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A systematic study is reported on the convergence of computed triply differential cross sections for photo-
double ionization of helium at 20 and 25 eV above threshold, obtained using the hypersphericalR matrix with
semiclassical outgoing waves method. Such a study has become feasible due to an essential improvement in
the description of the radial correlation coordinatea=arctansr2/ r1d at short range, and to the implementation
of the code on a more powerful computer. It shows that the size requirements of the inner regionRøR0, with
R=Îr1

2+r2
2, vary considerably depending on the dynamic situation considered. Typically, whileR0.20 a.u.

proves sufficient in most circumstances, one has to increase the inner region up toR0.60 a.u. in order to reach
convergence in the triply differential cross sections obtained for very asymmetric energy sharings or in the
particular case when one electron is ejected along the electric field for linearly polarized photons. The con-
verged calculations are generally in very good agreement with new experimental data of high statistical quality
recorded in the latter case, at 25 eV above threshold, for various energy sharings. The dynamic situations
identified here call for further experimental and theoretical studies.
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I. PRESENT STATE OF THEORETICAL
AND EXPERIMENTAL STUDIES

OF PHOTO-DOUBLE-IONIZATION OF HELIUM

Extended sets of theoretical and experimental data on the
double electronic continuum have accumulated in the 1990s,
covering a large variety of dynamic and kinematic condi-
tions. Here, we focus on the prototypical process of photo-
double-ionization(PDI) of helium, paying special attention
to the low-energy triply differential cross sections(TDCSs)
which carry the most detailed information on the correlated
dynamics of the two escaping electrons.

On the experimental side, the PDI of ground-state helium
has been widely studied. PDI studies for helium have ben-
efited from considerable technical advances in the last ten
years. For example, spectrometers that employ position-
sensitive detectors now enable the simultaneous detection of
many coincidence events, thus increasing the detection effi-
ciency by an order of magnitude. Moreover, the COLTRIMS
(cold-target recoil-ion momentum spectroscopy) technique
allows absolute values of the cross sections to be readily
determined. As a result, a very large set of TDCSs covering
a variety of dynamic situations is now available. Most of
these TDCSs are relative[1–6], some are relative but inter-
normalized[7], and a few are absolute[8–11]. The first ab-
solute measurements of TDCSs were obtained in 1995 by a
direct and self-consistent method[8]. The COLTRIMS tech-
nique began to provide absolute TDCSs in 1998 with the

well-known data of Braüninget al. [9] recorded at an excess
energy of 20 eV. Although some of the individual TDCSs
have significant scatter in the data, the whole data set has
nevertheless acted as the benchmark for comparison with
theoretical calculations. Since then few absolute experimen-
tal TDCSs have been produced. The first ones[10], per-
formed at the very low excess energy of 0.1 eV, have not yet
been reproduced by anyab initio theory. The second ones are
those of Achleret al. [11], obtained at the same excess en-
ergy as those of Braüninget al. but for a different light
polarization state and with significantly improved statistics.

On the theoretical side, a comprehensive overview of the
most outstanding contributions to the description of the
double escape dynamics can be found in the work of Malegat
[12]. Here we focus on the most recent methods that have in
common to deal with the full complexity of the three-body
Coulomb problem, treating the two electrons as genuinely
equivalent: the time-dependent close coupling(TDCC), the
exterior complex scaling(ECS), and the hypersphericalR
matrix with semiclassical outgoing waves(HRM-SOW)
methods. The ECS method has been extensively applied to
the electron-impact ionization of hydrogen[13–17]. Very re-
cently, it has been used to describe the PDI of helium as well,
but the results have not been published yet. Consequently,
this method will not be discussed in the course of this paper.
A review of ECS calculations is available in Ref.[18]. On
the opposite, both the TDCC[19] and HRM-SOW [21,22]
calculations were first validated by comparison with the
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above-mentioned benchmark absolute measurements of
Braüninget al. [9]. Thereafter, the TDCC results were com-
pared[20] with relative experimental data of higher statistics
recorded for linearly polarized light at 25 eV[4], 40 eV
[2,7], and 60 eV [3] excess energies. Similarly, the
HRM-SOW calculations were compared with data obtained
at 60 eV above threshold for elliptically polarized light[5],
at 25 eV above threshold for linearly polarized light[6], and
very recently at 40 eV above threshold for linearly polarized
light [7,23,24], as well as at 20 eV using elliptically polar-
ized light [25].

All these comparative studies of theoretical and experi-
mental TDCSs generally emphasize good, or even excellent,
overall agreement both in shape and in magnitude. However,
if one looks into the details of the results, one realizes that in
some circumstances the level of agreement could be im-
proved. Disagreements have been observed between the ab-
solute values of the cross sections given by the different
theories in cases when only relative measurements are avail-
able. The TDCSs obtained by TDCC[20] and HRM-SOW
[23] at 40 eV[7], for instance, differed initially by a factor 2,
for which TDCC has been only recently corrected[24]. Sig-
nificant differences in the shapes of theoretical and experi-
mental TDCSs are also apparent in some cases. In the work
of Colgan and Pindzola[20], for instance, the level of agree-
ment with the experimental TDCSs of Cvejanović et al. [2]
deteriorates when one electron is detected along the direction
of the electric field under unequal energy sharing conditions.
Similarly, in the experimental conditions of Bolognesiet al.
[7], when the electron of higher energy is detected along the
direction of the electric field, both TDCC[20] and
HRM-SOW [23,24] TDCSs exhibit a quasi-one maximum
structure while experimental data indicate the existence of
three equivalent peaks[24].

Further theoretical work is obviously required. Accord-
ingly, we present here a systematic convergence study of an
improved implementation of the HRM-SOW method. One
of our purposes is to reanalyze the dynamic situations that
have proven to be the most challenging for the theory in the
case of linear polarization: namely, those characterized by
asymmetric sharing of the energy and the ejection of one
electron along the direction of the electric field. We also
present new TDCS measurements at 25 eV, taken in these
conditions, which extend those published earlier[6].

The paper is organized as follows. Section II is devoted to
a presentation of the main tools and principles of the
HRM-SOW method, in order to highlight those parameters
that control the accuracy of the calculation. The third section
presents an improved description of the dependence of the
1P0 double-continuum wave function on the radial correla-
tion anglea which is essential to make convergence studies
feasible. Fully integrated and triply differential cross sections
are displayed in Secs. IV and V, respectively, as an illustra-
tion of the convergence rate of our method. Also in Sec. V
comparisons between extended experimental TDCSs and the
most recent HRM-SOW results are presented. Conclusions
are drawn in Sec. VI.

II. THE H RM-SOW METHOD

The HRM-SOW method has been described in detail in
two earlier publications[21,22]. Only the main features nec-

essary to understand this convergence study will be recalled
here. The basic equation for the description of the PDI of
helium by the HRM-SOW method is the stationary inhomo-
geneous Schrödinger equation

fHsrW1,rW2d − EgFEsrW1,rW2d = F0srW1,rW2d, s1d

which has to be solved for the outgoing wave boundary con-
ditions. In Eq.s1d, rW1,rW2, are the radius vectors of the elec-
trons with respect to the nucleus,H is the two-electron
Hamiltonian, E is the excess energy above threshold, and
FEsrW1,rW2d is the photoabsorption wave function. The source
term on the right-hand side is given by

F0srW1,rW2d = − 1
2«W0 ·DW C0srW1,rW2d, s2d

where«W0 is the amplitude of the electric-field vector,DW is the
dipole operator, andC0srW1,rW2d is the helium ground-state
wave function.

Hyperspherical coordinates are used. They are composed
of the hyperradiusR=Îr1

2+r2
2, which measures the size of the

system, the hyperanglea=arctansr2/ r1d, which is related to
the radial correlation, and a set of four spherical angles
u1,f1,u2,f2 locating the directions of the two outgoing
electrons.

The configuration space is split into two regions. In the
inner region defined byRøR0, a full quantumR matrix
method is used. It is complemented by the expansion of the
wave function atR=R0 onto the adiabatic eigenchannels of
the fixedR=R0 Hamiltonian. This expansion allows one to
impose outgoing wave boundary conditions in a simple way.
A quantum treatment of all angles is still used in the comple-
mentary external regionR.R0, together with a semiclassical
description of the outgoing motion inR.

The calculation then proceeds in three steps. First, the
photoabsorption wave functionFE is extracted on the hyper-
sphereR=R0 which limits the inner region,R0 being of the
order of a few tens of a.u. Second, it is propagated in the
outer region to a very large hyperradiusR` which is of the
order of 105 a.u. Third, the cross sections are obtained by a
straightforward computation of the outgoing flux through the
hypersphereR=R` according to the basic laws of quantum
mechanics.

The validity of each of these three steps is now discussed.
(i) While theR-matrix equations are absolutely rigorous,

they are complemented by a set of approximate equations
that results when one neglects theR variation of the adiabatic
eigenchannels atR=R0 in a small interval surroundingR0,
and imposes an outgoing wave behavior atR=R0. These ap-
proximations are valid provided thatR0 is taken large enough
for theR variation of the three-body potential to be very slow
for R*R0.

(ii ) The propagation procedure implies first that one ig-
nores the source term in Eq.(1). Second, that the two-
electron wave functionFE is written as the product of a
weakly R-dependent function of the five angles, by a hyper-
radial semiclassical outgoing wave associated with a local
momentumpsRd. Third, this local momentum is defined by
psRd=Î2fE+sZef fsRd /Rdg, the basic idea being that the ef-
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fective chargeZef fsRd should be close to the Wannier value
ZW=s4Z−1d /Î2—with Z the nuclear charge—at largeR and
should ensure flux conservation atR0. Accordingly,Zef fsRd is
taken as a one-parameter fractional interpolation between
Z0=Zef fsR0d andZW. The parameter-free character of the pro-
cedure can only be maintained if these two values are close
enough. These approximations are valid under conditions
similar to the ones outlined in points(i).

(iii ) The extraction of the cross sections requires one to
disentangle the weak double-ionization channel from the
dominant single-ionization channels. The ability of the
method to propagate the wave function up to macroscopic
hyperradii allows one to confine the significant single-
ionization channels in vanishing angular sectors located
around a=0 and p /2. The width of these sectors can be
evaluated as Dasnmax,Rd=rnmax

/R, where rnmax
.s0.75nmax

2 d a.u. measures the extension of the highest Ry-
dberg state Hen=nmax

+ that can be significantly excited in the
photoabsorption. According to Bizau and Wuilleumier[26],
at an excess energy above threshold of about 20 eV,nmax
=5 can be considered as a reasonable order of magnitude, so
that the single ionization is confined in sectors of about
2310−3 rad width at a distance of 104 a.u. As a result, the
accurate evaluation of the cross sections from their very defi-
nition, based on the flux of the wave function, is possible.
This is a distinctive feature of the HRM-SOW method.

The convergence of the TDCSs with respect to(a) the
dimensions of the various basis sets or grid representations
used,(b) the outer region propagation step, and(c) R`, has
been checked carefully for all published HRM-SOW data
which were obtained up to now with inner regions of mod-
erate sizes10 a.u.,R0,25 a.u.d. The convergence with re-
spect toR` was also illustrated in detail in Ref.[22]. Thus
only one item remains to be systematically investigated:
namely, the convergence with respect to an increase of the
size of the inner region, which will test the range of validity
of the approximations (i) and (ii ) underlying the
HRM-SOW method. To this end, a more efficient represen-
tation of the inner region is required in order to keep the
computational requirements compatible with resources cur-
rently available.

III. IMPROVED REPRESENTATION OF THE 1P0

DOUBLE CONTINUUM WAVE FUNCTION
IN THE INNER REGION

The representation used in previous HRM-SOW calcula-
tions [21,22] was based onn, gerade and ungerade bipolar
harmonicsg,uY,,+1

10 , , ranging from 0 ton,−1, and on a
Lagrange-Jacobi mesh representation of dimensionnR for the
variableR. The dependence on the radial correlation coordi-
natea was expanded, within each, subspace, onna gerade
and ungerade functions:

gvn
,sad = ssin a cosad,+1cos 4na, n = 0, . . . ,na − 1,

s3ad

uvn
,sad = ssin a cosad,sin 4na, n = 1, . . . ,na. s3bd

These functions are gerade and ungerade Fourier basis func-
tions defined on thef0,p /2g interval of definition of a,
modified to incorporate the expecteda,+1fsp /2−ad,+1g be-
havior of the solution in vicinity of the boundarya=0fa
=p /2g. As such, they are associated with ana grid of con-
stant step sizeda=p /2na.

The first published results were obtained forR0=10 a.u.
with n,=5, na=40, andnR=15. The dimension of the full
representation was then 6000, and the main numerical task,
which consisted in diagonalizing a 600036000 matrix, was
completed on a simple PC(PIII 450 MHz 768 Mb RAM).

As the dimension of such a representation has to be evalu-
ated for a size of the inner region increasing up toR0
=60 a.u., the following points should be considered. First,
the number of partial waves required,n,, is expected to in-
crease slowly withR0 in the 10–60 a.u. domain. This as-
sumption is based on what happens in the implementation of
the HRM-SOW method in the outer region: the propagation
up to distances of 105 a.u. only requires about 25 partial
waves. However, since then,=5 used previously was in fact
higher than necessary(n,=3 was sufficient), n,=5 is a rea-
sonable guess to obtain a crude evaluation of the dimension
of the representation. Second, our experience has taught us
that the dimensionnR of the Lagrange-Jacobi mesh represen-
tation increases linearly withR0. Finally, concerning the ad-
aptation ofna, a significant increase is foreseen. Indeed, asR
becomes larger and larger, the 3-body potential exhibits
steeper and steeper wells in the vicinity ofa=0 and a
=p /2 [27]. Moreover, the dynamics must be represented
carefully in those regions, where a strong competition be-
tween single and double photoionization takes place. More
quantitatively, as the divergent terms in the potential are of
the form −2/Ra in the vicinity of a=0 or −2/Rsp /2−ad in
the vicinity of a=p /2, maintaining a constant accuracy is
equivalent to keepingR0 da constant. This requires thatna

varies linearly withR0.
Following these guidelines, the matrix to diagonalize is

expected to be about 216 0003216 000 forR0=60 a.u. Stor-
ing this matrix would require as much as 364 Gb, a memory
allocation that is one order of magnitude larger than that
currently available to us at the CNRS computer center IDRIS
(Orsay, France). Diagonalizing it using general routines, the
runtime of which scales asN3, would require about six
months of computing time at this facility. So, clearly, the
representation used has to be optimized. This has been done,
thanks to a substantial improvement in thea representation.
Namely, the variablea has been substituted by the variablex
such that

a =
p

4
s1 − cos 2xd s4d

and anx basis of the form given by Eqs.s3ad and s3bd has
been used. Thus, the Fourier series in the variablex corre-
spond to a constant step inx, but to a variable step ina, with
a much higher density of representative points in the critical
regions arounda=0 anda=p /2, and an equivalent density
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in the vicinity of a=p /4. More quantitatively, da
.p /2dx2 in the vicinity of a=0 or p /2 andda.p /2dx in
the vicinity of a=p /4. As a result of this simple substitution,
the convergence rate of the inner region calculation with re-
spect to the size of thea representation has been improved
by an order of magnitude.

This has allowed us to run HRM-SOW calculations for
much larger inner regions than before. In the largest case
considered here, for whichR0=60 a.u., the dimension of the
matrix to consider is 27 000, corresponding ton,=5, nR
=90, andnx=30. The storage and diagonalization of that ma-
trix require about 6 Gb memory and 8 h CPU, respectively,
on the CNRS computer center IDRIS in Orsay, using the
general LAPACK diagonalization routines.

IV. CONVERGENCE OF THE FULLY INTEGRATED
CROSS SECTIONS EXTRACTED AT R0

Important insights into the convergence rate of the
HRM-SOW method with respect toR0 can be obtained by
considering the evolution of the physical quantities extracted
on the hypersphereR=R0. These investigations have been
performed forR0 increasing from 10 to 60 a.u. and within
the excess energy range 20–60 eV. Within this range, the
trends observed do not depend on the excess energy. There-
fore they are illustrated here at the single excess energy of
25 eV.

The first quantity that can be extracted atR=R0 is the
total ssingle+doubled ionization cross section that is directly
related to the total outgoing flux. This cross section varies by
less than 1% asR0 increases from 10 to 30 a.u. and then
remains fixed whenR0 is increased any further. This shows
that the source term is still active—although very
weakly—up to 30 a.u. The converged theoretical value of
368.5 kb is slightly above the experimental determination
[26] of 360±6 kb.

The outgoing flux in the first adiabatic channel can also be
computed. The corresponding cross section varies from
320 kb atR0=10 a.u. to 330 kb atR0=60 a.u. and is in ex-
cellent agreement with the 319±7 kb experimental determi-
nation [26] of the single-ionization cross sections to Hen=1

+ ,
noted sn=1

+ . Consistently, the energy of the first adiabatic
channel corresponds to that of Hen=1

+ perturbed by a negative
charge placed at a distanceR0 with an accuracy that varies
from 0.3% atR0=10 a.u. to 0.07% atR0=60 a.u. The accu-
racy of the energy and cross section obtained as soon asR0
=10 a.u. reflects the rapid decoupling of the channel associ-
ated with single ionization to Hen=1

+ from all other competing
channels. This allows the subtraction of the first adiabatic
channel from the wave function atR0 before propagating
through the outer region. This procedure, already used by
Selleset al. [22] and discussed in detail by Malegatet al.
[23], proved essential for obtainingZ0 values close to the
Wannier valueZW=4.95.

Importantly, the single-ionization cross section to Hen=2
+ ,

denotedsn=2
+ , can also be calculated fromR0=20 a.u. up-

wards. The sum of the fluxes into the second to fourth adia-
batic channels gives a cross section in very good agreement
with the experimental value ofsn=2

+ . Namely, the computed

value is 22 kb atR0=20 a.u., decreasing slowly to 21 kb at
R0=60 a.u., in excellent agreement with the experimental de-
termination of 23±2 kb[26]. Consistently, the energies of
the second to fourth adiabatic channels merge into those of
the Stark levels of Hen=2

+ perturbed by a negative charge
placed at a distanceR0. For example, atR0=60 a.u., the adia-
batic energies are −0.5159, −0.5167, −0.5171 a.u., in excel-
lent agreement with the first-order Stark levels lying at
−0.5163, −0.5167, and −0.5171 a.u.[28]. As a result, these
three additional adiabatic channels can be excluded from the
wave function before propagation in the outer region, as
done previously with the first adiabatic channel. This is even
highly desirable, as the effective chargeZ0 obtained without
subtraction of the second to fourth adiabatic channels is
about 8, 11, 14, 17, and 19 atR0=20, 30, 40, 50, and
60 a.u., respectively. FromR0=30 a.u., these values are too
far from the Wannier valueZW=4.95 to maintain the
parameter-free character of our approach, as discussed in
Sec. II. With subtraction of the next three channels,Z0 takes
the values 4.9, 5.3, 5.1, 6, and 7.2. which remain close
enough toZW even for the highest value ofR0.

Finally, let us emphasize that atR0=60 a.u., the sum of
the fluxes in the fifth to ninth adiabatic channels leads to a
cross section of 3.6 kb, compared to the experimental value
3.8±0.5 kb[26] of sn=3

+ . Significantly, such excellent agree-
ment between theory and experiment is achieved for a quan-
tity that is only 1% of the total ionization cross section, but
of the same order of magnitude as the total double-ionization
cross section. The energies of these five adiabatic channels
correspond to the Stark levels of the perturbed Hen=3

+ ion
with an accuracy better than 0.15%. Subtracting them from
the wave function leads to aZ0 value of 5.6, while retaining
them leads to 7.2, both values being reasonably close toZW.
For R0=60 a.u., calculations have been performed, either
subtracting these five channels before propagation or retain-
ing them. The resulting TDCSs are perfectly superimposable
in all the dynamic situations studied.

V. CONVERGENCE OF THE TDCS EXTRACTED AT R`

A. Dynamic conditions

TDCSs at the nearby excess energies of 20 and 25 eV
have been calculated for the experimental conditions of
Achler et al. [11] and for those of our experiments, respec-
tively. These two sets of data present high statistics and
cover a large range of energy sharings. They also display
interesting complementary properties: Achleret al.’s mea-
surements have the great advantage of being absolute, while
our relative measurements were taken for a specific class of
dynamic situations which are particularly challenging to the
theory.

Achler et al. [11] have used the COLTRIMS technique at
the Photon Factory, Tsukuba, to obtain TDCSs in the “per-
pendicular geometry,” i.e., in the plane perpendicular to the
photon beam, with left and right elliptically polarized light.
Pure left and right circular TDCSs have then been extracted
for four energy sharings,E1/E2=1.0, 2.64, 7.0, and 39.0,
going from equal sharing to a very asymmetric one. They
solely depend on the interelectronic azimuthal anglef2−f1.
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We used a toroidal multidetection technique at
SUPERACO, Orsay, to measure the TDCSs in the “coplanar
geometry,” i.e. in the plane containing the photon beam and
the electric field associated with the linearly polarized light.
The electrons are located by their azimuthal angles in the
detection plane, measured from the polarization axis. The
experiment focuses on the case when one electron, say “elec-
tron 1,” is detected along the electric-field direction, i.e. at
w1=0°, and the energy is shared asymmetrically between the
two electrons. The first series of measurements studied the
energy sharingsE2/E1=24, 11.5, 4, and 2.57[6]. We present
in this work results for the reverse situation where electron 1
has the highest energy, i.e.,E1/E2=11.5, 4, and 2.57.

B. Convergence parameters

For eachR0 value from 10 to 60 a.u., the convergence of
the TDCSs with respect to the size of the representation has
been studied systematically. It has been determined that con-
vergence is achieved forn,=5, nR=1.5R0, and nx=15, 20,
25, 30, and 30 forR0=20, 30, 40, 50, and 60 a.u., respec-
tively. The TDCSs proved insensitive to a simultaneous in-
crease ofn, by 2, nR by 5, andnx by 5. These results are
consistent with the predictions made in Sec. III: the evolu-
tion of nR with R0 is linear, that ofnx is such thatR0/nx

2 is
approximatively constant, and the number of partial waves
required remains as low asn,=5, independent ofR0 in the
20–60 a.u. range.

C. Convergence studies with respect toR0 at 20 eV

Figure 1 is devoted to theE=20 eV results.1 The first
characteristic to be emphasized is that, in the four energy
sharing cases, the location of the peaks is essentially constant
aboveR0=10 a.u. The positions effectively fluctuate by less
than 2% whenR0 is gradually increased up to 60 a.u. The
second property is the excellent agreement between the ab-
solute experimental TDCSs and the absolute HRM-SOW
TDCSs obtained atR0=60 a.u. Accordingly, the latter can be
taken as a reference to evaluate the relative deviations of the
magnitude of the main peak asR0 varies from 10 to 50 a.u.
These deviations denoted byDsM

s3d /sM
s3d are plotted in Fig. 2

versusfNsR0dg3 whereNsR0d=2n,nxnR is the dimension of
the representation used in the inner region for a givenR0
value. As the inner regionR-matrix treatment requires the
diagonalization of anN3N matrix, the run time of which
scales asN3, the plot of Fig. 2 relates the accuracy obtained
with the associated computational cost. First of all this figure
shows that the deviation observed never exceeds 25%. Sec-
ond, the four curves exhibit a slow oscillatory convergence
pattern, leading, atR0=50 a.u., to accuracies that depend on
the energy sharing: about 15% for the most asymmetric one,
less than 5% for the others. This is because the semiclassical
treatment of theR motion implemented in the external region
is not perfectly adapted to the description of the single-
ionization channels, due to the fundamentally quantal nature

of the bound ionic states. More precisely, for any energy
sharinga=arctanÎE2/E1, a critical distanceRC exists below
which a falls within the angular sectorDasnmax,Rd where
single ionization dominates. IfRC is larger thanR0, the rel-
evant single-ionization channelsnønmax are treated in part
semiclassically fromR0 to RC, causing inaccuracies in the
wave function about thea value of interest. These inaccura-
cies propagate toR` and affect the final results. Accordingly,
the computed cross sections vary with increasingR0 until
R0=RC, when they reach stable and accurate values. Figure 3
illustrates this situation. Estimating, as in Sec. II, thatnmax
=5, Fig. 3 shows that convergence should be obtained at
E1=E2sa=45°d from R0=25 a.u., atE1/E2=2.64sa=32°d
from R0=34 a.u., atE1/E2=7sa=21°d from R0=51 a.u., and
at E1/E2=39sa=9°d far beyond 60 a.u. The actual conver-

1Please note an error in Fig. 1 of Ref.[25]: the TDCS is reported
to be in b/eV/sr2, although it should be in 10−5 a.u.

FIG. 1. TDCSs for PDI of He obtained at 20 eV above threshold
in the perpendicular geometry using left circularly polarized light
(in 10−5 a.u.), versusf2−f1 (in degrees). The energiessE1,E2d (in
eV) are specified on each panel. Absolute measurements[11], dots
with error bars. Present absolute HRM-SOW calculations forR0

=10 a.u., dotted line;R0=20 a.u., short dashed line;R0=30 a.u.,
long dashed line;R0=40 a.u., thin continuous line;R0=50 a.u., me-
dium continuous line;R0=60 a.u., thick continuous line.

FIG. 2. DsM
s3d /sM

s3d at the main peak(in percent) versus the di-
mensionfNsR0dg3 of the representation used in the hypersphereR
øR0, for the four energy sharing cases represented in Fig. 1. Dotted
line, E1=19.5 eV; short dashed line,E1=17.5 eV; long dashed line,
E1=14.5 eV; continuous line,E1=10 eV.
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gence properties of our method seem to indicate that 5 might
be an overestimation ofnmax: they are obviously more con-
sistent withnmax=4.

D. Convergence studies with respect toR0 at 25 eV

Figures 4–7 are devoted toE=25 eV. Figures 4 and 5,
and the left and middle columns of Fig. 6 exhibit theoretical
TDCSs computed for increasing values ofR0 from 10 to
60 a.u. atw1=90°, 30°, and 0°, respectively. These TDCSs
are plotted versus the interelectronic angle, measured from
the direction of emission of electron 1 to the direction of
emission of electron 2, covering the full plane in thef0,2pg
range. In the left and middle columns of Fig. 7 the experi-
mental TDCSs measured atw1=0° are compared with the
converged theoretical results atR0=60 a.u. Each row of Figs.
4 and 5 and each row of the left and middle columns of Figs.

6 and 7 correspond to a given pair of energies of the two
electrons, the left column specifying detection of the first
electron with the smallest energy. Moreover, Figs. 6 and 7
display in their right columns an interesting quantity, which
we label as “energy-exchange dichroism”sEEDd, as ex-
plained below.

In Fig. 4, when the fixed electron is ejected perpendicu-
larly to the polarization axis, convergence is reached
promptly. The final shape of the TDCSs, consisting of two
peaks symmetric with respect to back-to-back emission, is
obtained already atR0=10 a.u. Only the absolute values
show moderate sensitivities to the increase ofR0, which re-
main less than 25%.

The TDCSs displayed in Fig. 5, when the fixed electron is
ejected at 30° from the electric field, show a slower conver-
gence withR0. The shapes obtained at 10 a.u., although not
markedly different from the final ones, differ in the details.
The peak structure is visible already atR0=10 a.u., yet the

FIG. 3. Confinement rangeDasn,Rd of single ionization to Hen
+

(in degrees) versusR (in a.u.), for n=1 (bottom curve) to n=5 (top
curve). Horizontal lines are plotted at thea values associated
asymptotically to the energy sharings considered in the previous
figures, with the same conventions as in Fig. 2.

FIG. 4. TDCSs for PDI of helium obtained at 25 eV above
threshold in the coplanar geometry using linearly polarized light(in
b/eV/sr2) versusw2−w1 (in degrees) for w1=90°. The energy of
electron 1 is specified on each panel. The six lines represent abso-
lute HRM-SOW calculations for six values ofR0 with the conven-
tions of Fig. 1.

FIG. 5. Same as Fig. 4, but forw1=30°.

FIG. 6. Left and middle columns: same as Fig. 4, but forw1

=0°. Right column: energy-exchange dichroism obtained by sub-
tracting the TDCS plotted in the left column from that plotted in the
right one.
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ratio of the peaks varies slightly withR0, leading to the final
structures obtained atR0=60 a.u.: namely, a dominant two-
peak structure with a remnant shoulder in the left column,
and a dominant one peak structure with two shoulders in the
right column. As for the absolute values of the principal
peak, their variation withR0 culminates now at about 40%.

Figure 6 deals with the case when the fixed electron is
ejected along the electric-field direction. It exhibits some re-
markable cases where the TDCS obtained atR0=10 a.u. are
completely at odds with the converged results. AtE1=18 and
20 eV, for instance, the shape of the TDCS is dramatically
altered when passing fromR0=10 to 60 a.u. The ratio of the
main peak to the secondary ones is reversed. As a result, the
corresponding variation in the peak heights of the TDCSs
reaches 100%. In the complementary cases atE1=7 and
5 eV, the TDCSs’ shape atR0=10 a.u. is similar to that at
R0=60 a.u., yet the absolute values are in error by as much
as 75%. Moreover, atE1=2, 5, 20, and 23 eV, there is still a
significant evolution both in the shape and in the magnitude
of the TDCSs when going fromR0=40 to 50 a.u. This evo-
lution even continues for the most asymmetric energy shar-
ing cases,E1=2 and 23 eV, when going fromR0=50 to
60 a.u.; the magnitude of the HRM-SOW TDCSs still varies
by about 30%. Comparing Figs. 4–6 provides evidence that
the convergence rate of the method slows down when the
fixed electron is ejected closer and closer to the electric field.
This situation is exacerbated at very asymmetric energy shar-
ing conditions.

The emergence of difficulties when one electron is emit-
ted along the direction of the polarization axis can be under-
stood from the expression of the TDCS in terms of kinematic
and dynamic factors. In the experimental conditions of Fig.
7, the latter is given by

ss3dsE1,E2,w1,w2d = uagsE1,E2,u12dscosw1 + cosw2d

+ ausE1,E2,u12dscosw1 − cosw2du2,

s5d

whereag and au are the gerade and ungerade complex dy-

namic amplitudes, symmetric and antisymmetric to the ex-
change of the two electrons, respectively, andu12=w2−w1.
The gerade and ungerade amplitudes both have maximum
moduli for back-to-back emission. However, the associ-
ated gerade and ungerade kinematic factors have opposite
behaviors in this particular geometry: the gerade one is
identically zero while the ungerade one reduces to
2 cosw1 and accordingly varies from 0 forw1=90° or
270°, to ±2 for w1=0 or 180°. Back-to-back emission,
which arises only from the ungerade amplitude, is then
magnified when one electron is ejected in the direction of
the electric field. Moreover, in these conditionssw1=0°,
w2=180°d, not only the gerade kinematic factor is zero,
but also its first derivative with respect tow2. This defines
a w2 window where the first term in Eq.s5d almost cancels
to zero, allowing one to isolate the second term. The slow
convergence of the TDCSs observed atw1=0° therefore
results from a slow convergence ofau, at least around its
maximum corresponding to back-to-back emission.

In addition to the former figures, Fig. 6 exhibits in its
right column theEED, defined as

EEDsE1,E2,w1,w2d = ss3dsE1,E2,w1,w2d − ss3dsE2,E1,w1,w2d.
s6d

This quantity is not in the strict sense “dichroism,” because it
does not appear under any transformation of the incident
light, but results from a modification of the dynamics of the
two electrons: their energies are exchanged while their direc-
tions of emission are kept fixed. It can be observed for any
polarization state of the light. This dichroism has already
been highlighted by Bolognesiet al. at an excess energy of
40 eV[7], in experimental conditions comparable to those of
Fig. 7, namely for pure linearly polarized light, a ratio be-
tween the individual electronic energiesE1/E2=7 and with
one electron detected along the polarization axis.

For the energy pairs(20,5) and s18,7deV, the EED is
dramatically altered when passing fromR0=10 to 60 a.u.: its
sign changes throughout the angular range considered. But in
all cases, its shape is stabilized byR0=20 a.u., giving rise to
two symmetric maxima, the position of which remains al-
most fixed asR0 is increased further. By contrast, their mag-
nitude shows important variations, of up to 100% between
R0=20 and 60 a.u.

In the experimental conditions of Figs. 6 and 7, theEED
is given by

EEDsE1,E2,w1,w2d = 2uaguuauucossfu − fgd

3scos2 w1 − cos2 w2d, s7d

whereuagu, fg and uauu, fu are the moduli and the phases of
the gerade and ungerade complex dynamic amplitudes, re-
spectively. TheEED gives information on the relative phase
of these two amplitudes. First of all, it does not exhibit, at
least in its converged shape, any “dynamic nodes”si.e., extra
zeros, located at angles different fromu12=0,180°d. Second,
its simple shape results directly from the competition be-
tween the kinematic factor and the product of the two
dynamic moduli, so that it implies a monotonic depen-

FIG. 7. Same as Fig. 6 but keeping only theR0=60 a.u.
HRM-SOW calculations and adding the corresponding present
(middle and right columns) and previous[6] (left column) measure-
ments, given by dots with error bars.
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dence of the relative phase to the mutual angle. Such a
property has already been emphasized at an excess energy
of 40 eV by Bolognesiet al. [29]. The relative phase is even
quasiconstant in a large interval of 90° aroundu12=180°.
The kinematic factor in the energy-exchange dichroism now
magnifies an orthogonal emission of the two electrons, al-
lowing one to investigate complementary dynamics to those
enlightened by the corresponding TDCSs. TheEED exhibits,
for the most asymmetric energy sharing case, significant ef-
fects in the vicinity ofu12=90°, indicating that the conver-
gence is particularly slow in the wings of theau amplitude.
(A forthcoming paper will be devoted to a study of the ger-
ade and ungerade amplitudes.)

Figure 7 compares the converged TDCSs andEED ob-
tained forR0=60 a.u. with our experimental results. The lat-
ter being relative, they have been normalized to the theoret-
ical TDCSs in the nearby vicinity ofu12=180° for each
energy sharing, taking into account the identity of the TDCSs
associated with complementary energy patterns for back-to-
back emission. Taking advantage of the theoretical symmetry
of the energy-exchange dichroism with respect tou12=180°,
the experimentalf0° ,180°g and f180° ,360°g EED have
been averaged, so that the corresponding data are only plot-
ted on thef0° ,180°g range.

Special attention should be paid to the measurements pre-
sented here atE1=20 eV and 18 eV(middle column of Fig.
7), where the shape of the TDCSs exhibits two peaks linked
by a shallow minimum. The HRM-SOW TDCSs calculated
at R0=60 a.u. are fully consistent with these data, whereas
markedly different shapes were obtained for lower values of
R0, as already discussed. As a general rule, the overall agree-
ment between theory and experiment is excellent, the excep-
tion being the TDCS forE1=5 eV, where the converged the-
oretical TDCS definitively shows three peaks of comparable
magnitude while experiment exhibits a main central peak
flanked by two secondary peaks. Assuming that such a dis-
agreement arises from the experiment, we discuss possible
sources of systematic errors in the data.

Although the 5 eV distribution is symmetric aboutu12
=180°, this does not necessarily ensure its reliability, as dis-
cussed by Seccombeet al. [6].2 One possibility for the ap-
parent discrepancy is that the “coincidence overlap volume,”
as a function ofu12, is not constant in this particular case
giving rise to systematic errors in the detection efficiency.
This is always a concern of this type of measurement and it
is possible that this potential source of error is not com-
pletely removed by the normalization procedure(see Sec-
combeet al. [6]).

Another factor is the transit of the photon beam through
the toroidal analyzer(and entrance lens), which accounts for
the absence of data in the angular regions near 90° and 270°.
The photon beam is contained within tubes in each of these
two regions, to eliminate noise from metal scattered photo-
electrons. The presence of these tubes could locally perturb
the electric fields within the analyzer. The degree of pertur-

bation is dependent on the tuning of the electron optics,
which is different for each electron energy, and could ac-
count for the discrepancy between theory and experiment for
E1=5 eV, and, to a lesser extent, 2 eV. In principle, the
presence of the photon tubes will also perturb the single ion-
ization angular distributions, and therefore, this effect should
be removed by the normalization procedure. Nevertheless, it
is not impossible that this physical(geometric) difference in
the electron optics in the vicinity of 90° and 270° could
contribute to the apparent discrepancy.

Such effects(either nonuniformity in the coincidence
overlap or photon tube perturbations, or both) are apparent in
the TDCSs forE1=23, 20, and 18 eV, which all have less
yield at u2,240°−270° compared to that at,90°−120°,
the equivalent angular region. Before proceeding we should
note that these observations, made in the coplanar geometry,
could be due, in part, to nondipole effects. It should also be
noted that in cases where the TDCSs’ shape and magnitude
are evolving rapidly withE1/E2, as in theE1=5 eV case, it is
important to take into account the experimental resolution
when comparing theory to experiment. This has been under-
taken in this work and the trend is to suppress the yield of the
two “side” lobes with respect to the central “peak.” However,
this effect changes the TDCS shape by an amount corre-
sponding to the extreme range of the error bars on the data
points and consequently does not fully resolve the discrep-
ancy. Nevertheless, these minor differences should not de-
tract from the general consistency between theory and ex-
periment over a wide range of kinematic conditions and
where the TDCS shape is markedly changing.

The comparison of the present theoretical TDCSs with the
ones published previously(Fig. 3 of Ref. [6]) shows good
agreement for the situationsE1=2 and 7 eV: namely, the
shapes are the same, while the absolute scale varies by less
than 25%. However, strong differences both in magnitude
and in shape are observed forE1=5 eV, since the magnitude
of the main peak varies by as much as 60%, and the ratio of
the main peak to the secondary peak alters significantly. In
fact, the TDCSs reported in Ref.[6] were obtained with the
first version of our method, involving an underlying constant
step sizea grid in the inner region, and for numerical con-
ditions close to those reported in Fig. 6 forR0=30 a.u.: the
present work proves that these data suffered from a lack of
convergence with regard toR0.

VI. CONCLUSIONS

Reported here is a detailed convergence study of the
HRM-SOW method with respect to the critical parameterR0
that measures the size of the inner region. This study con-
cerns the TDCSs which carry the largest amount of informa-
tion and which are, accordingly, the most difficult to con-
verge. As a result, the accuracy of HRM-SOW TDCSs has
been estimated, for various sizes of the inner region, by the
relative deviation of their magnitudes with respect to those
calculated atR0=60 a.u. These latter, corresponding to the
largest inner region accessible to the present treatment, are
taken as a reference because they are in very good agreement
with experimental data. At 20 eV, for instance, the accuracy

2Note that for data presented in this work and that of Seccombeet
al. [6] the distance between the hypodermic needle and the detec-
tion plane is actually less than 1 mm.
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increases from about 25% atR0=10 a.u., to 10% at 40 a.u.
and to better than 5% at 50 a.u.

This convergence study has also identified specific situa-
tions where the convergence rate becomes particularly slow.
They can be distributed in two classes: either very asymmet-
ric energy sharings or emission of one electron close to the
electric field in the case of linearly polarized light. In the
most asymmetric energy sharing case studied, that is to say
E1=19.5 and E2=0.5, so that E1/E2=39, the accuracy
reached atR0=50 a.u. is about 15 %. The situation worsens
when very asymmetric energy sharing is combined with
emission of one electron along the electric field. Foru1=0°
andE1=23 eV,E2=2 eV, so thatE1/E2=11.5, for instance,
the accuracy obtained atR0=50 a.u. cannot be estimated to
better than 30%.

Improving the situation requires one either to become able
to deal with still larger inner regions or to improve the outer
region treatment. In the first case, the obstacle lies in the
storage and run-time requirements associated with the diago-
nalization of a large matrix. To circumvent it, we may con-
sider replacing the generalLAPACK diagonalization routine
used so far by another one, which would take advantage of
the relative sparsity of the relevant matrix. Alternatively, we
can explore the capability of the recently developed
HTD-SOW method[25], where the stationary inhomoge-
neous equation(1) is solved over the finite inner region using
completely different, namely time-dependent, techniques.

The second option, namely, improving the outer region
treatment, is also very promising. The most severe approxi-

mation, in the present implementation, is the description of
the main features of theR motion in this region as a single
semiclassical outgoing wave. This does not take account of
the fact that theR motion might be substantially different in
the bulk of thea rangef0,p /2g interval than in the vicinity
of its bounds. Allowing for distinct hyperradial dynamics in
the single- and double-ionization channels would probably
accelerate the convergence of the HRM-SOW method with
respect toR0 significantly.

The present situation makes additional TDCS measure-
ments very desirable. Accurate absolute TDCSs correspond-
ing to the dynamic situations identified in this paper, i.e.,
asymmetric energy sharing and/or emission of one electron
along the electric field direction for linearly polarized pho-
tons, would provide very sensitive tests of the various theo-
ries. In addition, PDI of excited3Shelium would help reveal-
ing properties of theag and au dynamic amplitudes, which
are hidden when PDI of helium ground state is considered.
To conclude, we anticipate that this work will stimulate fur-
ther experimental and theoretical work in the field.
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