
.1

We show in what follows that requiring independence of dummy units leaves us with fixed-flow
methods for which a great number of edges are crossed by a flow of zero. There will be a strictly
positive flow in direction i at point t if all other agents are either not cooperating (tj = 0), only lending
their technology (tj = 1), or sharing their technology and asking for their full demand (tj = xj + 1).
As a result, it suffi ces to define flows to 2eN , as it fully characterizes flows to any other z.

Lemma 1 A flow method that satisfies independence of dummy units
i) is a fixed-flow method.
ii) is such that for any x ∈ NN and i ∈ N, fi(zx, t) = 0 for all t ∈

[
ei, zx

]
if there exists j ∈ N\ {i}

such that tj /∈ {0, 1, xj + 1}
iii) is uniquely characterized by the flows to z = 2eN .

Proof. See Appendix.

Example 3 Recall Example 2. By independence of dummy units, we must have that y(C, x) =
y(C ′, x′) = y(C ′′, x). The results of Lemma 1 are illustrated in Figure 6. If a flow in the figure

1Formally, let f(zx, ·) be a flow to zx and x′ ≤ x. A projection of f(zx, ·) on [0, zx′ [ , denoted px′f(zx, ·) is defined as
follows: for any i ∈ N and t ∈ [0, zx′ [ write M =

{
j ∈ N

∣∣∣tj = x′j + 1} and let
px′fi(zx, t) = 0 if i ∈M

=
∑

wM∈
[
zM
x′ ,z

M
x

] fi(zx, tN\M + wM ) otherwise,

with the convention that the sum is simply fi(zx, t) if M = ∅. Then, a cost sharing method y is a fixed-flow method if
for x′ ≤ x, there is a flow f(zx, ·) representing y(·, x) such that px′f(zx, ·) represents y(·, x′).
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on the left has the same pattern as a flow on the right figure, these flows must be equal. We can see
that with independence of dummy units, when we add a unit of demand for agent 1, the flows on the
edges of the cube [0, zx] are the same as those on the edges of the cube [0, zx′ ] . The only difference is
that, for the case with x, we have inserted a series of null flows between the edges t such that t1 = 2.

Next, we examine the implications of the fair rent property defined in Bahel and Trudeau (2012).
Fair rent requires that the agents with positive demands be always willing to pay the required rent to
the others (who each demand zero) in exchange for their technology.
Fair rent: A CSM y meets fair rent if we have

∑
i∈N(x) yi(C, x) ≤ C(N(x), xN(x)), for any

(C, x) ∈ Γ× NN .
Fair rent is in the vein of core selection: the coalition formed by the agents with positive demands

will accept to cooperate with the other agents (who each demand zero) only if it is not worse off from
this cooperation. In other words, the rent paid for the technological cooperation should not exceed
the savings brought to the coalition.
We also use the anonymity property which says that the identity of the agents should not matter,

just their relevant characteristics in terms of demand, technology and costs.
Denote by Π(N) the set of bijections from N into itself and let π ∈ Π(N). If z ∈ RN+ , define

πz ∈ RN+ by (πz)π(i) = zi for all i ∈ N . If C ∈ Γ, define πC ∈ Γ by πC(πz) = C(z) for all z ∈ NN
Anonymity: A CSM y meets anonymity if y(πC, πx) = πy(C, x) for all π ∈ Π(N), C ∈ Γ, and

x ∈ NN .
We need the following notation: for each π ∈ Π(N), let PUBπ be the Public Technology path

method corresponding to the permutation π. It is such that agents are added in the order π and pay
their incremental cost, while using the technology of the whole group. Formally, let

PUBππi = C(N, (x[πi], 0N\[πi]))− C(N, (x[πi−1], 0N\[πi−1]))

for i = 1, ..., n, with [πi] = {π1, ..., πi} and [π0] = ∅. We have that

SSpub =
1

n!

∑
π∈Π(N)

PUBπ,

i.e. that the public Shapley-Shubik method is the average of Public Technology path methods.
For each π ∈ Π(N), let SRπ be the Single Rent path method corresponding to the permutation π.

It is such that for the given order π, the first n− 1 players aggregate their technologies and each pay
the incremental cost of their demand in that order, using that aggregate technology. The last agent
then arrives and receives the cost difference due to his demand and his technology. Formally, let

SRππi = C
(
N\πn,

(
x[πi], 0N\([πi]∪πn)

))
− C

(
N\πn,

(
x[πi−1], 0N\([πi−1]∪πn)

))
for i = 1, ..., n−1 and SRππn = C(N, x)−C

(
N\πn,

(
xN\πn , 0πn

))
. Let the Average Single Rent method

be defined as
ASR =

1

n!

∑
π∈Π(N)

SRπ.

We can also define the Average Single Rent method in the following way. Let C̃(·, x) be such that

C̃(S, x) =

{ ∑
i∈N\S

C(N\{i},(xS ,0N\(S∪{i})))
|N |−|S| if |S| ≤ |N | − 2

C(S, xS) else
.

Then, the Average Single Rent method is the Shapley value of C̃. Notice that we modify the cost
function in such a way that the cost of supplying the demand of coalition S is computed as the average
of the costs when it has access to the technologies of all but one member of N\S.
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Example 4 Recall the problem (C, x) of Example 1. Figure 7 illustrates the flows associated to the
Average Single Rent method. Notice that while there was no strictly positive flows in the direction of
agent 3 for the public Shapley-Shubik method, here we have one. The private Shapley-Shubik method
has more (see Figure 2), but fair rent only allows us to provide a rent to agent 3 for the cost savings
generated when her technology is applied to the full demand vector of agents 1 and 2.
Applying it to the cost function C, we obtain a cost allocation ASR(C, x) = (4, 2,−2).

We find that adding fair rent further limits the possibilities and yields the convex combinations of
Public Technology path methods and Single Rent path methods.

Theorem 2 A flow method satisfies independence of dummy units and fair rent if and only if it is in
the convex hull of the set

{
SRπ,π∈Π(N)

}
∪
{
PUBπ,π∈Π(N)

}
.

Proof. By Lemma 1, any flow method that satisfies independence of dummy units is uniquely char-
acterized by its flows to 2eN .
Let x = 2eN . We first show that for a flow method that satisfies independence of dummy units

and fair rent, we have that fi(zx, 2ei + eN\(S∪i)) = 0 for all S ⊆ N\i, with |S| > 1. By contradiction,
suppose that fi(zx, 2ei + eN\(S∪i)) = a > 0. Bahel and Trudeau (2012) show that by fair rent, we only
put strictly positive weight to paths where the technology of an agent with no demand is activated
when the demand (of others) is null or when everybody else has their full demand. Since, by Lemma
1, a flow method that satisfies independence of dummy units is a fixed-flow method, the result extends
here to all agents. Therefore, we have that fj(zx, 2ei + eN\(S∪i)) = 0 for all j ∈ N\(S ∪ i) and
fk(zx, 2e

i + eN\(S∪i) + ek) = 0 for all k ∈ S. By flow conservation, this strictly positive flow that
enters at 2ei + eN\(S∪i) has to be moved towards zx. Notice that we will never be able to move it
in directions S, as we would then fail to meet fair rent. Our only possibility is to keep moving it in
directions N\(S ∪ i). However, this won’t allow us to reach zx. We will eventually reach the point
2eN\S where it will be impossible to move the flows anymore. Therefore, we must have that a = 0.

It is easy to see that any flow method such that fi(zx, 2ei + eN\(S∪i)) = 0 for all S ⊆ N\i, with
|S| > 1 is in the convex hull of the set

{
SRπ,π∈Π(N)

}
∪
{
PUBπ,π∈Π(N)

}
and that these methods

satisfy all properties.
Adding anonymity leaves us with the convex combinations of the public Shapley-Shubik method

and the Average Single Rent method.

Theorem 3 A flow method satisfies independence of dummy units, anonymity and fair rent if and
only if it is a convex combination of SSpub and ASR.

Proof. By Theorem 2, we have that any flow method that satisfies independence of dummy units
and fair rent is uniquely characterized by its flows to 2eN and that fi(zx, 2ei + eN\(S∪i)) = 0 for all
S ⊆ N\i, with |S| > 1.
Let x = 2eN . Fix k ∈ N\i and let α ≡ fi(zx, 2e

i + eN\i,k). By anonymity, we must have that
fi(zx, 2e

i + eN\i,j) = α ≥ 0 for all j ∈ N\i. By anonymity and the properties of a flow, we must have∑
t∈[ei,eN ] fi(zx, t+ ei) = 1

n . Therefore, we must have that fi(zx, 2e
i + eN\i) = 1

n − (n− 1)α.
Next, we show that each value of α fully determines flows to zx.
For any t, define N1(t) = {j ∈ N |tj = 1} . Suppose that

∑
j∈N(t) fj(zx, t) > 0. By fair rent, if

|N(t)| < n − 1, we have that fk(zx, t + ek) = 0 for all k such that tk = 0. By anonymity and flow

conservation, we have fk(zx, t + ek) =
∑

j∈N(t) fj(zx,t)

|N1(t)| for all k ∈ N1(t). If N(t) = N\k, fair rent puts
no restrictions. By flow conservation we have that fk(zx, t+ ek) =

∑
j∈N(t) fj(zx, t).

Since we have defined above all of the flows that come out of
]
0, eN

]
, we have everything to define

flows for all points in ]0, zx] .
By the non-negativity of flows, we must have that 1

n − (n−1)α ≥ 0 or α ≤ 1
n(n−1) as well as α ≥ 0.

Therefore, any α ∈
[
0, 1

n(n−1)

]
generates flows fα(zx, ·) such that the corresponding flow method
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satisfies independence of dummy units, anonymity and fair rent. It remains to show that any member
of that family is a convex combination of SSpub and ASR.
We can verify that both SSpub and ASR satisfy the properties. Let fSS

pub

(zx, ·) and fASR(zx, ·) be
the flows generating respectively SSpub and ASR. Clearly, fSS

pub

i (zx, 2e
i + eN\i) = 1

n , implying that

fSS
pub

= f0. Also, we have that fASRi (zx, 2e
i + eN\i) = 0, as this is when agent 1 adds his demand

only after everybody has contributed technologically but nobody else has added their demand. This
never happens in our definition of ASR. In a given order, if i is in the first n− 1 agents, his demand
is added when the technology of the last agent is missing; if i is the last agent, his demand is added
when all other demands have been added. This implies that fASR = f

1
n(n−1) . It is easy to see that the

convex combination of SSpub and ASR generates the whole family of rules represented by the flows

fα(zx, ·), with α ∈
[
0, 1

n(n−1)

]
.

It is obvious from the previous theorem that, among this set of methods, the Average Single Rent
method maximizes the rent paid by the agents with positive demands to those that have no demand.
By contrast, the public Shapley-Shubik method minimizes this rent, setting it to zero.
These methods thus make very little use of the technological contributions: the public Shapley-

Shubik method ignores them completely while the Average Single Rent method uses only the con-
tribution of an agent’s technology when she joins the whole group and their full demand vector. A
natural way to proceed if we want to consider technological contributions is to use Private Technol-
ogy path methods: let PRIV π be the Private Technology path method corresponding to the per-
mutation π. It is such that agents are added in the order π and pay their incremental cost, with
agents coming in with their technology and their demand when they join the group. Formally, let
PRIV ππi = C([πi] , x

[πi])− C([πi−1] , x[πi−1]) for i = 1, ..., n. Recalling the private Shapley-Shubik rule
introduced in Equation (1), one can see that SSpriv = Sh(C) = 1

n!

∑
π∈Π(N) PRIV

π, i.e. that the
private Shapley-Shubik method is the average of Private Technology path methods. To characterize it
we replace fair rent by the following requirement:
Dummy over total cost: A CSM y meets dummy over total cost if yi(C, x) = 0 whenever

C(S, r) = C(S ∪ {i} , (r, xi)) for all S ⊆ N\i and all r ∈
[
0, xS

]
.

The property has a nice interpretation: if an agent can always be added at no extra cost, he should
be assigned a share of zero. Notice that this can be because the agent is a dummy, but it could
also be because the savings generated by his technology are always exactly compensated by the extra
cost generated by his demand. In that sense, dummy over total cost imposes that we value in the
same manner one dollar of savings coming from i’s technology and one dollar of cost generated by her
demand.

Theorem 4 A flow method satisfies independence of dummy units and dummy over total cost if and
only if it is a convex combination of private technology path methods.

Proof. By Theorem 2, we have that any flow method that satisfies independence of dummy units is
uniquely characterized by its flows to 2eN . Let x = 2eN . It it easy to see that dummy over total cost
implies that

fi(zx, z
S + ei) = fi(zx, z

S + 2ei) for all ∅ 6= S ⊆ N\i. (2)

Next, we show that fi(zx, zS + eT + aei) = 0 for all S ⊂ N\i, ∅ 6= T ⊆ N\(S ∪ i) and a = 1, 2.
Suppose by contradiction that fi(zx, zS + eT + 2ei) = ε > 0 for some S ⊂ N\i, ∅ 6= T ⊆ N\(S ∪ i).
For any j ∈ T, we must have, by (2), that fj(zx, zS + eT + 2ei) = fj(zx, z

S + eT + 2ei + ej). This
means that the flow fi(zx, z

S + eT + 2ei) = ε cannot be moved in direction j, for any j ∈ T. It also
cannot be moved in direction k for any k ∈ S, as all those agents already have their complete demand.
Therefore, the flow can only be moved in direction l, for l ∈ N\(S ∪ T ∪ i). By flow conservation, this
flow eventually reaches the point zN\T + eT . We would need to move it to zN\T + eT + eR for some
R ⊆ T, but we can’t, as (2) implies that fj(zx, zN\T + eT ) = fj(zx, z

N\T + eT + ej) for all j ∈ T.
Therefore, we can conclude that fi(zx, zS + eT + 2ei) = 0 for all S ⊂ N\i, ∅ 6= T ⊆ N\(S ∪ i).
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We can proceed in the same manner to show that fi(zx, zS + eT + ei) = 0 for all S ⊂ N\i,
∅ 6= T ⊆ N\(S ∪ i), now that we know that fi(zx, zS + eT + 2ei) = 0, and thus that any positive flow
would not be movable in direction i.
Remaining flow methods are such that fi(zx, zS+ei) = fi(zx, z

S+2ei) = αSi for all i ∈ N, S ⊆ N\i
and fi(zx, t + ei) = fi(zx, t + 2ei) = 0 if tj = 1 for some j ∈ N\i. It is easy to see that all such flow
methods are convex combinations of private technology path methods.

Adding anonymity trivially yields the average of private technology path methods, which is the
private Shapley-Shubik method.

Theorem 5 The private Shapley-Shubik method SSpriv is the unique flow method that satisfies inde-
pendence of dummy units, anonymity and dummy over total cost.

Thus, if we believe that savings from technological improvements and incremental costs caused by
additional units of demand should be weighted equally, the only anonymous flow method left is the
private Shapley-Shubik method. By Theorem 2, it fails to meet fair rent. In a similar manner, the
previous theorem implies that both the public Shapley-Shubik and the Average Single Rent methods
fail to meet dummy over total cost, as they do not give the same weight to technological improvements
and demand increments.

5 Discussion

Given that flow methods satisfying independence of dummy units are characterized by their flow to
2eN (see Lemma 1), we illustrate these flows for the three methods discussed in the paper for the case
of 3 agents depicted in Figure 8. Notice that the methods cover the cases where all positive flows come
out of the cube

[
0, eN

]
when (a) only one agent (private Shapley-Shubik), (b) all but one (Average

Single Rent), (c) all agents (public Shapley-Shubik) have shared their technologies before we start
introducing demands. For n > 3 agents, we have different symmetric methods where positive flows
come out of cube

[
0, eN

]
when 1 < k < n − 1 agents have shared their technologies before we start

introducing demands. However, these methods fail both fair rent and dummy over total cost.
Section 4 shows that in a context where we have technological cooperation as well as production

cooperation, stability is an issue: the property of fair rent, which is only a weak version of core selection,
is quite restrictive. Combined with independence of dummy units and anonymity, it leaves us with
methods that barely reward any technological contributions. We thus have to choose between (more
fully) rewarding agents for their technologies and stability requirements. This choice is not trivial and
should depend on the characteristics of the problem in hand. Obviously, additional constraints on the
eligible cost functions (coming from the set of problems considered) could potentially allow for more
possibilities to combine these conflicting properties.
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A Appendix: Proof of Lemma 1

Proof. Let y be a flow method represented by the flow f that satisfies independence of dummy units.
i) Showing that y is a fixed-flow method.
To show that we have a fixed-flow method, it is suffi cient to show that for x and x′ such that xi > 0

and x′ = (x−i, xi − 1), we have:

a) fj(zx′ , t+ xie
i) = fj(zx, t+ xie

i) + fj(zx, t+ (xi + 1)ei) for all j ∈ N\i, t ∈
[
ej , z

N\i
x

]
,

b) fj(zx′ , t) = fj(zx, t) for all j ∈ N\i, t ∈
[
ej , zx′ − ei

]
and

c) fi(zx′ , t) = fi(zx, t) for all t ∈
[
ei, zx′

]
.

The three conditions impose restrictions on the changes in the flows if we remove one unit of
demand for agent i. Condition a) tells us how the projection affects the flows in directions j 6= i for
edges where i gets his full demand. Conditions b) and c) say that other flows are unchanged.
To show a), we need to show that fj(zx′ , t+ xie

i + aej) = fj(zx, t+ xie
i + aej) + fj(zx, t+ (xi +

1)ei + aej) for all j ∈ N\i, t ∈
[
0, z

N\{i,j}
x

]
and a = 1, ..., xj + 1. Because of the restrictions on what

constitutes an admissible cost function, we use different methods, depending on the set of agents for
which tk = 1, as the cost function cannot be increasing when we go from tk = 0 to tk = 1 and cannot
be decreasing when we go from tk = 1 to tk = 2.

DefineN0(t) = {k ∈ N\ {i, j} |tk = 0} , N1(t) = {k ∈ N\ {i, j} |tk = 1} andNd(t) = {k ∈ N\ {i, j} |tk ≥ 2} .
We first suppose that xi ≥ 2.

Case 1: a ≥ 2.

Define C such that C∗(r) = 1 if ri ≥ xi, rj ≥ a, rNd(t) ≥ tNd(t) and rN0(t) = 0N0(t), with C∗(r) = 0

otherwise. Let Ĉ be such that Ĉ∗(r) = 0 if rN1(t) = eN1(t) and Ĉ∗(r) = C∗(r) otherwise. If N1(t) 6= ∅,
it follows from Theorem 1 that

yj(C, x)− yj(Ĉ, x) =
∑

r∈
[
tNd(t),z

Nd(t)
x

]
(

fj(zx, r + eN1(t) + xie
i + aej)+

fj(zx, r + eN1(t) + (xi + 1)ei + aej)

)
.

Observe that there is never any extra cost to provide i’s last unit in C and Ĉ. We can apply
independence of dummy units to remove agent i’s last unit and we must have that y(C, x) = y(C ′, x′),
y(Ĉ, x) = y(Ĉ ′, x′) where C ′∗(r) = C∗(r) and Ĉ ′∗(r) = Ĉ∗(r) for all r ∈ [0, zx′ ] . We have that
yj(C

′, x′)− yj(Ĉ ′, x′) =
∑
r∈
[
tNd(t),z

Nd(t)
x

] fj(zx′ , r + eN1(t) + xie
i + aej). We thus have that

∑
r∈
[
tNd(t),z

Nd(t)
x

]
(
fj(zx, r + eN1(t) + xie

i + aej)+
fj(zx, r + (xi + 1)ei + aej)

)
=

∑
r∈
[
tNd(t),z

Nd(t)
x

] fj(zx′ , r + eN1(t) + xie
i + aej)

(3)
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Let t = z
Nd(t)
x and see that we have that fj(zx, z

Nd(t)
x +eN1(t) +xie

i+aej)+fj(zx, z
Nd(t)
x +eN1(t) +(xi+

1)ei+aej) = fj(zx′ , z
Nd(t)
x +eN1(t)+xie

i+aej).Define a sequence s1, ..., sK , withK =
∑
k∈Nd(t)(zk−tk),

s1 = zNd(t), sK = tNd(t) and sl = sl−1 − ek for some k ∈ Nd(t). Proceeding recursively, by replacing
t by sk in the chosen sequence, yields that fj(zx, t + xie

i + aej) + fj(zx, t + (xi + 1)ei + aej) =

fj(zx′ , t+ xie
i + aej) for all t ∈

[
0, z

N\{i,j}
x

]
and 2 ≤ a ≤ xj + 1.

If N1(t) = ∅, we have that yj(C, x) =
∑
r∈
[
tNd(t),z

Nd(t)
x

]( fj(zx, r + xie
i + aej)

+fj(zx, r + (xi + 1)ei + aej)

)
.We can

apply independence of dummy units to remove agent i’s last unit and we must have that y(C, x) =
y(C ′, x′). Since yj(C ′, x′) =

∑
r∈
[
tNd(t),z

Nd(t)
x

] fj(zx′ , r+xie
i+aej), we obtain Equation (3) once again

(with eN1(t) = 0N ). Using the same recursive procedure, we obtain fj(zx, t + xie
i + aej) + fj(zx, t +

(xi + 1)ei + aej) = fj(zx′ , t+ xie
i + aej) for all t ∈

[
0, z

N\{i,j}
x

]
and 2 ≤ a ≤ xj + 1.

Case 2: a = 1.

Define the cost function D such that D∗(r) = 1 if ri ≥ xi, rNd(t) ≥ tNd(t), rN0(t) = 0N0(t) and there
exists l ∈ N1(t) ∪ {j} such that rl = 0, with D∗(r) = 0 otherwise. Notice that agent j makes a non-
zero contribution only when he adds his technology to those of agents in N1(t) and agent i demands
at least xi − 1, agents in Nd(t) demand at least tNd(t) − eNd(t). We thus obtain that yj(D,x) =
−
∑
r∈
[
tNd(t),z

Nd(t)
x

] (fj(zx, r + eN1(t) + xie
i + ej) + fj(zx, r + eN1(t) + (xi + 1)ei + ej)

)
. Observe that

there is never any extra cost to provide i’s last unit in D. We can apply independence of dummy units
to remove agent i’s last unit and we must have that y(D,x) = y(D′, x′) where D′∗(r) = D∗(r) for all
r ∈ [0, zx′ ] . Since yj(D′, x′) = −

∑
r∈
[
tNd(t),z

Nd(t)
x

] fj(zx′ , r + eN
1(t) + xie

i + ej), we obtain

∑
r∈
[
tNd(t),z

Nd(t)
x

]
(

fj(zx, r + eN1(t) + xie
i + ej)+

fj(zx, r + eN1(t) + (xi + 1)ei + ej)

)
=

∑
r∈
[
tNd(t),z

Nd(t)
x

] fj(zx′ , r+ eN
1(t) + xie

i + ej).

Applying the same recursive procedure as above allows us to conclude that fj(zx, t + xie
i + aej) +

fj(zx, t+ (xi + 1)ei + aej) = fj(zx′ , t+ xie
i + aej) for all t ∈

[
0, z

N\{i,j}
x

]
and a = 1.

We now discuss the case where xi = 1. Repeat the proof above by adapting the definitions of C
and D: instead of using the condition that ri ≥ xi to assign a cost of one to r, use instead ri ≥ 0. This
gives us fj(zx, t+aej)+fj(zx, t+ei+aej)+fj(zx, t+2ei+aej) = fj(zx′ , t+aej)+fj(zx′ , t+ei+aej).
We then need to change once again the construction of C and D, using now the condition that ri = 0
to assign a cost of one to r. This gives us fj(zx, t+aej) = fj(zx′ , t+aej). Combining with the previous
result, we obtain fj(zx, t + xie

i + aej) + fj(zx, t + (xi + 1)ei + aej) = fj(zx′ , t + xie
i + aej) for all

t ∈
[
0, z

N\{i,j}
x

]
, xi = 1 and a = 1, ..., xj + 1.

To show b), we need to show that fj(zx′ , t + bei + aej) = fj(zx, t + bei + aej) for all j ∈ N\i,
t ∈
[
0, z

N\{i,j}
x

]
, a = 1, ..., xj + 1 and b = 0, ..., xi − 1.

For b ≥ 2, repeat the first part of the proof of a) (for xi ≥ 2) by adapting the definitions of C and
D: instead of using the condition that ri ≥ xi to assign a cost of one to r, use instead ri ≥ b. We then
obtain equations such as

∑
r∈
[
tNd(t),z

Nd(t)
x

] fj(zx, r+bei+aej) =
∑
r∈
[
tNd(t),z

Nd(t)
x

] fj(zx′ , r+bei+aej).

Using the same recursive procedure allows us to conclude that fj(zx′ , t+bei+aej) = fj(zx, t+be
i+aej)

for all j ∈ N\i, t ∈
[
0, z

N\{i,j}
x

]
, a = 1, ..., xj + 1 and b = 2, ..., xi − 1.

For b ≤ 1, repeat the second part of the proof of a) (for xi = 1).
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Part c) follows by flow conservation.

ii) Showing that fi(zx, t) = 0 for all t ∈
[
ei, zx

]
if there exists j ∈ N\ {i} such that tj /∈

{0, 1, xj + 1} .

Fix j ∈ N\ {i}, x ∈ RN+ , t ∈
[
2eN\{i,j}, z

N\{i,j}
x

]
and a ∈ {2, ..., xi + 1} . Define C1 such that

C∗1 (r) =

{
1 if rN\{i,j} ≥ t, rj ≥ 2 and ri ≥ a

0 otherwise

We have that yi(C1, x) =
∑
r∈
[
t,z

N\{i,j}
x

]∑xj+1
m=2 fi(zx, r + mej + aei). Observe that there is never

any extra cost to provide j’s last xj − 1 units in C1. By independence of dummy units, we can remove
agent j’s last xj − 1 units of demand and we must have that y(C1, x) = y(C ′1, x

j), with C ′1 such that
C ′∗1 (r) = C∗1 (r) for all r ∈ [0, zxj ] and xj = (x−j , 1)
We have that yi(C ′1, x

j) =
∑
r∈
[
t,z

N\{i,j}
x

] fi(z′x, r + ej + aei).

Define C2 such that

C∗2 (r) =

{
1 if rN\{i,j} ≥ t, rj = xj + 1 and ri ≥ a

0 otherwise

We have that yi(C2, x) =
∑
r∈
[
t,z

N\{i,j}
x

] fi(zx, r + (xj + 1)ej + aei). Observe that there is never

any extra cost to provide j’s first xj − 1 units in C2. By independence of dummy units, we can remove
agent j’s first xj − 1 units of demand and we must have that y(C2, x) = y(C

′

2, x
j), with C ′2 such that

C ′∗2 (r) = C∗2 (r) if rj ≤ 1 and C ′∗2 (r) = C∗2 (r + (xj + 1)ej) otherwise. Observe that C
′

1 = C
′

2.
2

We have that yi(C
′

2, x
j) =

∑
r∈
[
t,z

N\{i,j}
x

] fi(zx′ , r + ej + aei).

Combining the two results above, we must have that

∑
r∈
[
t,z

N\{i,j}
x

]
xj+1∑
m=2

fi(zx, r +mej + aei) =
∑

r∈
[
t,z

N\{i,j}
x

] fi(zx, r + (xj + 1)ej + aei)

Let t = z
N\i,j
x and see that it implies that fi(zx, z

N\i,j
x + mej + aei) = 0 for m = 2, ..., xj . De-

fine a sequence s1, ..., sK , with K =
∑
k∈N\i,j (zk − sk) , s1 = zN\i,j , sK = s and sl = sl−1 − ek

for some k ∈ N\i, j. Proceeding recursively, by replacing t by sk in the chosen sequence, yields that
fi(zx, t + mej + aei) = 0 for m = 2, ..., xj and any t ∈

[
2eN\{i,j}, z

N\{i,j}
x

]
. Using the same method

as in the proof of part a), we can extend to any t ∈
[
0, z

N\{i,j}
x

]
and a = 1, ..., xi + 1. Since it holds

for all i, j ∈ N and t ∈
[
0, z

N\{i,j}
x

]
, we can conclude that fi(zx, t) = 0 for all t ∈

[
ei, x

]
if there exists

j ∈ N\ {i} such that tj /∈ {0, 1, xj + 1} .

iii) Showing that the CSM is uniquely defined by the flows to 2eN .

First, observe that by the flow conservation property, result ii) also implies that fi(zx, t + aei) =

fi(zx, t+ (a+ 1)ei) for all t ∈
[
0, z

N\{i}
x

]
and a = 1, ..., xi.

Take any x ∈ NN such that x ≥ 2eN . We show that if the flows to zx are well defined, then so are
the flows to zx + ei and zx − xiei, i.e. problems where we add to the demand of agent i and where we
remove all units of demand of agent i.

2Starting from C2 and removing the first xj − 1 units of demand of agent j leaves us with the same cost function as
if we start with C1 and remove the last xj − 1 units of demand of agent j.
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For any j ∈ N\i, s ∈
[
0, z

N\i,j
x

]
and b ∈ {1, ..., xj + 1} , we must have, by i) and ii), that fj(zx +

ei, s + (xi + 1)ei + bej) = 0, fj(zx + ei, s + (xi + 2)ei + bej) = fj(zx, s + (xi + 1)ei + bej). We
must also have that fj(zx + ei, s + aei + bej) = fj(zx, s + aei + bej) for all a = 0, 1, ..., xi. For

all s ∈
[
0, z

N\i
x

]
and a = 0, 1, ..., xi + 1, we have that fi(zx + ei, s + aei) = fi(zx, s + aei) and

fi(zx + ei, s+ (xi + 2)ei) = fi(zx, s+ (xi + 1)ei). We have thus fully defined the flows to zx + ei.

For any j ∈ N\i, s ∈
[
0, z

N\i,j
x

]
and b ∈ {1, ..., xj + 1} we must have by the fact that the CSM is a

fixed-flow method that fj(zx−xiei, s+ei+bej) =
∑xi+1
k=1 fj(zx, s+kei+bej) while fj(zx−xiei, s+bej) =

fj(zx, s + bej). Also, for all s ∈
[
0, z

N\i
x

]
we have that fi(zx − xiei, s + ei) = fi(zx, s + ei). We have

thus fully defined the flows to zx − xiei.
Therefore, if the flow to 2eN is well defined, it implies a unique flow to any z ∈ NN .
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Figure 1: Cost function C∗ from Example 1

Figure 2: Flows for the public Shapley-Shubik (left) and private Shapley-Shubik (right) methods in
Example 1
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Figure 3: Cost function C ′∗ from Example 2

Figure 4: Cost function C ′′∗ from Example 2
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Figure 5: Illustration of Independence of Dummy Units: Cost C(S ∪{i} , (t, ti)) as a function of ti, for
a fixed coalition S and a fixed level of production t.
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Figure 6: Restrictions on flows coming from independence of dummy units, with x′ = (1, 1, 0) and
x = (2, 1, 0). Edges with the same pattern must have equal flows.
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Figure 7: Flows for the Average Single Rent method in Example 4
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Figure 8: Flows to (2, 2, 2) for the three methods
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