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Abstract

Minimum cost spanning tree problems connect agents e¢ ciently to a source when agents are
located at di¤erent points and the cost of using an edge is �xed. The folk and cycle-complete cost
sharing solutions always o¤er core allocations. We provide similar characterizations for both. A
new property is based on the following observation: when all agents have the same cost to connect
to the source, we can connect one of them to the source then connect all other agents to him, as if
he was the source. Cost sharing should also be done in these two steps. We also use some common
properties: Core Selection, Piecewise Linearity and an independence property.

The solutions are di¤erentiated by properties that apply when the cheapest edge to the source
gets cheaper. Either the savings are equally distributed among all agents (folk) or the agent on
that edge gets all of the savings (cycle-complete).

Keywords: Minimum cost spanning tree problems; folk solution; cycle-complete solution; core.
JEL Classi�cations: C71, D63

1 Introduction

Minimum cost spanning tree (mcst) problems model a situation where agents are located at di¤erent
points and need to be connected to a source in order to obtain a good or information. Agents do not
care if they are connected directly to the source or indirectly through other agents who are. The cost
to build a link between two agents or an agent and the source is a �xed number, meaning that the cost
is the same whether one or ten agents use that particular link. Mcst problems can be used to model
various real-life problems, from telephone and cable TV to water supply networks.
We are interested in the cost sharing problem related to mcst problems. Once agents decide to build

the network, the common cost of construction must be split among the participants. The application
of the Shapley value to this problem, �rst studied in Bird (1976) and known as the Kar solution (Kar
(2002)), has interesting properties but might be outside of the core, meaning that some coalitions might
be better o¤ leaving the group and undertaking the project by themselves. The folk (�rst suggested
by Feltkamp et al (1994) and rediscovered independently by Bergantinos and Vidal-Puga (2007)) and
cycle-complete (Trudeau (2012b)) solutions o¤er similar remedies. Both modify the cost matrix before
applying the Shapley value on the modi�ed game. To obtain the modi�cations needed to compute the
folk solution, for each pair of agents (or for each agent and the source), we �nd the path between them
for which the most expensive edge is as cheap as possible. We then assign that cost to this pair of
agents in the modi�ed matrix. For the cycle-complete solution, we proceed in the same manner, but
look at cycles instead of paths.
Adding to the similarities of the methods, this paper provides similar characterizations for both

solutions. To do so, we introduce a new property called Decomposition. Suppose that all agents have
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the same high cost to connect to the source. Then, we can �nd the mcst as follows: we pick one agent
randomly, and connect him to the source. The problem then becomes as if that agent was the source, as
others have to connect to him, directly or indirectly. The Decomposition property states that the cost
sharing can be done in the same manner. We combine this property with the well-known properties of
Core Selection and Piecewise Linearity (Bogomolnaia and Moulin (2010)), as well as an independence
property between groups that is similar to those used in Kar (2002), Bergantinos and Vidal-Puga
(2007) and Trudeau (2013). The di¤erence is that here it applies on branches of the minimum cost
spanning tree: if S connects to the source through agent i and is completely independent of the other
agents, we should be able to remove agents not in S [ fig from the problem without a¤ecting the cost
shares of agents in S:
The �nal property deals with the following problem: suppose that all agents can connect at zero

cost to agent i; who has the lowest cost to connect directly to the source. If the cost to connect
agent i drops further, how should we divide the savings? The property of Constant Share of Cost
Reduction imposes that this be done in a consistent manner, with agent i getting the same proportion
of the savings regardless of the number of agents. This property is enough, when combined with
the properties described above, to characterize the convex combination of the folk and cycle-complete
solutions. There are two natural strengthenings of that property: Equal Share of Cost Reduction
says that the savings should be split evenly among all agents, while Full Share of Cost Reduction
states that agent i should get all of it. The di¤erence between the two properties is a di¤erence of
interpretation: does an agent have property rights over his location (i.e., can he prevent others from
connecting through his location) and is an agent responsible for his location and the corresponding
costs?
The characterization of the folk solution is obtained with Equal Share of Cost Reduction, while the

characterization of the cycle-complete solution uses Full Share of Cost Reduction, illustrating clearly
the di¤erence in approach between the two methods. The characterization of the folk solution can be
further re�ned by dropping the Decomposition property.
The paper is divided as follows: Section 2 de�nes the minimum cost spanning tree problems and

the two cost sharing solutions studied in this paper. The properties used in the paper are described
in Section 3. Characterization results are in Section 4. Section 5 contains some discussions. Some
supporting lemmas are in Appendix.

2 The setting

2.1 Minimum cost spanning tree problems

Let N = f1; 2; :::g be the set of potential participants and N � N be the set of agents that actually
need to be connected to the source, denoted by 0. Let N0 = N [f0g : For any set Z � N[f0g ; de�ne
Zp as the set of all non-ordered pairs (i; j) of elements of Z: In our context, any element (i; j) of Zp

represents the edge between i and j: Let c = (ce)e2Np
0
be a vector in RN

p
0

+ with ce representing the cost
of edge e: Let �(N) be the set of all cost vectors when the set of agents is N , with N � N . Let �
be the set of all cost vectors, for all possible N . Since c assigns cost to all edges e, we often abuse
language and call c a cost matrix. A minimum cost spanning tree problem is a triple (0; N; c): Since 0
does not change, we omit it in the following and simply identify a mcst problem as (N; c); with N � N
and c 2 �(N):
A cycle pll is a set of K � 3 edges (ik; ik+1); with k 2 [0;K � 1] and such that i0 = iK = l and

i1; :::; iK�1 distinct and di¤erent than l: A path plm between l and m is a set of K edges (ik; ik+1);
with k 2 [0;K � 1] ; containing no cycle and such that i0 = l, iK = m and i1; :::; iK�1 distinct and
di¤erent from l and m: Let Plm(N0) be the set of all such paths between l and m: For a set of edges
Y 2 Np

0 ; we say that Y is in S � N0 if for all (i; j) 2 Y; i; j 2 S: We say that Y contains a cycle in S
if, for all i 2 S; there exists a cycle pii in S such that all elements of pii are also in Y: We say that a
path plm is a free path if ce = 0 for all e 2 plm:
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A spanning tree is a non-orientated graph without cycles that connects all elements of N0: A
spanning tree t is identi�ed by the set of its edges. Its associated cost is

P
e2t ce: The spanning trees

with the minimum cost are called minimum cost spanning trees (mcst). It is well known that we can
�nd a mcst in polynomial time (Prim (1957), Kruskal (1956)). Let C(N; c) be the cost of these mcst.
Let t� be one of those mcst and T �(c) be the set of all mcst. For any t� 2 T �(c); pij(t�) is the unique
path from i to j in t�:We say that j is a follower of i in c if for all t� 2 T �(c) there is a kt� 2 N0n fi; jg
such that (i; kt�) 2 p0j(t�):
Let cS be the restriction of the cost matrix c to the coalition S0 � N0: Let C(S; c) be the cost of

the mcst of the problem (S; cS): Given these de�nitions, we say that C is the stand-alone cost function
associated with c:

2.2 Cost sharing solutions

For a problem (N; c); a cost allocation y 2 RN assigns a cost share to each agent, and the budget
balance condition is

P
i2N yi = C(N; c):

A cost sharing solution (or rule) assigns a cost allocation y(N; c) to any admissible mcst problem
(N; c): We introduce the two solutions that are the focus of the paper.
From any cost matrix c; we can de�ne the irreducible cost matrix �c as follows:

�cij = min
pij2Pij(N0)

max
e2pij

ce for all i; j 2 N0:

From any cost matrix c; we can de�ne the cycle-complete cost matrix c� as follows:

c�ij = max
k2Nnfi;jg

c
Nnfkg
ij for all i; j 2 N

c�0i = max
k2Nnfig

c
Nnfkg
ij for all i 2 N:

where cNnfkgij indicate the cost of edge (i; j) on the matrix that we �rst restricted to agents in Nn fkg
before transforming into an irreducible matrix.
The cycle complete matrix can also be de�ned using cycles (Trudeau (2012b)): for edge (i; j); we

look at cycles that go through i and j: If there is one such cycle such that its most expensive edge is
cheaper than a direct connection on edge (i; j); we assign this cost to edge (i; j).
The folk solution is the Shapley value of C(�; �c) while the cycle-complete solution is the Shapley

value of C(�; c�): The Kar solution yK is simply the Shapley value of C(�; c):

3 Properties

We use a set of properties that include some familiar ones as well as some new ones. We start by
de�ning the new ones.
To introduce the Decomposition property, consider Figure 1a, where agents are identi�ed in bold

and other numbers are the cost of the di¤erent edges. All agents have the same cost to connect to the
source, with costs to connect two agents together being smaller. An obviously optimal way to construct
the mcst is to randomly select one agent to connect to the source, and to then connect everybody else
to that agent. Therefore, once we have selected who to connect to the source, the problem becomes
as if that agent is the source. Figure 1b shows the resulting problems if we connect one of the agents
to the source.
The Decomposition property goes through with that idea not only for building the mcst, but also

for sharing its cost. More precisely, if i was selected to be connected to the source, he pays that cost,
while the cost to connect the remaining agents is computed on the reduced problem where i acts as the
source. Since agent i pays more than others, it is not fair to him. To recover fairness, every agent takes
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Figure 1: Illustration of Decomposition

its turn being the source, and we take the average. Decomposition has a nice consistency implication,
as it treats in the same manner problems where agents all have to connect to a given node, regardless
of the fact that this node contains the source or an agent.
The property bears resemblance to the Problem Separation property of Trudeau (2013), which

also aims to divide the connection to the source from the connection between agents. The main
di¤erence is that Problem Separation has a larger scope, applying in cases where agents have di¤erent
direct connection costs to the source. There is also a di¤erent treatment of the problem of connecting
agents together. The larger scope results in the cycle-complete solution failing to satisfy the Problem
Separation property. While Decomposition has a limited scope, in the cases where it applies the
interpretation and relevance of the process is absolutely natural.
We now formally de�ne the property. Let c0i be such that for all j; k 2 Nn fig ; c0i0j = cij and

c0ijk = cjk: It is the cost matrix that represents the situation when we assume that agent i is the source.
C(�; c0i) is the corresponding stand-alone game, de�ned over the set of agents Nn fig : Let ĉ be such
that for all i 2 N; ĉ0i = c0i; while ĉij = 0 for all i; j 2 N: Then, all that is left are the costs to connect
agents to the source. The mcst is such that one agent is connected to the source and all others are
connected to him (at no cost since ĉij = 0 for all i; j 2 N):
Decomposition: For any mcst problem (N; c) such that c0i = a; cjk � a for all i; j; k 2 N; we

have yi(N; c) =
P

j2Nnfig
yi(Nnfjg;c0j)

jN j + yi(N; ĉ) for all i 2 N:
Notice that if c0i = a; cjk � a for all i; j; k 2 N and T � Nn fig we have C(T; c0i) = C(T[fig ; c)�a:
Our second property is the Branch Cutting property, which is close to the Group Independence

and Separability properties found in Kar (2002), Bergantinos and Vidal-Puga (2007) and Trudeau
(2013). These properties state that if we can split our agents into two groups that can be connected
independently to the source, then we can do the cost sharing separately on these two groups. The
property we introduce also applies this independence to di¤erent branches of the mcst.
Consider Figure 2a, where (one of) the mcst is identi�ed by the dashed lines. Agents 1 and 2 form

a branch that connects independently to the source. Even more, the edges between f1; 2g and f3g are
all at least as expensive as the edges connecting these agents to the source, meaning that there are
never any gains in using them. Since groups f1; 2g and f3g have no gains to cooperate together, we
might as well treat them separately. Our Branch Cutting property, just like Group Independence, says
that in that case, we can remove agent 3 from the problem to compute the shares of agents 1 and 2;
and vice-versa. Branch Cutting, however, implies more. Consider Figure 2b. Agents 1 and 2 still have
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Figure 2: Illustration of Branch Cutting

no gains to cooperate with agent 3, but now instead of connecting independently to the source, they
connect independently to agent 4, who has an advantageous connection to the source. While Group
Independence says nothing about this case, we argue that this situation is no di¤erent than the one in
Figure 2a, and that we should still be able to remove agent 3 to compute the shares of agents 1 and
2, and vice-versa. The Branch Cutting property does just that. Just like the name of the property
alludes to, if two branches of the mcst are independent, we should be able to "cut" one of them and
compute the shares of the other branch using that reduced problem.1

Suppose that the branch that we are considering connects at node k: We further restrict the
application of this property to cases where the edges within the branch are at least as costly as the
most expensive edge on an optimal path from the source to k: In those cases, when building the mcst,
agent k will be connected to the source before any member of the branch. Once k is connected to the
source, it remains to connect members of the branch to k; with these members having no interest in
being connected to anybody else.
We allow k to be the source; in that case, Branch Cutting is equivalent to the Group Independence

property of Trudeau (2013).
We now formally de�ne the property. To de�ne the restricted games once we have removed some

branches, we need the following notation. Since for t; t0 2 T �(c); maxe2p0k(t) ce = maxe2p0k(t0) ce; let

p�0k(c) � maxe2p0k(t) ce: For k 2 N0 and S � Nn fkg ; let ck;S 2 �(S [ fkg) be such that c
k;S
0k = p�0k(c)

and ck;Sij = cij for all i; j 2 S0 [ fkg, with (i; j) 6= (0; k): By convention, there is no cost to the path
p00 and a problem (S [ f0g ; c0;S) is the same as (S; cS):
Branch Cutting: For any mcst problem (N; c), if there exists S � N and k 2 N0nS such that i)

for all i 2 S; i is a follower of k in c, ii) for all i 2 S; j 2 Nn(S [ fkg); cij � max fc0i; c0jg and iii)
cii0 � p�0k(c) for all i; i0 2 S [ fkg ; then

yi(N; c) =

�
yi(S [ fkg ; ck;S) if i 2 S

yi(NnS; cNnS) if i 2 Nn (S [ fkg)
.

In words, condition i) makes sure that S forms a branch that always connects to the source through
k; condition ii) guarantees that there are no gains to connect with other agents and iii) that the costs

1With the technical condition that if the branch connects to agent k; we modify the direct connection cost of k to
the source, making it equal to the cost of the most expensive edge on its path to the source within the mcst. This is
done to adequately portray the bargaining situations between the members of the branch and k: See the de�nition of
the property.
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within the branch are no cheaper than the costs on the path from the source to k: Notice that if
k = f0g ; conditions i) and iii) impose no restrictions: Notice also that the property says nothing about
the cost share of k; as that agent has relationships with both S and Nn (S [ fkg) : It is however easy
to �nd it by using Budget Balance, given that we have the shares of all other agents.
The next three properties, Full, Equal and Constant Share of Cost Reduction, are very close to each

other, providing di¤erent solutions to this problem: suppose that nobody has a cheaper connection to
the source than agent i, and that everybody can connect to him freely. Then, if the cost of connecting
i to the source diminishes, all else being equal, how should we split the savings? One possibility is to
reward agent i for the lower cost and assign him all the savings. This is particularly natural if agent
i took actions that resulted in the cost reduction, or if he has property rights over that edge to the
source. We obtain the following property:
Full Share of Cost Reduction (FSCR): For any mcst problems (N; c); (N; c0) such that c0i � c0j

and we have a free path pij for all j 2 Nn fig ; c00i = c0i�x and c0e = ce else, then yi(N; c0) = yi(N; c)�x
and yj(N; c0) = yj(N; c) for j 2 Nn fig ; with x 2 [0; c0i] :
At the opposite end of the spectrum, if we want to equalize shares, if agent i played no special role

in the cost reduction or if agent i holds no property rights over his edge to the source, we can share
the savings equally among all agents. We obtain the following property:
Equal Share of Cost Reduction (ESCR): For any mcst problems (N; c); (N; c0) such that

c0i � c0j and we have a free path pij for all j 2 Nn fig ; c00i = c0i � x and c0e = ce else, then
yj(N; c

0) = yj(N; c)� x
jN j for all j 2 N; with x 2 [0; c0i] :

The di¤erence between FSCR and ESCR being mostly a di¤erence in the way we interpret the
game, it seems very natural to assume that once we settled on an interpretation of that game (even
if it�s on something di¤erent than the ones that inspired FSCR and ESCR), we should stick to it.
Therefore, the way we deal with this kind of problems should be consistent throughout. This idea is
expressed in the following property:
Constant Share of Cost Reduction (CSCR): For any mcst problems (N; c); (N; c0) such that

c0i � c0j and we have a free path pij for all j 2 Nn fig ; c00i = c0i � x and c0e = ce else, then
yi(N; c

0) = yi(N; c)� x
jN j (1 + � (jN j � 1)) and yj(N; c

0) = yj(N; c)� x
jN j (1� �) for j 2 Nn fig ; with

x 2 [0; c0i] and � 2 R:
We can see the property as �rst assigning to each agent 1

jN j of the savings, before reallocating to
agent i a share � of the savings that were �rst assigned to the agents in Nn fig : The value of � conveys
the responsibility we assign to agent i in the reduction of the cost. Two natural values of � are � = 0
and � = 1; corresponding respectively to ESCR and FSCR.
We now move to the familiar properties, starting with Piecewise Linearity, which says that if we can

decompose a cost matrix into submatrices where the cost of all edges are ordered in the same manner
as the original matrix, then the cost allocation on the original cost matrix should equal the sum of
the cost allocations on the submatrices. This property (or similar versions), a weaker version than the
classical Additivity property in the general setting (�rst proposed by Shapley (1953)), has been used
in Bergantinos and Vidal-Puga (2009), Bogomolnaia and Moulin (2010), Branzei et al (2004) and Tijs
et al (2006). Piecewise Linearity generates a rich class of solutions having a simple structure. Cost
shares can be de�ned on simple elementary matrices where costs of all edges are either 0 or 1, making
it particularly appealing.
Piecewise Linearity: For any mcst problems (N; c) and (N; c0); if there exists an order of the

edges � : Np
0 !

n
1; :::; n(n+1)2

o
such that for any e; e0 2 Np

0 ; if �(e) � �(e0); we have ce � ce0 and

c0e � c0e0 ; then, y(N; c+ c0) = y(N; c) + y(N; c0):
Denote by �e the set of elementary cost matrices where all connection costs are either 0 or 1 :

�e(N) = fc 2 �(N) : ce 2 f0; 1g for all e 2 Np
0 g : Let bk 2 �e(N) be such that bke�(1) = ::: = b

k
e�(k�1)

=

0 while bk
e�(k)

= ::: = bk
e�(q)

= 1:
If a solution satisfying Piecewise Linearity is well de�ned on �e; it is also uniquely de�ned on �:

Let y be a solution de�ned over �e. The piecewise linear extension of y is a solution yL such that for
all c 2 �; yL(N; c) =

Pq
k=1 (ce�(k) � ce�(k�1)) y(N; bk).
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The �nal property is the familiar Core Selection property, a stability property that guarantees that
no coalition pays more than its stand-alone cost.
Core Selection: For any mcst problem (N; c) and any S � N;

P
i2S yi(N; c) � C(S; c):

4 Results

Before stating the main results, we introduce the following notation. Let �̂e be the set of elementary
matrices where all agents have a cost of one to connect to the source and of zero to connect to another
agent: c0i = 1 and cij = 0 for all i; j: Let F (c) = fi 2 N jc0i = 0g be the set of agents having a free
direct connection to the source.
We �rst show that a cost sharing solution satis�es Piecewise Linearity, Core Selection, Decomposi-

tion, Branch Cutting and Constant Share of Cost Reduction if and only if it is a convex combination
of the folk and cycle-complete solutions.

Theorem 1 A cost sharing solution satis�es Piecewise Linearity, Core Selection, Decomposition,
Branch Cutting and Constant Share of Cost Reduction if and only if it is of the form y� = (1 �
�)yf + �ycc; where � 2 [0; 1] is the parameter in Constant Share of Cost Reduction.

Proof. Lemma A.1 in Appendix shows that the folk and cycle-complete solutions satisfy the properties.
It is then obvious that any convex combination also satisfy them. We show that with Piecewise Lin-
earity, Core Selection, Decomposition, Branch Cutting and CSCR, a cost sharing solution is uniquely
de�ned by the value of � used in CSCR.
We proceed as follows: in Step 1, we show that solutions that satis�es the properties coincide for all

ĉ 2 �̂e: In Step 2, we do the same for any elementary cost matrices when jN j = 2: Using an induction
argument, we extend the result to any elementary cost matrix and any number of players in Step 3.
In Step 4, we extend to any cost matrix using Piecewise Linearity. Since the values found depend
on the parameter � used in CSCR, in Step 5 we show that the properties impose that � be between
0 and 1. In Step 6, we show that the remaining values are the convex combination of the folk and
cycle-complete solutions.
Step 1: Show that all solutions satisfying the properties coincide for all ĉ 2 �̂e:
Take c 2 �(N) such that ce = 1 for all edges: By Core Selection, yi(N; c) = 1 for all i 2 N: By

Decomposition, yi(N; c) = yi(N; ĉ)+
P

j2Nnfig yi(Nnfjg;c
0j)

jN j : Since for all j 2 Nn fig ; yi(Nn fjg ; c0j) = 1
by Core Selection; we must have that yi(N; ĉ) = 1

jN j :

Step 2: Show that all solutions satisfying the properties coincide for all c 2 �e(N) with jN j = 2:
If jF (c)j = 0; we can apply Decomposition and yi(N; c) = yi(N; ĉ) +

P
j2Nnfig yi(Nnfjg;c

0j)

jN j : Since

solutions that satisfy the properties coincide for problems (N; ĉ), (Nn fjg ; c0j) (as jNn fjgj = 1; we
must have that yi(Nn fjg ; c0j) = c0j0i = cij by Budget Balance); they also coincide for problem (N; c).
If jF (c)j = 1 and cij = 0; we can apply CSCR to �nd a unique cost allocation (for each value of �

in that property) . If cij = 1; then by Core Selection yk(N; c) = c0k for all k 2 N:
If jF (c)j = 2; by Core Selection we must have that yi(N; c) = 0 for all i 2 N:
Step 3: Show that all solutions satisfying the properties coincide for all c 2 �e:
Suppose now that all solutions that satisfy the properties coincide for all c 2 �e(N) with jN j =

m � 2: We show that it implies that they coincide for all c 2 �e(N) with jN j = m+ 1:
If jF (c)j = 0; we can apply Decomposition and yi(N; c) = yi(N; ĉ) +

P
j2Nnfig yi(Nnfjg;c

0j)

jN j : Since

solutions that satisfy the properties coincide for (N; ĉ), (Nn fjg ; c0j) (as jNn fjgj = m); they also
coincide for (N; c).
If jF (c)j = 1; say F (c) = fig ; we examine separately the cases where all or only some agents have

a free path to i: Let Zi(c) = fj 2 Nn fig jthere exists a free path pij g : If Zi(c) = Nn fig, by CSCR
and our results for jF (c)j = 0; all solutions satisfying the properties coincide (for a given value of �).
If Zi(c) = ;; we can apply Branch Cutting with k = 0; and we have that yi(fig ; cfig) = yi(N; c) and
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yj(Nn fig ; cNnfig) = yj(N; c) for all j 2 Nn fig : The solutions satisfying the properties all coincide
on these problems as jfigj ; jNn fig)j � m: Otherwise, we can apply Branch Cutting and we have
that yj(Zi(c) [ fig ; ci;Z

i(c)) = yj(N; c) for all j 2 Zi(c) and yj(NnZi(c); cNnZ
i(c)) = yj(N; c) for

all j 2 Nn
�
Zi(c) [ fig

�
: The solutions satisfying the properties all coincide on these problems as��Zi(c) [ fig�� ; ��NnZi(c)�� � m: By Budget Balance, yi(N; c) = C(N; c)�Pj2Nnfig yj(N; c):

If jF (c)j � 2; we need to use Core Selection and Branch Cutting.
First, suppose that there exists S � N such for i 2 S and j 2 NnS; cij � max(c0i; c0j): Then,

we can use Branch Cutting (with k = f0g) and thus yi(N; c) = yi(S; cS) for all i 2 S and yj(N; c) =
yj(NnS; cNnS) for all j 2 NnS: The solutions satisfying the properties all coincide on these problems
as jSj ; jNnSj � m.
For the following, we suppose that there is a free path in N (that does not go through the source)

between any two agents i; j 2 N . We have two further cases:
i) We have i 2 NnF (c) and k 2 Nn fig such that i is a follower of k in c
Let S be the set of all followers of k in c: As c is an elementary matrix, this implies that all free

paths between the source and i include agent k and that k has a free path to the source. Condition
iii) of Branch Cutting is trivially satis�ed. Condition ii) also has to be satis�ed: Suppose there
was an agent l in Nn (S [ fkg) to which an agent m in S had a free direct connection to. If l
can provide a free path to the source that does not include k; m wouldn�t be a follower of k: If
l doesn�t provide such a path, he is also a follower of k: We can thus apply Branch Cutting and
yi(N; c) = yi(S [fkg ; ck;S) for all i 2 S while yj(N; c) = yj(NnS; cNnS) for all j 2 NnS: The solutions
satisfying the properties all coincide on these problems as jS [ fkgj ; jNnSj � m: By Budget Balance,
yk(N; c) = �

P
i2S yi(S [ fkg ; ck;S)�

P
j2Nn(S[fkg) yj(NnS; cNnS):

ii) For all i 2 N; there does not exists k 2 Nn fig such that i is a follower of k in c
This implies that C(Nn fig ; c) = 0 for all i 2 N; as no agent depends on i to connect to the source

at no cost. The only allocation that satis�es Core Selection is yi(N; c) = 0 for all i 2 N:
Step 4: Show that all solutions satisfying the properties coincide for all c 2 �:
By Steps 1-3, the solutions satisfying the properties all coincide on problems (N; c) such that c 2 �e

(for a given value � in CSCR). By Piecewise Linearity, they also coincide for any c 2 �:
Step 5: Show that Core Selection imposes that � 2 [0; 1] :
Consider ĉ 2 �̂e and c0 that is such that c00i = 0 and c0e = ĉe else. By the previous steps, we have that

yj(N; ĉ) =
1
jN j for all j 2 N: By CSCR, we have that y

�
i (N; c

0) = 1
jN j�

1
jN j (1 + � (jN j � 1)) =

��(jN j�1)
jN j

and y�j (N; c
0) = 1

jN j �
1
jN j (1� �) =

�
jN j for all j 2 Nn fig : By Core Selection, we must have that

y�i (N; c
0) = ��(jN j�1)

jN j � 0 = C(fig ; c0); which implies that � � 0: Core Selection also requires thatP
j2Nnfig y

�
j (N; c

0) = �(jN j�1)
jN j � 1 = C(Nn fig ; c0): It thus implies that � � jN j

(jN j�1) : For any � > 1;

there exists a number of players K large enough such that � > K
K�1 , which implies that Core Selection

is not satis�ed. Lemma A.1 in Appendix shows that Core Selection is satis�ed for � 2 [0; 1] :
Step 6: Show that y� = (1� �)yf + �ycc:
We �rst show that it is true for c 2 �e(N) with jN j = 2: LetN = fi; jg ; c be such that c0i = c0j = 1;

cij = 0 and c0 be such that c00i = 0 and c0e = ce else. Since c 2 �̂e; we have that yk(N; c) = 1
2

for k = i; j: By CSCR, we have that y�i (N; c
0) = ��

2 and y
�
j (N; c

0) = �
2 : It is also easy to verify

that yfi (N; c
0) = yfj (N; c

0) = 0 and y�k (N; c
0) = � 1

2 and y
�
j (N; c

0) = 1
2 and thus that y

�(N; c0) =

(1 � �)yf (N; c0) + �ycc(N; c0): By Step 2 above, yf (N; c) = ycc(N; c) for any other c 2 �e(N) with
jN j = 2; as CSCR plays no role. We thus have that y�(N; c) = (1 � �)yf (N; c) + �ycc(N; c) for all
c 2 �e(N) with jN j = 2:
Suppose that we have shown that y�(N; c) = (1 � �)yf (N; c) + �ycc(N; c) for all c 2 �e(N) with

jN j = m: We show that it implies that it is also true for c 2 �e(N) with jN j = m+ 1:
By Step 3 above, CSCR only plays a role when F (c) = fig and Zi(c) = Nn fig : Let c be such a cost

matrix and c0i be such that c0i0i = 1 and c
0i
e = ce else. Since

��F (c0i)�� = 0; y�(N; c0i) is de�ned by cost
shares on problems with less players (using Decomposition and Branch Cutting, see Step 3) for which
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we have that y� = (1 � �)yf + �ycc (by the induction argument): It is immediate that y�(N; c0i) =
(1��)yf (N; c0i)+�ycc(N; c0i):We can easily verify that y�i (N; c) = y�i (N; c0i)� 1

jN j (1 + � (jN j � 1)),
ycci (N; c) = y

cc
i (N; c

0i)� 1 and yfi (N; c) = y
f
i (N; c

0i)� 1
jN j ; while y

�
j (N; c) = y

�
j (N; c

0i)� 1
jN j (1� �) ;

yccj (N; c) = yccj (N; c
0i) and yfj (N; c) = yfj (N; c

0i) � 1
jN j for all j 2 Nn fig : It is then obvious that

y�(N; c) = (1 � �)yf (N; c) + �ycc(N; c): The result is also immediate for any other c 2 �e(N) with
jN j = m: The results than extends to any c 2 � using Piecewise Linearity.
Notice that even though CSCR puts no constraints on the value of � (which represents the extra

share of the cost savings going to the agent who has a low cost to the source), the other properties
restrict it to be between 0 and 1; which were the two natural values we had identi�ed. They also corre-
spond to the Equal Share of Cost Reduction and Full Share of Cost Reduction properties respectively.
Using theses properties instead of Constant Share of Cost Reduction allows us to uniquely characterize
the folk and cycle-complete solutions.

Theorem 2 i) A cost sharing solution y satis�es Piecewise Linearity, Core Selection, Decomposition,
Branch Cutting and Full Share of Cost Reduction if and only if it is the cycle-complete solution.
ii) A cost sharing solution y satis�es Piecewise Linearity, Core Selection, Decomposition, Branch

Cutting and Equal Share of Cost Reduction if and only if it is the folk solution.

Proof. The results are immediate using Theorem 1 and Lemma A.1 in Appendix.
Independence of the properties for part i) is shown in Lemma A.2 in Appendix. However, it turns

out that Piecewise Linearity, Core Selection, Decomposition, Branch Cutting and Equal Share of Cost
Reduction are not independent. In fact, we can characterize the folk solution without Decomposition.
To see why, consider an elementary cost matrix where c0i = 1 for all i 2 N and where there exists
a free path in N between all agents. By Equal Share Cost of Reduction, if the cost to connect any
of these agents to the source goes down to zero, all agents will see their share reduced by 1

jN j : But
by Core Selection, that agent cannot pay more than 0 after the change; meaning that he could not
have paid more than 1

jN j before. By budget-balance, everybody must have paid
1
jN j before the change.

These cost matrices are those for which Decomposition can be applied.
By contrast, with Full Share of Cost Reduction (or Constant Share of Cost Reduction with any

� 2 ]0; 1]); the agent that sees the cost of his link to the source decrease will receive a higher share of
the savings than others, meaning that he could have paid more than 1

jN j before and still satisfy Core
Selection. Since many di¤erent values are compatible with Core Selection, Decomposition is needed
to obtain unique values.

Theorem 3 A cost sharing solution y satis�es Piecewise Linearity, Core Selection, Branch Cutting
and Equal Share of Cost Reduction if and only if it is the folk solution.

Proof. Lemma A.1 in Appendix show that the folk solution satis�es the properties. We show that
there is a unique solution that satis�es the properties. Let y(N; c) be a solution that satis�es the
properties.
Take c 2 �e and suppose that we have S such that for all i 2 S; j 2 NnS; cij = 1: By Branch

Cutting, yk(N; c) = yk(S; c
S) if k 2 S and yk(N; c) = yk(NnS; cNnS) if k 2 NnS: Therefore, in the

following, we only consider c such that we have a free path in N between any pair of agents i; j 2 N:
We �rst show that for all c 2 �e such that c0i = 1 for all i 2 N and such that there exists a free

path between any agents j; k 2 N; we have that yi(N; c) = 1
jN j for all i 2 N:

Consider cj to be such that cj0j = 0 and c
j
e = ce else. By Equal Share of Cost Reduction, yi(N; c

j) =

yi(N; c)� 1
jN j for all i 2 N: Since we have that C(fjg ; c

j) = 0; we must have, by Core Selection, that

yj(N; c) � 1
jN j for all j 2 N: Since by budget-balance we must have that

P
i2N yi(N; c) = 1; it implies

that yi(N; c) = 1
jN j for all i 2 N:

By Equal Share of Cost Reduction, if jF (c)j = 1; we have that yi(N; c) = 0 for all i 2 N:
Finally, if jF (c)j > 1; we need to use Core Selection and Branch Cutting.
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i) We have i 2 NnF (c) and k 2 Nn fig such that i is a follower of k in c
Let S be the set of all followers of k in c: Exactly as in Step 3i) of Theorem 1, we can apply

Branch Cutting and yi(N; c) = yi(S [ fkg ; ck;S) = 0 for all i 2 S (as
��F (ck;S)�� = 1) while yj(N; c) =

yj(NnS; cNnS) for all j 2 NnS: By Budget Balance, yk(N; c) = �
P

j2Nn(S[fkg) yj(NnS; cNnS): We
repeat the argument until we have that for all i 2 NnS; there does not exists k 2 Nn(S [ fig) such
that i is a follower of k in cNnS :
ii) For all i 2 N; there does not exists k 2 Nn fig such that i is a follower of k in c
This implies that C(Nn fig ; c) = 0 for all i 2 N; as no agent depends on i to connect to the source

at no cost. The only allocation that satis�es Core Selection is yi(N; c) = 0 for all i 2 N:
We have shown that all solutions that satisfy the properties coincide for problems (N; c) such that

c 2 �e. By Piecewise Linearity, they also coincide if c 2 �:
Independence of the properties is shown in Lemma A.3 in Appendix.

5 Discussion

The folk and cycle-complete solutions are Shapley values applied to di¤erent versions of the same
game. It is therefore not surprising that they share many properties. Their convex combination is
characterized by the properties of Piecewise Linearity, Core Selection, Decomposition, Branch Cutting
and Constant Share of Cost Reduction. It is worth noting that the Kar solution, another Shapley
value, satis�es all properties except Core Selection and Equal Share of Cost Reduction.
Interestingly, the characterizations of the folk solution di¤ers from that of the cycle-complete so-

lution only by the use of Equal Share of Cost Reduction instead of Full Share of Cost Reduction.
This shows that the folk solution is fundamentally di¤erent in its approach from the cycle complete
solution (as well as the Kar solution): it treats a good connection to the source as common property,
with savings on its cost being shared equally by everyone who uses that connection. By opposition,
the cycle-complete solution fully rewards an agent that sees the cost of its connection to the source
decrease. The relevant approach to choose depends on the particular characteristic of the application
being considered, notably the responsibility of the agent in that reduction in cost or in his choice of
location.
While Theorem 2 o¤ers the �rst characterization of the cycle-complete solutions, there has been

many characterizations of the folk solutions, notably in Bergantinos and Vidal-Puga (2007, 2009)
and Bogomolnaia and Moulin (2010). However, as shown in Trudeau (2012a) they all depend on
the Reductionism property, that says that cost shares depend only on the irreducible matrix. The
characterization proposed in Theorem 3 avoids using such a property that is very close to the method
itself.

Acknowledgement 1 The author would like to thank Lars Ehlers, Gustavo Bergantinos, Juan Vidal-
Puga and two anonymous referees for their comments. Financial support from the Social Sciences and
Humanities Research Council of Canada is gladly acknowledged.
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A Appendix

Lemma A.1 i) The folk solution satis�es Branch Cutting, Piecewise Linearity, Core Selection, De-
composition and Equal Share of Cost Reduction, but fails Full Share of Cost Reduction.
ii) The cycle complete solution satis�es Branch Cutting, Piecewise Linearity, Core Selection, De-

composition and Full Share of Cost Reduction, but fails Equal Share of Cost Reduction.

Proof. i) Piecewise Linearity and Core Selection are well known properties of the folk solution
(Trudeau (2012a)).
Branch Cutting: Suppose that there exists S � N and k 2 NnS such that i) for all i 2 S; i is a

follower of k in c, ii) for all i 2 S; j 2 Nn(S[fkg); cij � max fc0i; c0jg and iii) cii0 � p�0k(c) for all i; i0 2
S[fkg : For all i; j 2 S[fkg ; we have thatminpij2Pij(N0)maxe2pij ce = minpij2Pij((S[fkg)0)maxe2pij ce

and thus that �cij = ck;Sij : Similarly, we have that �cij = c
Nn(S[fkg)
ij for i; j 2 N0nS: For i 2 S; �c0i =

minp0i2P0i(N0)maxe2p0i ce: By assumptions i) and iii),minp0i2P0i(N0)maxe2p0i ce = minpik2Pik(S0[fkg)maxe2pik ce =

ck;S0i : For i 2 S and j 2 Nn (S [ fig) ; we clearly have that �cij = max f�c0i; �c0jg : Therefore, for any
R � S and T � Nn(S [ fkg) we have that C(R [ T; �c) = C(R; �c) + C(T; �c): By the properties of the

Shapley value we have that yfi (N; c) =
�

Shi(S [ fkg ; �cS[fkg) = yfi (S [ fkg ; ck;S) if i 2 S
Shi(NnS; �cNnS) = yfi (NnS; cNnS) if i 2 Nn (S [ fkg)

:

Decomposition: Since cij � c0k for all i; j; k 6= 0; the Decomposition of the problem does not a¤ect
the computation of the irreducible matrix, as the path between i; j 2 N that has the cheapest most
expensive edge will be the same whether we look over the edges in N0 or N: Similarly, the path between
i and the source with the cheapest most expensive will always be such that its most expensive edge
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is the edge connecting an agent and the source. For any mcst problem (N; c) and any S � N; let
�C(S; c) = C(S; �c):
Then, for any i 2 N and S � Nn fig ; we have that �C(S; c0i) = �C(S [ fig ; c) � a: Therefore, for

j 2 Nn fig ; we have that

yfj (Nn fig ; c0i) =
�C(fi; jg ; c)� a
jN j � 1 +

X
;6=S�Nnfi;jg

jSj! (jN j � jSj � 2)!
(jN j � 1)!

�
�C(S [ fi; jg ; c)� �C(S [ fig ; c)

�
:

We can show thatX
i2Nnfjg

yfj (Nn fig ; c0i)
jN j =

X
i2Nnfjg

�C(fi; jg ; c)
(jN j � 1) jN j�

a

jN j+
X

S�Nnfjg
jSj>1

jSj! (jN j � jSj � 1)!
jN j!

�
�C(S [ fjg ; c)� �C(S; c)

�
:

Since �C(fjg ; c) = C(fjg ; c) = a for all j 2 N; we have thatX
S�Nnfjg
jSj�1

jSj! (jN j � jSj � 1)!
jN j!

�
�C(S [ fjg ; c)� �C(S; c)

�
=

X
i2Nnfjg

�C(fi; jg ; c)
(jN j � 1) jN j

and thus thatX
i2Nnfjg

yfj (Nn fig ; c0i)
jN j = � a

jN j +
X

S�Nnfjg

jSj! (jN j � jSj � 1)!
jN j!

�
�C(S [ fjg ; c)� �C(S; c)

�
:

As we have that yf (N; ĉ) = a
jN j ;

yfj (N; ĉ) +
X

i2Nnfjg

yfj (Nn fig ; c0i)
jN j =

X
S�Nnfjg

jSj! (jN j � jSj � 1)!
jN j!

�
�C(S [ fjg ; c)� �C(S; c)

�
= yfj (N; c)

ESCR: If c0i � c0j and we have a free path pij for all j 2 Nn fig for all j 2 Nn fig and d0i = c0i�x
and de = ce else, then �d0j = �c0j � x for all j 2 N (as the most expensive edge on the path between
0 and j is (0; i)): Then, C(S; �d) = C(S; �c) � x for all S � N: By the properties of the Shapley value,
yfj (N; d) = y

f
j (N; c)� x

jN j for all j 2 N: We can also see that it implies that FSCR is not satis�ed.
ii) Piecewise Linearity: In Trudeau (2012b), the cycle-complete solution is de�ned using elementary

matrices. Piecewise Linearity is obviously satis�ed.
Branch Cutting: Suppose that there exists S � N and k 2 NnS such that i) for all i 2 S; i is a

follower of k in c, ii) for all i 2 S; j 2 Nn(S [ fkg); cij � max fc0i; c0jg and iii) cii0 � p�0k(c) for all
i; i0 2 S [ fkg : If there is a cycle in c that includes i; j 2 S [ fkg, that is within S0; and for which the
most expensive edge is cheaper than cij ; the same cycle will be present in ck;S : The same result holds
for a cycle within NnS: The only possible cycle that can involve i 2 S0 and j 2 N0n (S [ fkg) and such
that its most expensive edge is cheaper than cij has to go through the source. By assumptions ii and
iii), the most expensive edge in that cycle can only be within S [fkg : In addition, since ck;S0k = p�0k(c);
the same cycle will be present in ck;S ; with the edge (0; k) replacing (one of) the optimal path(s) p0k:

Therefore, c�ij =
�
ck;Sij

��
for all i; j 2 S0 [ fkg and c�lm =

�
c
NnS
lm

��
for all l;m 2 N0nS: It also implies

that c�ij � max
�
c�0i; c

�
0j

	
for all i 2 S and j 2 NnS: Therefore, for any R � S and T � Nn(S [ fkg)

we have that C(R[ T; c�) = C(R; c�) +C(T; c�). By the properties of the Shapley value we have that

ycci (N; c) =

(
Shi(S [ fkg ; (c�)S[fkg = ycci (S [ fkg ; ck;S) if i 2 S

Shi(NnS; (c�)NnS = ycci (NnS; cNnS) if i 2 Nn (S [ fkg)
:

Decomposition: Since cij � c0k for all i; j; k 6= 0; the Decomposition of the problem does not a¤ect
the computation of the cycle-complete matrix, as the cycle including i; j 2 N that has the cheapest
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most expensive edge will be the same whether we look over the edges in N0 or N: As Decomposition
only applies when c0i = a and cjk � a for all i; j; k 2 N; c�0i = c0i = ĉ0i for all i 2 N: Therefore, for
any i 2 N and S � Nn fig ; we have that C�(S; c0i) = C�(S [ fig ; c) � a: We can apply the same
procedure as for the folk solution above to show that it is satis�ed.
Core Selection was shown in Trudeau (2012b).
FSCR: c0i � c0j and we have a free path pij for all j 2 Nn fig and d0i = c0i � x and de = ce

else, then c�e = d�e for all e 6= (0; i) as there are no more or no less cycles. Then, C(S [ fig ; d�) =
C(S [fig ; c�)�x for all S � Nn fig : By the properties of the Shapley value ycci (N; d) = ycci (N; c)�x
and yccj (N; d) = y

cc
j (N; c) for all j 2 Nn fig :We can also see that it implies that ESCR is not satis�ed.

Lemma A.2 The properties of Theorem 2 i) are independent.

Proof. Let �1(N) be the elementary cost matrices c such i) there exists a free cycle that covers all
agents in N and ii) jF (c)j = 0 or 1:
Suppose that we wish to build a solution that satis�es Piecewise Linearity, Core Selection, Branch

Cutting and FSCR, and that we have already de�ned values for all problems (N; c) such that jN j � K
and c 2 �e(N); with K � 3:
We show that it implies unique values for all c 2 �e(N)n�1(N) for all N such that jN j = K + 1:
From the proof of Theorem 1, Decomposition is used to �nd shares for problems (N; c) when

c 2 �e(N); with K � 3
Suppose that F (c) = fig. From the proof of Theorem 1, it is obvious that if we do not have a

free path between all pair of players in N; we can use Branch Cutting to �nd the shares. That leaves
us with the cases where there is a free path between all agents but not a cycle that covers N: Since
we do not have such a cycle, we must have S � Nn fig such that i) for all j 2 S; j is a follower of i
in c, ii) for all j 2 S; k 2 Nn(S [ fig); cjk = 1. We can then apply Branch Cutting and yj(N; c) =�

yj(S [ fig ; ci;S) if j 2 S
yj(NnS; cNnS) if j 2 Nn (S [ fig)

and, by budget balance, yi(N; c) = �
P

j2Nnfig yj(N; c): These

cost shares are uniquely de�ned as jS [ figj ; jNnSj � K:
Suppose that F (c) = ;: Since we have de�ned unique cost shares for all cases where jF (c)j = 1 and

c contains no free cycle over N , we can use FSCR to �nd unique shares for all cases where jF (c)j = 0
and c contains no free cycle over N:
If jF (c)j � 2; we can use the same procedure as the proof of Theorem 1, as it does not use

Decomposition. Therefore, we have de�ned unique values for all c 2 �e(N)n�1(N) for all N such that
jN j = K + 1:
To de�ne shares over any c; we are left with the task to de�ne unique shares for c 2 �1(N); with

jN j > K: We would have then de�ned unique shares for any elementary cost matrix. By Piecewise
Linearity, we can then extend to any cost matrix.
Let y1(N; c) = yK(N; c) if jN j � 4 and c 2 �1(N) and y1(N; c) = ycc(N; c) for any other c 2 �e(N);

jN j � 4: Use the method above to �nd unique cost shares for any c 2 �e: Use Piecewise Linearity to
extend to any c 2 �: We can show that y1 satis�es Piecewise Linearity, Core Selection (as ycc satis�es
it, and yK(N; c) is in the core for all c 2 �1(N), Branch Cutting (as it cannot be applied on any c 2
�1(N)) and FSCR (as it is satis�ed by both ycc and yK): We show that it fails Decomposition. Let
N = f1; 2; 3; 4g and c be such that c12 = c13 = c14 = c23 = c34 = 0 and ce = 1 else. We have a free
cycle that covers N and thus y(N; c) = yK(N; c) =

�
1
6 ;

1
3 ;

1
6 ;

1
3

�
: It is easy to see that for all i 2 N;��F (c0i)�� � 2; as two or more agents are freely connected to i in c: Therefore, yj(Nn fig ; c0i) = 0 for

all i; j 2 N: By Decomposition, we thus should have that y(N; c) =
�
1
4 ;

1
4 ;

1
4 ;

1
4

�
:

Let y2 = yK ; the Kar solution. It satis�es Piecewise Linearity and fails Core Selection (Trudeau
(2012a)). It is easy to show that it satis�es Decomposition, Branch Cutting and ESCR.
Let �3(N) be such that there exists fi; j; kg 2 N such that cij = 0; c0i = 1; c0j = cik = cjk = 2,

c0k = 3 and clm � c0l for all l 2 fi; j; kg and m 2 Nn fi; j; kg :
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Let �3
0
(N) be such that there exists fi; j; k; lg 2 N such that cjk = 0; cij = 1; cik = cjl = ckl = 2,

cil = 3 :
Build y3 in the following manner.

i) For c 2 �(N)n
�
�3(N) [ �30(N)

�
, let y3(N; c) = ycc(N; c):

ii) For c 2 �3(N) and jN j = 3; let y3(N; c) = yK(N; c): Notice that yKi (N; c) = � 1
6 ; y

K
j (N; c) =

5
6

and yKk (N; c) =
7
3 and that y

K(N; c) 2 core(N; c):
iii) For c 2 �3(N) and jN j > 3; verify if Branch Cutting can be applied. If it can, use it to de�ne

cost shares for (N; c); using the cost shares de�ned in steps i) and ii). If not, let y3(N; c) = ycc(N; c):
iv) For c 2 �30(N) and jN j > 3; verify if Decomposition can be applied; using the cost shares

de�ned in steps i) through iii). (Notice that c0i 2 �3): If not, let y3(N; c) = ycc(N; c):
We can show that y3 satis�es Core Selection (as yK(N; c) 2 core(N; c) for c 2 �3(N) and jN j = 3;

and by extension for all c 2 �3), Branch Cutting (by step iii) and because it does not apply for
c 2 �3(N) and jN j = 3); Decomposition (by step iv) and because it does not apply for c 2 �3(N) and
jN j = 3) and FSCR (as it does not apply in the matrices where y3(N; c) 6= ycc(N; c), that is those in
steps ii) through iv)). It clearly fails Piecewise Linearity.
Let �4(N) be the set of cost matrices d such that there exists i; j; k; l 2 N such that d0i = dij =

djk = d0k = dkl = 0 and de = 1 else. Let �4 be the set of cost matrices in �4(N) for all N such that
jN j = 4:
Build y4 in the following manner:
i) Proceed with Steps 1 and 2 of the proof of Theorem 1, using FSCR instead of CSCR.
ii) Proceed with Step 3 of the proof of Theorem 1 for problems (N; c) such that jN j = 3 and

c 2 �e(N); using FSCR instead of CSCR.
iii) For problems (N; c) such that jN j = 4 and c 2 �e(N)n�4(N); proceed as in Step 3 of the proof

of Theorem 1, using FSCR instead of CSCR. If c 2 �4(N); let y4(N; c) = (0; 0; 0; 0):
iv) For problems (N; c) such that jN j > 4 and c 2 �e(N); proceed as in Step 3 of the proof of

Theorem 1, using FSCR instead of CSCR and the cost shares de�ned in steps i) through iii).
v) Proceed as in Step 4 of the proof of Theorem 1 to extend to any c 2 �:
We can show that y4 satis�es Piecewise Linearity, Core Selection, Decomposition (it does not

apply for c 2 �4; for a problem (N; c) such that jN j = 5 and jF (c)j = 0; we might have that

c0i 2 �4: However, by construction, we have that yi(N; c) =
P

j2Nnfig
yi(Nnfjg;c0j)

jN j + yi(N; ĉ) and

thus the property is satis�ed) and FSCR (it does not apply for c 2 �4; for a problem (N; c) such
that jN j > 5 and jF (c)j = 1; since the shares are de�ned using the shares of cost matrices where
jF (c)j = 0; which take into account the di¤erent shares for cost matrices in �4; the property will be
satis�ed): Branch Cutting imposes that yl(fk; lg ; ck;flg) = yl(N; c) for any c 2 �4(N); but we have
that y4l (fk; lg ; ck;flg) = yccl (f3; 4g ; ck;flg) = 1

2 and y
4
l (N; c) = 0:

As shown, yf satis�es Piecewise Linearity, Core Selection, Decomposition and Branch Cutting but
not FSCR.
The following table summarizes the �ndings, with "X" indicating that the property is satis�ed.

D CS PL BC FSCR
ycc X X X X X
y1 X X X X

y2 = yK X X X X
y3 X X X X
y4 X X X X
yf X X X X

Lemma A.3 The properties of Theorem 3 are independent.

Proof. Let �5(N) be the set of cost matrices such that there exists i; j; k 2 N such that c0k = 1 and
cij = cik = cjk = c0i = c0j = 0.
Build y5 in the following manner.
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i) For any c 2 �e(N)n�5(N) such that jN j � 3; let y5(N; c) = yf (N; c):
ii) For any c 2 �5(N) such that jN j = 3; let y5(N; c) = yK(N; c), which is such that yi = yj = � 1

6
and yk = 1

3 :
iii) Suppose that we have de�ned cost shares for all c 2 �e(N) such that jN j �M: We de�ne cost

shares for all c 2 �e(N) such that jN j =M +1 in the following manner. If F (c) � 1; we proceed as in
the proof of Theorem 3. If F (c) � 2; we �rst apply, if possible, Branch Cutting to connect the shares
to those de�ned in �e(N) such that jN j � M: If we cannot apply Branch Cutting, we proceed as in
the proof of Theorem 3.
iv) We apply Piecewise Linearity to de�ne shares for any c 2 �:
By construction, y5 satis�es Piecewise Linearity, Branch Cutting (by step iii) and because Branch

Cutting does not apply on c 2 �5(N) such that jN j = 3) and ESCR (because yf satis�es ESCR and it
does not apply on any c 2 �5(N)): It does not satisfy Core Selection as if N = f1; 2; 3g and c 2 �5(N);
the only core allocation is (0; 0; 0):
Let �6(N) be such that there exists fi; j; kg 2 N such that cij = 0; c0i = 1; c0j = cik = cjk = 2,

c0k = 3 and clm � c0l for all l 2 fi; j; kg and m 2 Nn fi; j; kg :
Build y6 in the following manner.
i) For c 2 �(N)n�6(N), let y6(N; c) = yf (N; c):
ii) For c 2 �6(N) and jN j = 3; let y6(N; c) = yK(N; c): Notice that yKi (N; c) = � 1

6 ; y
K
j (N; c) =

5
6

and yKk (N; c) =
7
3 and that y

K(N; c) 2 core(N; c):
iii) For c 2 �6(N) and jN j > 3; verify if Branch Cutting can be applied. If it can, use it to de�ne

cost shares for (N; c); using the cost shares de�ned in steps i) and ii). If not, let y6(N; c) = yf (N; c):
We can show that y6 satis�es Core Selection (as yK(N; c) 2 core(N; c) for c 2 �6(N) and jN j = 3;

and by extension for all c 2 �6), Branch Cutting (by step iii) and because it does not apply for
c 2 �6(N) and jN j = 3) and ESCR (as it does not apply in the matrices where y6(N; c) 6= yf (N; c),
that is those in steps ii) and iii)). It clearly fails Piecewise Linearity.
Let �7(N) be the set of cost matrices d such that there exists i; j; k; l 2 N such that d0i = dij =

djk = d0k = dkl = 0 and de = 1 else. Let �7 be the set of cost matrices in �7(N) for all N such that
jN j = 4:
Build y7 in the following manner:
i) Proceed with Steps 1 and 2 of the proof of Theorem 1, using ESCR instead of CSCR.
ii) Proceed with Step 3 of the proof of Theorem 1 for problems (N; c) such that jN j = 3 and

c 2 �e(N); using ESCR instead of CSCR.
iii) For problems (N; c) such that jN j = 4 and c 2 �e(N)n�7(N); proceed as in Step 3 of the proof

of Theorem 1, using ESCR instead of CSCR. If c 2 �7(N); let y7i (N; c) = y7j (N; c) = 0; y7k(N; c) = � 1
2

and y7l (N; c) =
1
2 :

iv) For problems (N; c) such that jN j > 4 and c 2 �e(N); proceed as in Step 3 of the proof of
Theorem 1, using ESCR instead of CSCR and the cost shares de�ned in steps i) through iii).
v) Proceed as in Step 4 of the proof of Theorem 1 to extend to any c 2 �:
We can show that y7 satis�es Piecewise Linearity, Core Selection (as y7 2 core(N; c) for all c 2 �7)

and ESCR (it does not apply for c 2 �7; for a problem (N; c) such that jN j > 4 and jF (c)j = 1; since
the shares are de�ned using the shares of cost matrices where jF (c)j = 0; which take into account the
di¤erent shares for cost matrices in �7; the property will be satis�ed): Branch Cutting imposes that
yl(fk; lg ; ck;flg) = yl(N; c) for any c 2 �7(N); but we have that y7l (fk; lg ; ck;flg) = y

f
l (f3; 4g ; ck;flg) = 0

and y7l (N; c) =
1
2 :

As shown, ycc satis�es Piecewise Linearity, Core Selection, Branch Cutting but not ESCR.
The following table summarizes the �ndings, with "X" indicating that the property is satis�ed.

15



CS PL BC ESCR
yf X X X X
y5 X X X
y6 X X X
y7 X X X
ycc X X X
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