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Abstract
Minimum cost spanning tree problems connect agents e¢ ciently to a source with the cost of

using an edge �xed. We revisit the dispute between the Kar and folk solutions, two solution
concepts to divide the common cost of connection based on the Shapley value. We introduce a
property called Weak Problem Separation that allows, under conditions, to divide the problem
in two: connecting an agent to the source and connecting agents to each other. It allows us to
characterize the set of all a¢ ne combinations of the Kar and folk solutions.

Keywords: Minimum cost spanning tree problems; folk solution; Kar solution; problem sepa-
rability.

JEL Classi�cations: C71, D63

1 Introduction

Minimum cost spanning tree (mcst) problems study situations where a group of agents, located at
di¤erent points in space, need to be connected to a source. Agents can be connected directly to this
source or indirectly through other agents already connected. Connection costs on an edge between two
agents or between an agent and the source is a �xed cost, invariant with the number of users connecting
through it. Examples of economic situations that can be modeled as mcst problems include electricity
distribution networks as well as communication networks such as Internet, cable TV or telephone.
The literature on cost sharing solutions to the mcst problem is well established (see Trudeau

(2012a)). The two main cost sharing solutions are built around the familiar Shapley value. Kar (2002)
applies the Shapley value to the stand-alone game associated with the mcst problem, where a coalition
can only use edges between its agents to build an optimal network. This solution is known as the Kar
solution. The second method was discovered independently in Feltkamp et al (1994) and Bergantinos
and Vidal-Puga (2007a), as well as being the average of the family of solutions proposed in Norde
et al (2004). While there are many ways to interpret the solution, one of them consists in de�ning
the irreducible cost matrix, which is such that the costs of edges on the mcst remain unchanged,
while the costs on other edges are reduced up to the point where further reductions would change
the total cost to connect everybody to the source. The so-called folk solution is the Shapley value
of the stand-alone game associated with the irreducible cost matrix. Remarkably, the two solutions
have not been characterized together. However, Bergantinos and Vidal-Puga (2010) show that they
can be implemented using similar non-cooperative mechanisms. Families of solutions that include the
folk solution have been characterized, but they do not include the Kar solution (Bergantinos and Kar
(2010)).
The Kar solution has been criticized in the recent literature for two reasons: it does not always

propose a stable solution where no coalition has an incentive to quit the group and do the project on
its own, and it sometimes proposes negative cost shares.
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While the �rst criticism is valid, we feel that the second one is not. In mcst problems, when an
agent i joins a coalition S, if we suppose that a coalition can only use the location of its members, then
it is possible for the cost of connecting agents in S [ fig to the source to be smaller than the cost to
connect agents in S: It is natural to impose non-negativity of the cost shares for monotonic games since
we do not want agents to pay less than their smallest incremental cost, which are all non-negative.
However, for non-monotonic games this natural lower bound is not appropriate as incremental costs
can be negative. The assumption that a coalition can only use the locations of its members is natural
when there is a notion of property rights over these locations. This is the case in many applications
of the mcst model. For example, Russian natural gas producer Gazprom sends gas to Europe through
Ukraine. In exchange for allowing European nations to reach the source of natural gas cheaply, Ukraine
is compensated with transit fees by Gazprom. Negotiations over these fees have played a role in the
many disputes between Ukraine and Gazprom over the past years.
While the folk solution o¤ers a stable and non-negative allocation, it depends only on the irreducible

cost matrix. Therefore, a large portion of the information contained in the cost matrix is lost. See
Bogomolnaia and Moulin (2010) for a critique of this Reductionism property.
This paper o¤ers a way to reconcile the two cost sharing solutions by de�ning and characterizing a

family of solutions that contains both solutions. This is done by introducing some new properties, with
the main one being the Weak Problem Separation property. Suppose that the optimal way to connect
agents is to have only one of them connected to the source, and that this edge is the most expensive of
the minimum cost spanning tree. Then, Weak Problem Separation says that we can split the problem
in two: �nding who to connect to the source and then connecting all agents together. Applying a cost
sharing solution on the mcst problem or separately on these two problems should yield the same cost
shares. This property allows one to split the problem into two simpler problems and is, thus, similar in
nature to many properties found in the cost sharing literature, most notably the Additivity property.
This property is combined with three known properties: Piecewise Linearity, Group Independence

and Anonymity; and two new ones: Independence of Irrelevant Edges and Weak Equal Treatment.
Piecewise Linearity allows one to decompose the problem into elementary problems where edges have a
cost of 0 or 1. Group Independence says that if two groups are such that no pair of agents from di¤erent
groups gain anything from being connected directly together, then we can share cost independently
on each group. Anonymity says that cost shares should not depend on the names of the agents.
Independence of Irrelevant Edges states that if the cost of the edge between i and j is larger than the
cost to connect i to the source and the cost to connect j to the source, then cost shares should not
depend on the cost of the edge between i and j, since this edge will never be used. In Kar (2002),
Equal Treatment, that says that i and j should be equally responsible for the cost of edge (i; j); is
used to characterize the Kar solution. We use a weaker version that applies only to edges that are not
in any mcst.
The set of solutions satisfying these six properties is composed of solutions that are a weighted sum

of the Kar and folk solutions. Since the weights sum to one, we actually have an a¢ ne combination of
the Kar and folk solutions, leaving only one parameter free. This parameter turns out be the cost share
in a simple two-agent problem. This not only shows clearly the di¤erence between the two solutions,
but it can also ease implementation. Once agents agree that the six properties are desirable, their
opinion of what should be the allocations in the simple two-agent problem will be enough to generate
the corresponding cost-sharing solution.
We o¤er new characterizations of the folk and Kar solutions. The folk solution is obtained by

adding Core Selection, that assures that all cost shares are stable allocations. The Kar solution is
obtained by strengthening the Weak Problem Separation property.
The structure of the paper is as follows. In section 2 we formally de�ne mcst problems as well as

the Kar and the folk solutions. De�nitions of the main properties used in the paper are given in section
3 together with the main theorem describing the family of solutions characterized by these properties.
Section 4 o¤ers characterizations of the Kar and folk solutions. Some supporting lemmas are in the
appendix.
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2 The setting

2.1 Minimum cost spanning tree problems

Let N = f1; 2; :::g be the set of potential participants and N � N be the �nite set of agents that
actually need to be connected to the source, denoted by 0. Let N0 = N [ f0g : For any set Z; de�ne
Zp as the set of all non-ordered pairs (i; j) of elements of Z: In our context, any element (i; j) of Np

0

represents the edge between i and j: Let c = (ce)e2Np
0
be a vector in RN

p
0

+ with ce representing the cost
of edge e: Let �(N) be the set of all cost vectors when the set of agents is N . Let � be the set of all
cost vectors, for all possible N . Since c assigns a cost to all edges e, we often abuse language and call
c a cost matrix. A minimum cost spanning tree problem is a triple (0; N; c): Since 0 does not change,
we omit it in the following and simply identify an mcst problem as (N; c); with N � N and c 2 �(N):
A cycle pll is a set of K � 3 edges (ik; ik+1); with k = 0; 1; :::;K � 1 and such that i0 = iK = l and

i1; :::; iK�1 distinct and di¤erent than l: A path plm between l and m is a set of K edges (ik; ik+1);
with k = 0; 1; :::;K � 1; containing no cycle and such that i0 = l, iK = m and i1; :::; iK�1 distinct and
di¤erent than l and m: Let Plm(N0) be the set of all such paths between l and m: For a set of edges
E � Np

0 ; we say that E is in S � N0 if for all (i; j) 2 E; i; j 2 S: We say that E contains a cycle in S
if, for all i 2 S; there exists a cycle pii in S such that all elements of pii are also in E: We say that a
path plm is a free path if ce = 0 for all e 2 plm:
A spanning tree is a non-orientated graph without cycles that connects all elements of N0: A

spanning tree t is identi�ed by the set of its edges. Its associated cost is
P

e2t ce:
The minimum cost of connecting N to the source and the associated minimum cost spanning tree

is obtained using Prim�s algorithm, which has jN j steps. First, pick an edge (0; i) such that c0i � c0j
for all j 2 N . We then say that i is connected. In the second step, we choose an edge with the
smallest cost connecting an agent in Nn fig either directly to the source or to i; which is connected.
We continue until all agents are connected, at each step connecting an agent not already connected to
an agent already connected or to the source. Let C(N; c) be the associated cost. Note that the mcst
might not be unique. Let t�(c) be a minimum cost spanning tree for the cost matrix c. Let T �(c) be
the set of all minimum cost spanning trees for the cost matrix c.
For any S � N; let cS be the restriction of the cost matrix c to the coalition S0 = S [ f0g : Let

C(S; c) be the cost of an mcst of the problem (S; cS): Given these de�nitions, we say that C is the
stand-alone cost function associated with c:

2.2 Cost sharing solutions

For a problem (N; c); a cost allocation y 2 RN assigns a cost share to each agent such that the budget
balance condition

P
i2N yi = C(N; c) is satis�ed: Note that these cost shares can be negative. Since

C is not necessarily monotonic, we have justi�cation to subsidize an agent.
A cost sharing solution (or rule) assigns a cost allocation y(N; c) to any mcst problem (N; c): We

introduce the two solutions that are the focus of the paper.
The Kar solution was explicitly de�ned and characterized in Kar (2002). It is the Shapley value of

the game C: More precisely,

yki (N; c) = Shi(C) =
X

S�Nnfig

jSj!(jN j � jSj � 1)!
jN j! (C(S [ fig ; c)� C(S; c))

for all i 2 N; with C(;; c) = 0: See Winter (2002) for a review of the broad applications and appeal of
the Shapley value.
As mentioned in the introduction, the so-called folk solution has been obtained in di¤erent ways.

We focus on the approach of Bergantinos and Vidal-Puga (2007a), which uses the Shapley value, thus
allowing a clear comparison with the Kar solution.
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From any cost matrix c; we can de�ne the irreducible cost matrix c� as follows:

c�ij = min
pij2Pij(N0)

max
e2pij

ce:

The folk solution is the Shapley value of the stand-alone cost function associated to c�; de�ned as
C�(S; c) = C(S; c�) for all S � N:
Bogomolnaia and Moulin (2010) o¤er a closed-form expression of the folk solution. Fix i and re-

arrange the cost c�ij of the n � 1 edges connecting agent i to other agents in increasing order as c�ki
such that c�1i � c�2i � ::: � c�(n�1)i : Then, the folk solution yf (N; c) can be written as

yfi (N; c) =
1

n
c�0i +

n�1X
k=1

1

k(k + 1)
min

�
c�ki ; c

�
0i

	
:

Another interpretation, found in Bergantinos and Vidal-Puga (2007b), uses the notion of an opti-
mistic game. This game assigns to any coalition S the cost of connecting its members to the source
under the assumption that agents in NnS are already connected and that agents in S can use their
locations. We can then de�ne the folk solution as the Shapley value of the corresponding stand-alone
game.
By contrast, the Kar solution is the Shapley value of the stand-alone game where a coalition assumes

that others are not connected and that it cannot use their locations, also called the pessimistic stand-
alone game.
Even on simple games, the two solutions often propose allocations that are quite di¤erent. Consider

the following two player problem (f1; 2g ; ce1).

Example 1 We have ce1 and (ce1)� represented in Figure 1. Agents are identi�ed in the circles and
the costs are next to the edges.
{Insert Figure 1. Caption: Two-agent example}
We have the following values for C(�; ce1) and C(�; (ce1)�):
S C(S; ce1) C(S; (ce1)

�
)

f1g 0 0
f2g 1 0
f1; 2g 0 0
We obtain the following allocations: yk1 (f1; 2g ; ce1) = � 1

2 ; y
k
2 (f1; 2g ; ce1) = 1

2 ; y
f
1 (f1; 2g ; ce1) = 0

and yf2 (f1; 2g ; ce1) = 0:

3 Problem Separation and solutions satisfying it

Before introducing the main new property, we start with a new but very weak property stating that
cost shares should not depend on the cost of edges that are never used. An edge (i; j) is irrelevant if
cij > max fc0i; c0jg : Such an edge is never used, as it is always preferable to connect agents i and j
through the source.
Let �� be the set of cost matrices such that there are no irrelevant edges; i.e. cij � max fc0i; c0jg for

all i; j 2 N: Let �c 2 �� be the cost matrix with no irrelevant edges associated with c: For all i; j 2 N;
�cij = min fcij ;max fc0i; c0jgg ; while �c0i = c0i for all i 2 N:
Independence of Irrelevant Edges: For any mcst problem (N; c); y(N; c) = y(N; �c):
Therefore, any solutions satisfying Independence of Irrelevant Edges that coincide on �� also coincide

on �: This very mild property is satis�ed by all usual cost sharing solutions and any solution not
satisfying it would depend on edges that have no impact on any costs. It is easy to see that an irrelevant
edge will see its cost modi�ed in the irreducible matrix. Therefore, Independence of Irrelevant Edges
is implied by the Reductionism property, that imposes a reliance on the irreducible cost matrix.

4



Notice that for c 2 ��; there is always an mcst such that only one agent is connected to the source.
Therefore, the minimum cost spanning tree problem contains two sub problems: connecting one agent
to the source and connecting that agent to all others. We introduce a new property based on this
observation that we are able to split a minimum cost spanning tree problem into these two problems.
Therefore, applying a cost sharing solution to the whole problem or independently to the sub-problems
should yield the same result. Such a property makes sure that if the network is sequentially built in
this manner (�rst selecting who to connect to the source then building the rest of the network) there
will be no discussion on doing the cost sharing sequentially or on the whole problem.
Formally, let ĉ be the source connection problem associated with c : for all i 2 N; ĉ0i = c0i; while

ĉij = 0 for all i; j 2 N: Then, all that is left are the costs to connect agents to the source. The mcst is
such that one agent is connected to the source (i such that ĉ0i � ĉ0j for all j 2 N) and all others are
connected to him (at no cost since ĉij = 0 for all i; j 2 N):
Let ~c be the agent connection problem associated with c : for all i; j 2 N; ~cij = cij ; while ~c0i =

maxe2Np
0
ce for all i 2 N: Then, all agents have the same (high) cost to connect to the source, so

the mcst is such that only one (random) agent is connected to the source, and all other agents are
connected through this agent. Notice that since we have modi�ed the cost to connect to the source in
~c; we have to subtract that extra cost.
We have this relationship between stand alone costs on c; ĉ and ~c :

Lemma 1 For all mcst problem (N; c) such that c 2 ��; C(S; c) = C(S; ĉ) + C(S; ~c)�maxe2Np
0
ce for

all S � N:

Proof. Since for all c 2 �� there is always an mcst such that only one agent is connected to the source,
this is also true for all cS ; with S � N: Then, there is always an mcst for the problem (S; cS) such that
one agent is connected to the source and all other agents are connected to this agent. Let wS be (one
of) the cheapest way(s) to connect agents in S using only the edges between agents in S (not using
the source). Therefore, C(S; c) = mini2S c0i +

P
e2wS ce:

Consider now the cost matrix ĉ: Clearly, C(S; ĉ) = mini2S ĉ0i = mini2S c0i: Consider the cost
matrix ~c: There always is an mcst for the problem (S; ~cS) such that one agent is connected to the
source and all other agents are connected to this agent. Therefore, C(S; ~c) = maxe2Np

0
ce +

P
e2wS ce:

We then have C(S; ĉ) +C(S; ~c)�maxe2Np
0
ce = mini2S c0i+maxe2Np

0
ce+

P
e2wS ce�maxe2Np

0
ce

which simpli�es to mini2S c0i +
P

e2wS ce: Therefore, C(S; c) = C(S; ĉ) + C(S; ~c)�maxe2Np
0
ce:�

De�ne _c as follows: _c0i = maxe2Np
0
ce for all i 2 N and _ce = 0 otherwise. It is easy to see that

C(S; _c) = maxe2Np
0
ce for all S � N: Therefore, Lemma 1 can be written as C(S; c) = C(S; ĉ)+C(S; ~c)�

C(S; _c) for all S � N:1 Since we have this relationship between an mcst problem and its associated
source connection and agent connection problems, it becomes natural to introduce a property linking
the cost shares of the mcst problem to those of the source connection and agent connection problems.
Problem Separation: For any mcst problem (N; c) such that c 2 ��(N); yi(N; c) = yi(N; ĉ) +

yi(N; ~c)� yi(N; _c) for all i 2 N:2
This property, however, might be too strong. In fact, the folk solution does not satisfy it. While

we have the relationship of Lemma 1, notice that in both the source connection and agent connection
problems, we can �nd the optimal tree by connecting an agent to the source and all others through
that agent. While for any c 2 �� there exists such an optimal tree, we will limit the scope of Problem
Separation to a subset of problems where it is completely natural to connect only one agent to the
source. This case is as follows: suppose that the smallest cost to connect an agent to the source is
x: If for any pair of agents i; j 2 N; we can construct a path pij in N such that the cost of all edges
is no larger than x, then clearly the optimal way to go is to connect only one agent to the source.

1 It would be possible to divide a problem (N; c) in its source connection problem and in a minimum cost spanning
tree problem without a source, where we need to connect all players together. While this would eliminate the need to
de�ne _c; the current format has the advantage that c; ĉ; ~c and _c are all mcst problems with a source as de�ned in Section
2.

2 If y satis�es Anonymity, then yi(N; _c) = 1
jNj maxe2NP

0
ce for all i 2 N: The extra cost we added in the agent

connection problem is split evenly among agents.
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In many examples associated to mcst problems, it is expected that costs to connect to the source are
large compared to costs to connect agents to each other.3

Weak Problem Separation: For any mcst problem (N; c) such that c 2 ��(N); if ce � mini2N c0i
for all e 2 t�(c); all t� 2 T �(c); then yi(N; c) = yi(N; ĉ) + yi(N; ~c)� yi(N; _c) for all i 2 N:
We therefore restrict the scope of Problem Separation to the set of problems where there is no edge

used in an mcst that is more expensive than the cheapest edge connecting an agent to the source.4

Weak Problem Separation and Independence of Irrelevant Edges will be used with four other
properties, with the next three being already known in the literature and the fourth being a weaker
version of another known property.
We use an Anonymity property that says that cost allocated to the agents should not depend on

their name. We need the following notation: let N ,N 0 � N be such that jN j = jN 0j and f be a bijection
from N to N 0: For any c 2 �(N); fc 2 �(N 0) is such that (fc)f(i)f(j) = cij and (fc)0f(k) = c0k for all
i; j; k 2 N: For any y 2 RN ; fy 2 RN 0

is such that fyf(i) = yi for all i 2 N:
Anonymity: For any mcst problem (N; c) and bijection f from N to N 0; we have fy(N; c) =

y(N 0; fc):
Anonymity is widely used in cooperative game theory (see Moulin (1988)). It implies the usual

symmetry property, found in Bergantinos and Vidal-Puga (2009) and Bogomolnaia and Moulin (2010).
We also use one of the properties used to characterize the Kar solution (Kar (2002)), that says that

if we can split our agents into two groups that can be connected independently to the source, then we
can do the cost sharing separately on these two groups. More precisely, two groups S and NnS can
be connected independently to the source if for all i 2 S and j 2 NnS; cij � max fc0i; c0jg : Then, it
is always as costly to connect two agents in distinct groups directly one to the other than to connect
them both to the source. Notice that a solution that fails Group Independence is unfair, as the cost
shares of a group can depend on the situation of a completely independent group of agents.
Group Independence: For any mcst problem (N; c); if S � N is such that for all i 2 S and

j 2 NnS; cij � max fc0i; c0jg ; then yi(N; c) =
�

yi(S; c
S) if i 2 S

yi(NnS; cNnS) if i 2 NnS
:

Kar (2002) actually uses a weaker version where S and NnS are considered distinct if for all
i 2 S and j 2 NnS; cij > max fc0i; c0jg : Removing the strict inequality adds the case where we are
indi¤erent between connecting agents from distinct groups to each other or independently. The mere
fact that the groups can be connected independently seems a su¢ cient reason to consider the groups
as independent.
Note that when we apply Group Independence to a problem (N; c) with c 2 ��(N); there is no edge

(i; j) such that cij > max fc0i; c0jg : Groups S and NnS are considered independent if for all i 2 S
and j 2 NnS; cij = max fc0i; c0jg : Then we are indi¤erent between connecting agents in S alone or
with agents in NnS: More importantly, even in this case, there is no gain for coalition S (or any of
its subsets) to cooperate with agents in NnS (or any of its subsets); which justi�es their cost shares
being computed independently.
Next, we de�ne Piecewise Linearity, which says that if we can decompose a cost matrix into

submatrices where the cost of all edges are ordered in the same manner as the original matrix, then
the cost allocation on the original cost matrix should equal the sum of the cost allocations on the
submatrices. This property (or similar versions), a weaker version than the classical Additivity property
in the general setting (�rst proposed by Shapley (1953)), has been used in Bergantinos and Vidal-Puga
(2009), Bogomolnaia and Moulin (2010), Branzei et al (2004) and Tijs et al (2006). Piecewise Linearity
generates a rich class of solutions having a simple structure. Cost shares can be de�ned on simple
elementary matrices where costs of all edges are either 0 or 1, making it particularly appealing. In

3 In their study of Monotonicity and Ranking properties, Bogomolnaia and Moulin (2010) use a stronger but similar
restriction. They apply their properties to the set of cost matrices such that for all i; j 2 N; cij � mink2N c0k: That is,
they suppose that all connection costs between agents are smaller than all connection costs to the source.

4Weak Problem Separation is implied by Restricted Addivity, a property used in Bergantinos and Vidal-Puga (2009),
among others. See Lemma A.1 for details. Thanks to an anonymous referee for pointing this out.

6



addition, many normative properties easily de�ned on those elementary matrices automatically extend
to arbitrary matrices.
To formally de�ne the Piecewise Linearity property we need the following notation. Suppose

N = f1; :::; ng and denote arbitrarily the q = n(n+1)
2 distinct edges in Np

0 ; such that c = (ce1 ; :::; ceq ):
For any permutation � of f1; :::; qg ; de�ne K�(N) = fc 2 �(N) j ce�(1) � ce�(2) � ::: � ce�(q)g to be the
cone in �(N) containing all cost matrices with a given increasing ordering of connection costs. Note
that �(N) = [K�(N): A cost sharing solution y is piecewise linear if it is linear in K� for all �: More
precisely, denote by �e the set of elementary cost matrices where all connection costs are either 0 or
1 : �e(N) = fc 2 �(N) : ce 2 f0; 1g for all e 2 Np

0 g : For any cone K�(N) and any k 2 f1; :::; qg ; let
bk 2 �e(N) be such that bk

e�(1)
= ::: = bk

e�(k�1)
= 0 while bk

e�(k)
= ::: = bk

e�(q)
= 1:

Piecewise Linearity: For any mcst problem (N; c); y(N; c) =
Pq

k=1 (ce�(k) � ce�(k�1)) y(N; bk)
for any � and any c 2 K�(N):
Therefore, if solutions satisfying Piecewise Linearity coincide on �e; they also coincide on �: Let

y be a solution de�ned over �e. The piecewise linear extension of y is a solution yL such that for all
c 2 K�(N); y

L(N; c) =
Pq

k=1 (ce�(k) � ce�(k�1)) y(N; bk).
Having de�ned the set of elementary matrices, we de�ne the subsets of elementary matrices that

correspond to source connection and agent connection problems. The set of elementary cost matrices
generating source connection problems is �̂e, the set of elementary matrices c such that cij = 0 for all
i; j 2 N: The set of elementary cost matrices generating agent connection problems is ~�e, the set of
elementary matrices c such that c0i = 1 for all i 2 N:
Finally, we use a weak version of the Equal Treatment property used in Kar (2002), that says that

if the cost of edge (i; j) changes, with all other costs staying put, then the cost shares of i and j should
be changed by the same amount. This introduces the concept of equal responsibility of i and j over
the edge between them. While it is used to characterize the Kar solution, it is not satis�ed by the folk
solution, as a change in the cost of edge (i; j) might change the irreducible cost matrix in a way that
impacts i and j di¤erently. We use a weaker version that is restricted to edges not used in any mcst.
Weak Equal Treatment: For any mcst problems (N; c) and (N; c0) and i; j 2 N such that

cij > c
0
ij ; ce = c

0
e else and C(N; c) = C(N; c

0), we have yi(N; c)� yi(N; c0) = yj(N; c)� yj(N; c0):
While the original version is very appealing from a normative point of view, the weak version at

least makes sure that the principle is respected for edges not in any mcst. Note that it is implied
by the Reductionist property, used to characterize the folk solution, that states that the cost shares
should not be responsive to costs of edges not in any mcst.
Before moving on to the main theorem, we de�ne some additional notations. Let R(c) � N

be the set of agents such that c0i = 1: Any c 2 �̂e(N) is uniquely de�ned by R(c): Let Zi(c) =
fj 2 Nn fig j cij = 0g be the set of agents to which i has a free connection: Any c 2 ~�e(N) is uniquely
de�ned by Z1; Z2; :::; Z jN j: Let Ni(c) = fj 2 N j there exists a free path pij in Ng : Of course, Zi(c) �
Ni(c): Also, since i 2 Ni(c); we always have that Ni(c) 6= ;: Let ~�eNC(N) be the set of elementary
matrices c with c0i = 1 and such that there are no free cycles pii in N; for all i 2 N:
The following theorem shows that there is a family of solutions satisfying the set of properties

de�ned above. These solutions are the a¢ ne combination of the Kar and folk solutions. We write the
weights such that they depend on a, the cost share of agent 2 in Example 1. Therefore, by determining
what we deem fair as a solution in Example 1, we can determine the weight to put on the Kar and
folk solutions. The properties in the theorem are independent, as shown in Lemma A.2, in appendix.

Theorem 1 Let ya = 2a
�
yk � yf

�
+ yf and Y = fya j a 2 Rg : A solution y satis�es Weak Problem

Separation, Group Independence, Piecewise Linearity, Anonymity, Weak Equal Treatment and Inde-
pendence of Irrelevant Edges if and only if y 2 Y: In addition, a = y2(f1; 2g ; ce1), the cost share of
agent 2 in Example 1.

Proof. Lemma A.1, in the appendix, shows that all solutions in Y satisfy the six properties. Let
y be a solution that satis�es Weak Problem Separation, Group Independence, Piecewise Linearity,
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Anonymity, Weak Equal Treatment and Independence of Irrelevant Edges. Let a = y2(f1; 2g ; ce1) and
ya = 2a

�
yk � yf

�
+ yf : We show that y = ya:

Part 1: y(N; c) = ya(N; c) for all c 2 �̂e; the set of problems that generate elementary source
connection problems
We start by computing y: To do so, we �rst compute cost shares as functions of N and R(c): Next,

we de�ne two problems that generate the same agent connection problem and that can be separated
in two source connection problems using Group Independence. The equations that we obtain allow
us to conclude that the cost shares depend only on jN j ; and that there is a well de�ned relationship
between di¤erent levels of jN j :
For c 2 �̂e(N); if R(c) = N; then C(N; c) = 1: By Anonymity and budget balance, yi(N; c) = 1

jN j :

LetR ( N and cN;R 2 �e be such that cN;R0i =

�
1 if i 2 R
0 if i 2 NnR . Then, we de�ne ajN jjRj � yi(N; ĉN;R)

for all i 2 R: By budget balance and Anonymity, we have yi(N; ĉN;R) = �
jRjajNj

jRj
jN j�jRj for i 2 NnR:

Let n = jN j : Fix i 2 N and let c 2 �e, S � Nn fig with jSj = m be such that we have the following
three conditions i) for all j; k 2 Nn fig ; cjk = 0 ii) cij = 0 if j 2 S and cij = 1 else and iii) c0j = 0 for
all j 2 Nn fig ; c0i = 1:
By Weak Problem Separation and Anonymity, yl(N; c) = yl(N; ĉ)+ yl(N; ~c)� 1

n for all l 2 N; with
y(N; ĉ) such that yi(N; ĉ) = an1 and yj(N; ĉ) = �

an1
n�1 for all j 2 Nn fig :

Notice that for k 2 S [ fig and l 2 Nn (S [ fig) ; ckl � max fc0k; c0lg : Therefore, by Group Inde-
pendence, yk(N; c) = yk(S [fig ; cS[fig) for all k 2 S [fig and yl(N; c) = yl(Nn (S [ fig) ; cNn(S[fig))
for all l 2 Nn (S [ fig) :
The problem (S [ fig ; cS[fig) is such that cS[figkl = 0 for all k; l 2 S [ fig, cS[fig0j = 0 for j 2 S;

and cS[fig0i = 1: Therefore, yi(S [ fig ; cS[fig) = am+11 :

The problem (Nn (S [ fig) ; cNn(S[fig)) is such that cNn(S[fig)kl = 0 for all k; l 2 N0n (S [ fig) :
Therefore, by Anonymity, yk(Nn (S [ fig) ; cNn(S[fig)) = 0 for all k 2 Nn (S [ fig) :
Combining these results, we obtain

yi(N; ~c) =
1

n
+ am+11 � an1

yj(N; ~c) =
1

n
+

an1
n� 1 for j 2 Nn (S [ fig) :

Consider c0 such that c0kl = ckl if k; l 6= 0, c00i = 0; c00j = 0 if j 2 S and c00j = 1 if j 2 Nn (S [ fig) :
By Weak Problem Separation and Anonymity, yl(N; c0) = yl(N; ĉ

0) + yl(N; ~c
0) � 1

n for all l 2 N;
with y(N; ĉ0) such that yj(N; ĉ0) = ann�m�1 if j 2 Nn (S [ fig) and yj(N; ĉ0) = � (n�m�1)ann�m�1

m+1 for
all j 2 S [ fig : Also, notice that ~c0 = ~c; so y(N; ~c0) = y(N; ~c):
Notice also that for j 2 Nn fig ; c0ij � max

�
c00i; c

0
0j

	
: Therefore, by Group Independence, yj(N; c0) =

yj(Nn fig ; c0Nnfig) for all j 2 Nn fig and yi(N; c0) = yi(fig ; c0fig).
The problem (Nn fig ; c0Nnfig) is such that c0Nnfigkl = 0 for all k; l 2 Nn fig, c0Nnfig0j = 0 for j 2 S;

and c0Nnfig0j = 1 for j 2 Nn (S [ fig) : Therefore, yj(Nn fig ; c0Nnfig) = an�1n�m�1 for all j 2 Nn (S [ fig) :
By budget balance, yi(fig ; c0fig) = c00i = 0:
Putting these results together with the values of y(N; ~c) found above, we obtain

yi(N; c
0) = �

(n�m� 1)ann�m�1
m+ 1

+ am+11 � an1 = 0

yj(N; c
0) = ann�m�1 +

an1
n� 1 = a

n�1
n�m�1 for j 2 Nn (S [ fig) :
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This gives us the following equations:

�
(n�m� 1)ann�m�1

m+ 1
+ am+11 � an1 = 0 (1)

ann�m�1 +
an1
n� 1 � a

n�1
n�m�1 = 0: (2)

Notice that by our assumptions 1 � m � n� 2:
In (2), let m = n� 2: We obtain

n

n� 1a
n
1 = a

n�1
1 : (3)

By iteration, we obtain
ak1 =

n

k
an1 for 2 � k � n:

Replacing this in (1), we obtain

n�m� 1
m+ 1

ann�m�1 + a
n
1 = a

m+1
1 =

n

m+ 1
an1

which simpli�es to ann�m�1 = an1 for 1 � m � n � 2; which can be restated as an1 = ank � an for
2 � k � n� 2: It remains to show that ann�1 = an:
In (2), let m = 1: We obtain

n

n� 1a
n
1 = a

n�1
n�2:

Therefore, by (3) and the result above, an�1n�2 = a
n�1
1 = an�1: These results hold for any values of n; so

we can conclude that for all k � 2; 1 � l � k� 1; akl = ak: Then, by iteration on (3), we get ak = 2a2

k :

Therefore, for c 2 �̂e; ifR(c) = N; yi(N; c) = 1
jN j and ifR(c) 6= N; yi(N; c) =

(
2a2

jN j if i 2 R(c)
� jR(c)j2a2
(jN j�jR(c)j)jN j if i 2 NnR(c)

;

with a2 2 R:
Next, we compute ya(N; c) for c 2 �̂e:We can check that if R(c) = N; yki (N; c) = y

f
i (N; c) =

1
jN j and

if R(c) 6= N; yki (N; c) =
(

1
jN j if i 2 R(c)

� jR(c)j
(jN j�jR(c)j)jN j if i 2 NnR(c)

and yfi (N; c) = 0 for all i 2 N:5 Therefore,

for c 2 �̂e, if R(c) = N; yai (N; c) = 1
jN j : If R(c) 6= N , y

a
i (N; c) =

(
2a
jN j if i 2 R(c) and R(c) 6= N
� jR(c)j2a
(jN j�jR(c)j)jN j if i 2 NnR(c)

:

Notice that ce1 = ĉf1;2g;f2g: Therefore, a = y2(f1; 2g ; ce1) = a2 and y(N; c) = ya(N; c) for all c 2 �̂e:
Part 2: y(N; ~c) = ya(N; ~c) for all ~c 2 ~�ePNC ; the set of elementary matrices generating agent

connection problems and such that the free edges constitute a tree connecting all agents:
First, we show that for ~c 2 ~�ePNC ; yi(N; ~c) = a

�
2�

��Zi(~c)���� (2a�1)
jNi(~c)j :

For all ~c 2 ~�ePNC ; there is a unique free path p
f
ij(~c) between any agents i and j: For ~c 2 ~�ePNC ;

i; j 2 N; let N�i
j (~c) =

n
k 2 N j pfjk(~c) is in Nn fig

o
: N�i

j represents the agents to which j can connect

to freely without i: Then, for S � Nn fig ; DS
i (~c) � [j2SN�i

j (~c) represents the players in S plus the
agents k for which there is a free path pjk in Nn fig connecting him to an agent j 2 S: It represents
the set of agents to which agent i can connect to freely with the help of agents in S: By de�nition,
S � DS

i (~c): Since Zi(~c) is the set of players for which the direct connection to i is free, we have that
D
Zi(~c)
i (~c) = Nn fig : Let dSi (~c) =

��DS
i (~c)

�� :
5 If i 2 R(c); the incremental cost of agent i is 1 when he joins the empty set, and 0 otherwise. Therefore, yki =

1
jNj :

If i =2 R(c); his incremental cost is �1 if he joins a group of players that are all in R(c) and 0 otherwise. If R(c) 6= N;

then the irreducible matrix is such that c�e = 0 for all e and thus y
f
i = 0. If R(c) = N; then c

� = c and yfi =
1
jNj :
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In the following, we consider c; and c0 such that ~c = ~c0: In order to simplify, we write DS
i and d

S
i

instead of DS
i (~c) and d

S
i (~c):

To make this notation clear, consider the example in Figure 2. It is such that N = f1; 2; 3; 4; 5; 6; 7g
and the free edges are represented in the �gure. Since everyone is connected and there are no free
cycles, then the cost matrix is in ~�ePNC : Consider agent 1. We have Z

1 = f2; 3; 4g and N�1
2 = f2g ;

N�1
3 = N�1

5 = f3; 5g ; N�1
4 = N�1

6 = N�1
7 = f4; 6; 7g : Therefore, we have, among others, Df2;3g

1 =

f2; 3; 5g ; Df3;4g
1 = f3; 4; 5; 6; 7g and Df2;3;4g

1 = Nn f1g :
{Insert Figure 2. Caption: Example of cost matrix in ~�ePNC :}
The proof consists in "cutting o¤" the paths connected to i one by one, until i is left alone,

and using Group Independence and Weak Problem Separation to �nd cost shares. In the above
example, we start �rst by letting c01 = c02 = 0; with c0k = 1 otherwise. Using Weak Problem
Separation and the results of Part 1, we can express y1(N; c) as a function of y1(N; ~c): We can also

apply Group Independence to separate Df2g
1 from NnDf2g

1 : Then y1(N; c) = y1(NnDf2g
1 ; cNnD

f2g
1 ):

Applying Weak Problem Separation and the results of Part 1 again, we obtain y1(N; c) as a function

of y1(NnDf2g
1 ; ~cNnD

f2g
1 ): Combining with the previous result, we obtain a relation between y1(N; ~c)

and y1(NnDf2g
1 ; ~cNnD

f2g
1 ): We then consider c0 such that c001 = c003 = 0; with c00k = 1 and examine

the problem (NnDf2g
1 ; c0NnD

f2g
1 ): Using the same technique, we �nd a relation between y1(N; ~c) and

y1(NnDf2;3g
1 ; ~cNnD

f2;3g
1 ): Doing the same thing with agent 4 allows us to �nd a relation between y1(N; ~c)

and y1(NnDf2;3;4g
1 ; ~cNnD

f2;3;4g
1 ): Since NnDf2;3;4g

1 = f1g ; we have y1(NnDf2;3;4g
1 ; ~cNnD

f2;3;4g
1 ) = 1:

Therefore, we can directly solve for y1(N; ~c):
We now return to the general case. Suppose that

��Zi(~c)�� = m and that jN j = n: Take any ordering
of the agents in Zi(~c); j1; j2; :::; jm: The proof contains m steps, one for each agent in Zi(~c):
Step 1: De�ne c such that cjk = ~cjk for all j; k 2 N; c0i = c0j1 = 0 and c0k = 1 else: By Weak

Problem Separation and Anonymity, we have that yi(N; c) = �a(n�2)
n + yi(N; ~c) � 1

n : By de�nition

of ~�ePNC ; for any j; k 2 N; there is a unique free path from j to k in N . For j 2 NnDfj1g
i and

k 2 Dfj1g
i ; this path has to go through i and j1 and thus cjk � max fc0j ; c0kg and we can apply Group

Independence. We have that yi(N; c) = yi

�
NnDfj1g

i ; cNnD
fj1g
i

�
: By Weak Problem Separation and

Anonymity, yi
�
NnDfj1g

i ; cNnD
fj1g
i

�
= �

2a
�
n�dfj1gi �1

�
�
n�dfj1gi

� + yi

�
NnDfj1g

i ; ~cNnD
fj1g
i

�
� 1�

n�dfj1gi

� :
Therefore, combining these results, we obtain

yi(N; ~c) = yi

�
NnDfj1g

i ; ~cNnD
fj1g
i

�
+
a(n� 2)

n
�
2a
�
n� dfj1gi � 1

�
�
n� dfj1gi

� +
1

n
� 1�

n� dfj1gi

� :
Step l, for l = 2; :::;m� 1: De�ne c0 such that c0kl = ckl for k; l 2 N; c00i = c00jl = 0; c

0
0k = 1 else: By

de�nition, ~c0 = ~c and jl =2 Dfj1;:::;jl�1g
i : Consider the problem

�
NnDfj1;:::;jl�1g

i ; c0NnD
fj1;:::;jl�1g
i

�
: By

Weak Problem Separation and Anonymity, we have that

yi

�
NnDfj1;:::;jl�1g

i ; c0NnD
fj1;:::;jl�1g
i

�
= �a(n� d

fj1;:::;jl�1g
i � 2)�

n� dfj1;:::;jl�1gi

� + yi

�
NnDfj1;:::;jl�1g

i ; ~cNnD
fj1;:::;jl�1g
i

�

� 1�
n� dfj1;:::;jl�1gi

� :
By de�nition of ~�ePNC ; for any j; k 2 N; there is a unique free path from j to k in NnDfj1;:::;jl�1g

i :

For j 2 Nn
�
D
fj1;:::;jl�1g
i [Dfjlg

i

�
and k 2 Dfjlg

i ; this path has to go through i and jl and thus cjk �
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max fc0j ; c0kg and we can apply Group Independence. Thus, yi
�
NnDfj1;:::;jl�1g

i ; c0NnD
fj1;:::;jl�1g
i

�
=

yi

�
NnDfj1;:::;jlg

i ; c0NnD
fj1;:::;jlg
i

�
: By Weak Problem Separation and Anonymity,

yi

�
NnDfj1;:::;jlg

i ; c0NnD
fj1;:::;jlg
i

�
= �

2a
�
n� dfj1;:::;jlgi � 1

�
�
n� dfj1;:::;jlgi

� + yi

�
NnDfj1;:::;jlg

i ; ~cNnD
fj1;:::;jlg
i

�

� 1�
n� dfj1;:::;jlgi

� :
Combining these results, we obtain

yi

�
NnDfj1;:::;jl�1g

i ; ~cNnD
fj1;:::;jl�1g
i

�
= yi

�
NnDfj1;:::;jlg

i ; ~cNnD
fj1;:::;jlg
i

�
+
a
�
n� dfj1;:::;jl�1gi � 2

�
�
n� dfj1;:::;jl�1gi

�
�
2a
�
n� dfj1;:::;jlgi � 1

�
�
n� dfj1;:::;jlgi

� +
1�

n� dfj1;:::;jl�1gi

� � 1�
n� dfj1;:::;jlgi

�
and

yi(N; ~c) = yi

�
NnDfj1;:::;jlg

i ; ~cNnD
fj1;:::;jlg
i

�
+
a(n� 2)

n
� (l � 1)a+ 1

n

� 1�
n� dfj1;:::;jlgi

� � 2a
�
n� dfj1;:::;jlgi � 1

�
�
n� dfj1;:::;jlgi

� :

Step m: By de�nition, NnDfj1;:::;jmg
i = fig and ~cNnD

fj1;:::;jmg
i is such that c0i = 1: Therefore,

yi

�
fig ; ~cNnD

fj1;:::;jmg
i

�
= 1: We also have that n � dfj1;:::;jmgi = 1. Therefore, we have that for all

~c 2 ~�ePNC

yi(N; ~c) =
a(n� 2)

n
� (m� 1)a+ 1

n

= a
�
2�

��Zi���� (2a� 1)jN j :

Next, we compute ya(N; c) for ~c 2 ~�ePNC : Consider ~c 2 ~�ePNC : We can check that y
k
i (N; ~c) =

1� jZ
i(~c)j
2 and yfi (N; ~c) =

1
jN j :

6 Therefore, for c 2 ~�ePNC ; yai (N; c) = a
�
2�

��Zi(c)���� (2a�1)
jN(c)j = yi(N; c):

Part 3: y(N; ~c) = ya(N; ~c) for all ~c 2 ~�eP� ; the set of elementary matrices generating agent connec-
tion problems and such that there exists a free cycle that includes all agents in N:
The result of Part 3 is obtained by showing that if two cost sharing solutions coincide for c 2 ~�eP� (N)

when it contains k free edges, they also coincide when it contains k + 1 free edges. This part of the
proof uses Weak Equal Treatment and is very similar to the proof of the main theorem in Kar (2002).

6Agent i has a marginal contribution of 1 if he joins a coalition that does not include any member of Zi:
The probability of such an event is 1

jZij+1 : His marginal contribution is �(k � 1) when he joins a coalition that

contains k agents in Zi (as these agents cannot have a free link between them, as we have no cycles). Thus,

yki =
1

jZij+1 �
PjZij
k=2

jZij(k�1)
(jZij�k)!k!

�PjNj�jZij�1
l=0

(jNj�jZij�1)!
l!(jNj�jZij�1�l)!

(l+k)!(jNj�k�l�1)!
jNj!

�
; which simpli�es to 1 � jZij

2
: As

for the folk solution, the irreducible matrix is ~c�jk = 0 for any j; k 2 N: Therefore, y
f
i =

1
jNj :
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Suppose that �y(N; c) and z(N; c) are cost sharing solutions that satisfy all properties and that
coincide for c 2 ~�eP� (N) containing k � 1 free edges. We show that they coincide if c contains k free
edges.
Let c�e be such that c�ee = 1 and c�ee0 = ce0 if e

0 6= e: Let W = fe 2 Np j ce = 0g :
Suppose that (i; j) 2W: We have

�yi(N; c)� �yj(N; c) = �yi(N; c
�ij)� �yj(N; c�ij) (By Weak Equal Treatment)

= zi(N; c
�ij)� zj(N; c�ij) (By induction argument)

= zi(N; c)� zj(N; c) (By Weak Equal Treatment)

Therefore, we have �yi(N; c)�zi(N; c) = �yj(N; c)�zj(N; c) for all (i; j) 2W: Let f = f(i1; i2) ; :::; (iK ; iK+1)g
such that i1 = iK+1 be a free cycle that includes all players in N: By de�nition, if e 2 f; then e 2 W:
Applying sequentially the fact that �yik(N; c)�zik(N; c) = �yik+1(N; c)�zik+1(N; c) for all (ik; ik+1) 2 f;
we obtain that

�yi(N; c)� zi(N; c) = �yj(N; c)� zj(N; c) for all i; j 2 N: (4)

By e¢ ciency, we have that
P

i2N (�yi(N; c)� zi(N; c)) = 0: With (4), it implies that

�yi(N; c) = zi(N; c) for all i 2 N

Therefore, �y(N; c) = z(N; c):
To conclude the argument, consider the case where c 2 ~�eP� (N) contains exactly jN j free edges,

meaning that there exists an ordering of the agents i1; :::; ijN j such that cikik+1 = 0 for all k =
1; :::; jN j � 1, ci1ijNj = 0 and ce = 1 otherwise. Clearly, for any e 2 W; c�e 2 ~�ePNC and by part 2, all
solutions satisfying the properties coincide for c�e: Therefore they also coincide for c 2 ~�eP� (N) that
contains exactly jN j free edges. The induction argument allows us to conclude that it is also true for
any c 2 ~�eP� (N) :
Part 4: y(N; ~c) = ya(N; ~c) for all ~c 2 ~�eP ; the set of elementary matrices generating agent connection

problems and such that the free edges constitute one connected component N (but not necessarily a
tree):
Parts 2 and 3 covers the cases where the connected component is N and the free edges constitute

a tree or a free cycle that covers all members of N: We cover the remaining cases. We focus on the
cost share of agent i 2 N: There are two possibilities:
i) i does not belong to a free cycle
In that case, proceed exactly as in part 2: using Weak Problem Separation, Group Independence

and Anonymity, "cut o¤" the branches attached to i until that agent is left alone, allowing to �nd the
link between yi(N; c) and yi(fig ; cfig); which is trivially equal to 1:
ii) i belongs to a free cycle. Let S � N be such that i 2 S; there exists a free cycle that includes

all members of S and there does not exists a free cycle that includes all members of T for all T � S:
We then proceed as in part 2: usingWeak Problem Separation, Group Independence and Anonymity,

we "cut o¤" the branches attached to S until that coalition stands alone, allowing to �nd the link be-
tween yi(N; c) and yi(S; cS): Since cS 2 ~�eP�(S); by part 3 all solutions satisfying the properties coincide
on cS and thus also coincide on c:
Part 5: y(N; ~c) = ya(N; ~c) for all ~c 2 ~�e; the set of elementary matrices generating agent connection

problems.
Elements of ~�en~�eP are such that we can partition N into N1; ::; NK such that that i) there exists

a free path pij for all i; j 2 Nk; k = 1; :::;K and ii) there does not exist a free path plm for all l 2 Nk

and m 2 Nk0 if k 6= k0: If a solution �y satis�es Group Independence, �yi(N; c) = �yi(N
k; cN

k

) for all
i 2 Nk; all k 2 f1; :::;Kg : Clearly, cNk 2 ~�eP . Therefore, since, by Part 4, y(N; ~c) = ya(N; ~c) for all
~c 2 ~�eP ; we also have that y(N; ~c) = ya(N; ~c) for all ~c 2 ~�e:
Part 6: y(N; c) = ya(N; c) for all c 2 ��e; the set of elementary matrices without irrelevant edges.
If c 2 ��e(N) is such that mini2N c0i = 1; then c 2 ~�e and by part 5, y(N; ~c) = ya(N; ~c): Suppose

that mini2N c0i = 0: If C(N; c) = 0 and a solution �y satis�es Weak Problem Separation, we have
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�y(N; c) = �yi(N; ĉ) + �yi(N; ~c) � �yi(N; _c); with ĉ; _c 2 �̂e and ~c 2 ~�e: By Parts 1 and 5, y and ya

coincide on �̂e and ~�e: Therefore, they also coincide for c 2 ��e such that C(N; c) = 0: Suppose that
mini2N c0i = 0 but C(N; c) > 0: Then, we can partition N into N1; ::; NK such that that i) there exists
a free path pij in N for all i; j 2 Nk; k = 1; :::;K and ii) there does not exist a free path plm in N for all
l 2 Nk and m 2 Nk0 if k 6= k0: If a solution �y satis�es Group Independence, �yi(N; c) = �yi(Nk; cN

k

) for
all i 2 Nk; all k 2 f1; :::;Kg : For all k; it is clear that either cNk 2 ��e(N) is such that mini2Nk c0i = 1

or C(Nk; cN
k

) = 0: By the results above, we thus have that y and ya coincide on all c 2 ��e(N) such
that mini2N c0i = 0 but C(N; c) > 0: Altogether, we have that y(N; c) = ya(N; c) for all c 2 ��e:
Part 7: y(N; c) = ya(N; c) for all c 2 �; the set of all cost matrices.
Consider c 2 �e: If a solution �y satis�es Independence of Irrelevant Edges, �y(N; c) = �y(N; �c): By

Part 6, y and ya coincide on all c 2 �e; the set of all elementary cost matrices.
Consider c 2 �: If a solution �y satis�es Piecewise Linearity, �y(N; c) =

Pq
k=1 (ce�(k) � ce�(k�1)) �y(N; bk);

with � such that ce�(1) � ce�(2) � ::: � ce�(q) : Since bk 2 �e and y and ya coincide on �e; we conclude
that y(N; c) = ya(N; c) for all c 2 �:
Since it has been shown that all solutions y 2 Y satisfy the six properties and that all solutions

satisfying the six properties are part of Y , the proof is complete.
This theorem can ease implementation of cost sharing solutions. Once the participants are con-

vinced that the properties of the theorem are acceptable, we can ask for their preferred value of a in
Example 1 and obtain the corresponding cost sharing solution.

4 New characterizations of the Folk and Kar solutions

Quite obviously, the folk and Kar solutions are in Y , respectively, when a = 0 and a = 1
2 : We provide

new characterizations for these solutions by adding additional properties to those presented in the
previous section.
The �rst property we add is the usual Core Selection property, which assures stability, as no group

has incentives to secede and realize the project on its own. Core notions go back to Gillies (1953).
Core Selection has been used in Bogomolnaia and Moulin (2010) to characterize the folk solution.
Core Selection: For any mcst problem (N; c) and all S � N;

P
i2S yi(N; c) � C(S; c):

Theorem 2 A solution y satis�es Weak Problem Separation, Group Independence, Piecewise Linear-
ity, Anonymity, Independence of Irrelevant Edges, Weak Equal Treatment and Core Selection if and
only if y is the folk solution.7

Proof. Lemma A.1 shows that the folk solution satis�es Weak Problem Separation, Group Indepen-
dence, Piecewise Linearity, Anonymity, Independence of Irrelevant Edges and Weak Equal Treatment.
Lemma A.3 shows that the folk solution satis�es Core Selection and that the Kar solution does not
satisfy it.
Theorem 1 shows that if a solution satis�es Weak Problem Separation, Group Independence, Piece-

wise Linearity, Anonymity, Independence of Irrelevant Edges and Weak Equal Treatment, then it can
be written as ya = 2a

�
yk � yf

�
+ yf ; with a 2 R. Since the Kar solution does not satisfy Core

Selection, it is easy to see that any solution that puts a non-zero weight on the Kar solution will not
satisfy Core Selection. Therefore, we must have a = 0 and y = yf :
If we compare this with other characterizations of the folk solution, we see for instance that like

the characterization found in Bogomolnaia and Moulin (2010), we use Piecewise Linearity and Core
Selection, and Anonymity instead of Symmetry. While they use Reductionism, that says that cost
shares should only depend on the irreducible cost matrix, we use Weak Problem Separation, Group
Independence, Weak Equal Treatment and Independence of Irrelevant Edges. This shows how strong

7We can also replace Core Selection by Population Monotonicity, given that the former is implied by the latter and
that the folk solution satis�es both (Bergantinos and Vidal-Puga (2007a)). Population Monotonicity requires that no
agent be made worse o¤ when agents join the coalition.
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the Reductionism property is. Similarly, Bergantinos and Vidal-Puga (2009) characterize the folk
solution with Symmetry, a stronger version of Piecewise Linearity and Separability, a stronger version
of Group Independence that states that if C(S; c) + C(NnS; c) = C(N; c) then we can compute cost
shares of S and NnS independently. This is stronger than Group Independence as it applies to cases
where C(R; c) + C(T; c) > C(R [ T; c) where R � S and T � NnS; whereas the Group Independence
property only applies when two groups are completely disjoint. It seems like this strengthening of the
Group Independence axiom is signi�cant, because, in our case, we need to compensate by adding Weak
Problem Separation, Weak Equal Treatment, Independence of Irrelevant Edges and Core Selection.
The stronger version of Problem Separation is satis�ed by the Kar solution. It turns out that it is

the only solution in the family described in the previous section that satis�es it.

Theorem 3 A solution y satis�es Problem Separation, Group Independence, Piecewise Linearity,
Anonymity, Weak Equal Treatment and Independence of Irrelevant Edges if and only if y is the Kar
solution.

Proof. Lemma A.1 shows that the Kar solution satis�es Weak Problem Separation, Group Indepen-
dence, Piecewise Linearity, Anonymity, Independence of Irrelevant Edges and Weak Equal Treatment.
Lemma A.3 shows that the Kar solution satis�es Problem Separation and that the folk solution does
not.
Theorem 1 shows that if a solution satis�es Weak Problem Separation, Group Independence, Piece-

wise Linearity, Anonymity, Independence of Irrelevant Edges and Weak Equal Treatment, then it can
be written as ya = 2a

�
yk � yf

�
+ yf ; with a 2 R. Since the folk solution does not satisfy Problem

Separation, it is easy to see that any solution that puts a non-zero weight on the folk solution will not
satisfy Problem Separation. Therefore, we must have a = 1

2 and y = y
k:

The only characterization of the Kar solution appears in Kar (2002). It uses a weaker version of
Group Independence (strict inequalities) and Absence of Cross Subsidization, which together act as the
version of Group Independence used here. They are used with the strong version of Equal Treatment,
that says that if the cost of any edge (i; j) changes, then the cost shares of agents i and j should change
by the same amount. This strong property is replaced in our characterization by its restricted version,
Weak Equal Treatment, and Piecewise Linearity, Anonymity, Independence of Irrelevant Edges and
Problem Separation.
We now consider two properties making agents responsible for where they are located in the network.

Bogomolnaia and Moulin (2010) consider similar properties, however restricted to cost matrices where
the edges connecting agents to the source are strictly more expensive than other edges. They are also
discussed in Trudeau (2012b), where a compromise between the Kar and folk solutions is introduced.
Strict Cost Monotonicity: For any mcst problems (N; c) and (N; c0) such that c0ij < cij �

max fc0i; c0jg and c0e = ce else, we have yk(N; c0) < yk(N; c) for k 2 fi; jg :
Strict Cost Monotonicity says that for a relevant edge (i; j), if its cost decreases and the cost of all

other edge stay the same, then both agents i and j see their cost allocations strictly decrease.
Strict Ranking: For any mcst problem (N; c) such that cik � cjk for all k 2 N0n fi; jg and

cil < cjl for some l 2 N0n fi; jg ; with cil < max fc0i; c0lg ; we have yi(N; c) < yj(N; c):
Strict Ranking says that the location of agent i is strictly better than the location of agent j; then

the cost allocation of i is strictly less than the cost allocation of j:
Lemma A.4 in appendix shows that members of the family that satisfy these properties are such

that a > 0: Therefore, both eliminate the folk solution.
While a can take any value in R; if a < 0; then in Example 1 agent one has a cost share that

is higher than 0, his stand-alone cost. Similarly, if a > 1; it is agent 2 that has a cost share that
is higher than his stand-alone cost. In those cases, agents would be better o¤ not cooperating with
each other. This weak stability property, called Individual Rationality (or Stand-Alone property), is
formally de�ned as follows.
Individual Rationality: For any mcst problem (N; c) and i 2 N; yi(N; c) � C(fig ; c) = c0i:
Lemma A.4 in appendix shows formally that this property is satis�ed if and only if a 2 [0; 1] : A

value of a = 1; that generates a solution y1 = 2yk � yf ; means that in Example 1 we give all of the
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surplus created to agent 1, who has the better location. By opposition, the folk solution gives all of
the surplus to agent 2, who helps create the surplus by demanding to be connected to the source.
Therefore, the main result of the paper can be restated as follows, providing a new justi�cation for
the Kar solution: the set of rules corresponding to the convex combination of the folk solution and
y1 are the only ones satisfying Weak Problem Separation, Group Independence, Piecewise Linearity,
Anonymity, Weak Equal Treatment, Independence of Irrelevant Edges and Individual Rationality.
Moreover, the average of these rules is the Kar solution.

Appendix

Lemma A.1 All y 2 Y as de�ned in Theorem 1 satisfy Weak Problem Separation, Group Indepen-
dence, Piecewise Linearity, Anonymity, Weak Equal Treatment and Independence of Irrelevant Edges.

Proof. Notice that the weight on the Kar solution is 2a while the weight on the folk solution is 1�2a:
Let � = 2a and rewrite the family of solutions as �yk+(1� �)yf : The family of solutions is a weighted
sum of the Kar and folk solutions, with the weights summing to one, but the weights being possibly
negative. Since both solutions are budget balanced and the weights sum to one, all of the solutions of
Theorem 1 are also budget balanced.
Since the Kar and folk solutions are part of the family, we �rst show that they satisfy all properties.

This result then trivially extends to solutions y = 2a(yk � yf ) + yf ; the weighted sums of these two
solutions.
We start with the Kar solution. Symmetry is proven in Bergantinos and Vidal-Puga (2007a);

Anonymity carries over easily. Group Independence is proven in Kar (2002) (the proof easily extends
when we remove strict inequality). Piecewise Linearity is proven in Bogomolnaia and Moulin (2010).
We show that the Kar solution satis�es the stronger property of Problem Separation: By Lemma

1, C(S; c) = C(S; ĉ) +C(S; ~c)�C(S; _c): By the properties of the Shapley value, yk(N; c) = yk(N; ĉ) +
yk(N; ~c)� yk(N; _c):
Weak Equal Treatment: It is implied by Equal Treatment (Kar (2002)).
Independence of Irrelevant Edges: Clearly, C(S; c) = C(S; �c) for all S � N: Therefore, yk(N; c) =

yk(N; �c):
Next, we show that the folk solution satis�es all of these properties.
Bergantinos and Vidal-Puga (2007a) show that it satis�es Symmetry; Anonymity carries over easily.

They also show that it satis�es Reductionism (y(N; c) = y(N; c�)) and Separability, which says that if
C(S; c) + C(NnS; c) = C(N; c); then yi(N; c) = yi(S; cS) if i 2 S:
Reductionism clearly implies Independence of Irrelevant Edges, as the irreducible edges cannot

have any impact on the irreducible matrix. It also clearly implies Weal Equal Treatment.
Separability is clearly a stronger property than Group Independence.
Bergantinos and Vidal-Puga (2009) show that it satis�es Restricted Additivity, which says that

if c; c0 have an mcst t� in common and that the edges of that t� have a common order of its edges
from cheapest to most expensive, then y(N; c + c0) = y(N; c) + y(N; c0): It clearly implies Piecewise
Linearity. It also implies Weak Problem Separation. To see this, notice that c + _c = ~c + ĉ and that
under the assumption that c 2 ��(N); if ce � mini2N c0i for all e 2 t�(c); all t� 2 T �(c); they all
have a common mcst t that has a common order of its edges from cheapest to most expensive. Then,
Restricted Additivity implies that yf (N; c) + yf (N; _c) = yf (N; ĉ) + yf (N; ~c):
It is easy to show that Weak Problem Separation, Group Independence, Piecewise Linearity,

Anonymity, Weak Equal Treatment and Independence of Irrelevant Edges extend to any solution
ya = 2a(yk � yf ) + yf since they are satis�ed by both yk and yf :

Lemma A.2 The six properties of Theorem 1 are independent.

Proof. Since N is �xed throughout, we de�ne a solution as y(c) instead of y(N; c):
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i) Weak Problem Separation: De�ne c1 as follows: for each i 2 N; look at cycles that go through
0 and i: Let F0i be the set of all such cycles. Let c10i = min fc0i;minf2F0i maxe2f ceg and yi(c) =
Sh
�
C(�; c1

�
):

It clearly satis�es Piecewise Linearity, Weak Equal Treatment, Anonymity, Group Independence
and Independence of Irrelevant Edges. It fails Weak Problem Separation. To see this, consider a
3-player example such that c03 = c23 = 1 and ce = 0 else. We have that c1 = c; yielding yi(c) =
(� 1

2 ; 0;
1
2 ): Now, divide the problem in its source connection and agent connection problems. We have

that ĉ103 = 0 while ĉ03 = 1 and ~c = ~c
1: Therefore, we have yi(ĉ) = (0; 0; 0) and yi(~c) = (0; 12 ;

1
2 ): Thus,

yi(c) 6= yi(ĉ) + yi(~c)�
�
1
3 ;

1
3 ;

1
3

�
:

ii) Group Independence. Let yiij (c) =
C(N;c)
n for all j 2 N: It is easy to see that it satis�es Piecewise

Linearity, Weal Equal Treatment, Anonymity, Independence of Irrelevant Edges and Weak Problem
Separation. Suppose a two-player example where c01 = 3; c02 = c12 = 5: By Group Independence, we
should have y = (3; 5) but yii = (4; 4):
iii) Piecewise Linearity. Let (c) be the cost of the most expensive edge in an mcst of c: If we order

edges from cheapest to most expensive, then rank K is such that ce � (c) if the rank of e is below K

and ce > (c) if the rank of e is aboveK : Let yiii(c) =
�
yk(c) if ce � mini2N c0i for all e 2 t�(c); all t� 2 T �(c)PK

k=1

�
ce�(k)�ce�(k�1)

�
yk(bk) else

�
:

It clearly fails Piecewise Linearity, as between ranks K and q; yk(bk) is typically not equal to
(0; 0; :::; 0): It satis�es Weak Equal Treatment as the Kar solution satis�es it (for the �rst segment).
In the second segment, if an eligible edge is such that its cost is above (c), a reduction in cost won�t
have any e¤ect. Anonymity, Group Independence and Independence of Irrelevant Edges are clearly
satis�ed. Weak Problem Separation only applies in the �rst part, where it is satis�ed by the Kar
solution.
iv) Anonymity. Order agents randomly and let yiv1 (c) = C(f1g ; c�) and yivj (c) = C(f1; :::; jg ; c�)�

C(f1; :::; j � 1g ; c�) for all j = 2; :::; n: It is easy to see that it satis�es Piecewise Linearity, Weak
Problem Separation, Group Independence and Independence of Irrelevant Edges. It satis�es Weak
Equal Treatment because edges on which it applies do not a¤ect the irreducible cost matrix. Suppose
that c01 = c02 = 3, c12 = 1 and c1j = c2j else: Then, yiv1 = 3 and yiv2 = 1: It fails Anonymity.
v) Weak Equal Treatment. For any c 2 �̂e and c 2 ~�en~�eP� ; let yv(c) = yk(c): For c 2 ~�eP� ;

let yv(c) = yf (c): Through Piecewise Linearity, Independence of Irrelevant Edges and Weak Problem
Separation, extend the de�nition of yv to any c 2 �: By de�nition, Piecewise Linearity, Independence
of Irrelevant Edges and Weak Problem Separation are satis�ed. Since both the Kar and the folk solu-
tions satisfy Anonymity and Group Independence, so does yv: It clearly fails Weak Equal Treatment:
Suppose that we start from c 2 ~�en~�eP� ; and that changing the cost of cij from 1 to 0 creates a free
cycle, we obtain a cost matrix in ~�eP� . Going from the folk to the Kar solution will typically a¤ect
agents i and j di¤erently.
vi) Independence of Irrelevant Edges: We de�ne yvi as follows on elementary matrices. For c 2 ��e;

we have that yvi(c) = yk(c): Take c 2 ��e such that c0i = c0j = cij = 0: Let c0 be such that c0ij = 1 and
c0e = ce else. Let Ni(c) be the set of players to which i can connect freely to without going through
the source. De�ne yvi(c0) as follows:

yvil (c
0) =

8<:
yvil (c) + b for l = i; j; with b > 0
yvil (c)� 2b

jNi(c)j for l 2 N
�
i (c)n fi; jg

yvil (c) else
:

Having de�ned all cost shares for elementary matrices with one irrelevant edge in this manner, we
proceed in the same manner for all elementary matrices with 2 irrelevant edges, then recursively for
any number of irrelevant edges. We then extend to any c 2 � through Piecewise Linearity.
By de�nition, yvi satis�es Piecewise Linearity. It is easy to see that it satis�es Anonymity and

Weak Equal Treatment. Since Weak Problem Separation applies only to matrices without irrelevant
edges, only its properties on ��e matter. Since it is equal to the Kar solution for those matrices, Weak
Problem Separation is satis�ed. Group Independence is satis�ed since the di¤erence between yvil (c

0)
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and yvil (c) depends if you are freely connected to i and j or not. It is easy to see that Independence
of Irrelevant Edges is not satis�ed.
The following table summarizes the results of the previous two lemmas, with "+" meaning that

the property is satis�ed and "-" that it is not.

Satisfaction of the properties characterizing Y by the folk and Kar solutions as well as solutions
de�ned in Lemma A.2

WPS GI PL ANON WET IIE
yf + + + + + +
yk + + + + + +
yi - + + + + +
yii + - + + + +
yiii + + - + + +
yiv + + + - + +
yv + + + + - +
yvi + + + + + -

Lemma A.3 i) The folk solution satis�es Core Selection but it does not satisfy Problem Separation.
ii) The Kar solution satis�es Problem Separation but it does not satisfy Core Selection.

Proof. i) Bergantinos and Vidal-Puga (2007a) show that the folk solution satis�es Core Selection.
Take c 2 ��e such that c0i = c0j = cij = 0 and ce = 1 else. We have yfl (N; c) = 0 if l = fi; jg and

1 else. Also, we have yfl (N; ĉ) = 0 for all l 2 N and yfl (N; ~c) =
1
2 if l = fi; jg and 1 else: Therefore,

yfl (N; ĉ) + y
f
l (N; ~c)� 1

jN j 6= y
f
l (N; c): Problem Separation is not satis�ed.

ii) Problem Separation was proved in Lemma A.1.
Consider the problem c such that cjk = 0 for all j; k 2 N , c0j = 0 for all j 2 Nn fig and c0i = 1;

with jN j > 2: Then, yki (N; c) = 1
jN j and y

k
j (N; c) = � 1

jN j(jN j�1) for all j 2 Nn fig :We have C(S; c) = 0
for all S 6= fig : Take l 2 Nn fig : We obtain yi(N; c) + yl(N; c) = (jN j�2)

jN j(jN j�1) > 0: The Kar solution
fails to satisfy Core Selection.

Lemma A.4 Suppose that ya(N; c) = 2ayk(N; c) + (1� 2a)yf (N; c) with a 2 R: We have that:
i) ya(N; c) satis�es Individual Rationality if and only if a 2 [0; 1] :
ii) ya(N; c) satis�es Strict Cost Monotonicity if and only if a > 0:
iii) ya(N; c) satis�es Strict Ranking if and only if a > 0:

Proof. i) Example 1 shows that Individual Rationality is not satis�ed if a < 0 or a > 1: We show
that a 2 [0; 1] is a su¢ cient condition for Individual Rationality.
For a 2

�
0; 12

�
; ya is a convex combination of the Kar and folk solutions, who both satisfy Individual

Rationality, ya also satis�es it.
For a 2

�
1
2 ; 1
�
; we have that ya(N; c) = yk(N; c) + b

�
yk(N; c)� yf (N; c)

�
with b = 2a� 1 � 0:

For any c 2 �e; if c0i = 0; we have that yfi (N; c) = 0 (since it satis�es Individual Rationality and
Non-Negativity) while yki (N; c) � 0 (by Individual Rationality). Therefore, yk(N; c) � yf (N; c) � 0,
which implies that yai (N; c) � 0 = c0i for any a 2

�
1
2 ; 1
�
:

Suppose that c0i = 1 and Zi(c) = ;: Then it is easy to see that yki (N; c) = y
f
i (N; c) = 1; as agent i

has no free path connecting him to anybody else. Thus, yai (N; c) = 1 = c0i:
Suppose that c0i = 1 and j 2 Zi(c): Then, we have that yki (N; c) � 1

2 : To see this notice that when
agent i comes in after agent j; his incremental cost is zero, as he can connect freely to agent j: There
is a probability 1

2 that he comes in after agent j: Any other incremental cost cannot be larger than 1.

We thus have that yai (N; c) � 1
2 + b

�
1
2 � y

f
i (N; c)

�
: By the Non-Negativity of the folk solution, we

have that yai (N; c) � 1
2 +

b
2 : For any b � 1; we have y

a
i (N; c) � 1 = c0i: We have that b � 1 if and only

if a � 1:
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Therefore, Individual Rationality is satis�ed for all c 2 �e if a 2 [0; 1] :
For c 2 �; we can apply Piecewise Linearity. We have yai (N; c) =

Pq
k=1 (ce�(k) � ce�(k�1)) yai (N; bk)

with all bk 2 �e. Therefore, yai (N; bk) � bk0i for all k: Since c0i =
Pq

k=1 (ce�(k) � ce�(k�1)) bk0i and all the
weights are positive, we have yai (N; c) � c0i: Individual Rationality is satis�ed for all c 2 � if a 2 [0; 1] :
ii) Suppose that cij � max fc0i; c0jg and c; c0 such that c0ij < cij and c0e = ce else.
De�ne �ykl = ykl (N; c) � ykl (N; c0) and �y

f
l = yfl (N; c) � y

f
l (N; c

0): By the properties of the
Kar and folk solutions, �ykl > 0 and �yfl � 0 for l 2 fi; jg : We have Strict Cost Monotonicity if
2a�ykl + (1� 2a)�y

f
l > 0 for l 2 fi; jg :

For the following, suppose that l 2 fi; jg : Suppose that �yfl = 0 (which happens when c0ij � �cij):
We have 2a�ykl > 0 if and only if a > 0.
We need to show that 2a�ykl + (1� 2a)�y

f
l > 0 when �y

f
l > 0: If 0 < a � 1

2 ; we have 2a > 0 and
1� 2a � 0: Combined with �ykl > 0 and �y

f
l � 0; it assures that 2a�ykl + (1� 2a)�y

f
l > 0:

We have that �ykl � �y
f
l : To see this, notice that the reduction of the cost on (i; j) reduces C(S; c)

for all coalitions S � fi; jg that uses that edge. The reduction of the cost on (i; j), if it modi�es
the irreducible matrix, will change the value of �cij but potentially of some other edge �ce; meaning
that �C(S; c) can decrease for some S ! fi; jg : Therefore, if a > 1

2 ; we have 2a�y
k
l + (1 � 2a)�y

f
l �

2a�ykl + (1� 2a)�ykl = �ykl > 0:
Therefore, Strict Cost Monotonicity is satis�ed if and only if a > 0:
iii) Suppose that cik � cjk for all k 2 N0n fi; jg and cil < cjl for some l 2 N0n fi; jg ; with

cil < max fc0i; c0lg :
De�ne �ykij = y

k
j �yki and �y

f
ij = y

f
j �y

f
i : By the properties of the Kar and folk solutions, �y

k
ij > 0

and �yfij � 0: We have Strict Ranking if 2a�ykij + (1 � 2a)�y
f
ij > 0: Suppose that �y

f
ij = 0 (which

happens when �cil = �cjl). We have 2a�ykij > 0 if and only if a > 0.

We need to show that 2a�ykij + (1 � 2a)�y
f
ij > 0 when �y

f
ij > 0: If 0 < a � 1

2 ; we have 2a > 0

and 1� 2a � 0: Combined with �ykij > 0 and �y
f
ij � 0; it assures that 2a�ykij + (1� 2a)�y

f
ij > 0:

We have that �ykij � �yfij : To see this, start with a case where cik = cjk for all k 2 N0n fi; jg :
Solutions satisfying Anonymity, like the Kar and folk solutions, will be such that yi = yj : Then,
reduce the cost of some edges (i; k): As C(S; c) can decrease only if fi; kg � S; i and k are the main
bene�ciaries. If the reductions change the irreducible matrix, in particular if it reduces the cost of
some edges (j; l); then part of the savings are passed on to other agents, including agent j: Therefore,
if a > 1

2 : we have 2a�y
k
ij + (1� 2a)�y

f
ij � 2a�ykij + (1� 2a)�ykij = �ykij > 0:

Therefore, Strict Ranking is satis�ed if and only if a > 0:
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