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Photo double ionization of molecular deuterium
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Abstract. A helium-like description of photo double ionization of molecular deuterium is
extended to derive a dependence of molecular excitation amplitudes on electron energy sharing and
dynamical quantum numbers labelling internal modes of excitation of the escaping electron pair.
Both linear and circular polarizations are considered, and predictions regarding circular dichroisms
in the angular distributions of the electron and ion pairs are given. A detailed comparison of the
model with recenty, 2e) measurements is also presented.

1. Introduction

Photo double ionization (PDI) of molecular deuterium—Bor equivalently molecular
hydrogen H—is challenging because of the inevitable full four-particle fragmentation of
the molecule. A thorough study of the resulting few-body escape dynamics clearly requires
measurement differentialcross sections, particularly for the lowest photon energies. Recent
(v, 2e) studies of B (Reddishet al 1997a, Wightmaret al 1998, Schereet al 1998) have
demonstrated aremarkable likeness gfind helium triply differential cross sections (TDCS),
although the characteristic pair of lobes in the helium distributions are closer together in
the molecule and significantly narrower. The two groups’ measurements are in excellent
agreement and were both obtained for equal electron energy sharing, E; ~ 10 eV,

with coplanar detection orthogonal to the photon beam direction. In additidomebet al
(1998b) have performed coincidence experiments between the ion pairs and one of the escaping
electrons. They thus extracted a one-electron angular asymmetry pargmasea function

of electron energy sharing for parallel and perpendicular ion-axis orientations relative to the
photon polarization. They also made the surprising observation that the electron distribution is
azimuthally symmetric about the photon polarization axis even when the azimuthal symmetry
is broken by a perpendicular ion-axis orientation. These experiments have awakened interestin
PDI of these fundamental molecules after a decade of silence following the pioneering ion—ion
coincidence experiments onpldf Dujardinet al (1987) and of Kossmanet al (1989).

We have recently developed a very basic description of the TDCS for diatomic molecules
(Feagin 1998) based closely on the PDI amplitude for helium (e.g. Haeik1991, 1995,
Lablanquieet al 1995, Maulbetsch and Briggs 1993, Kazansky and Ostrovsky 1995, Pont and
Shakeshaft 1995, Feagin 1996) and also on the earlier theoretical studies of Le Rouzo (1986,
1988). We thus derive a helium-like expression for the electron-pair angular distribution which
depends on the orientation of the ion axis at the instant of photoionization and therefore on
amplitudes for excitation parallel and perpendicular to the molecular axis. When integrated
over the momentum of an undetected electron for comparison with the ion—electron results of
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Dorneret al (1998b), we obtain the azimuthally symmetric electron distribution they observed
for ion-axis alignments both parallel and perpendicular to the photon polarization axis. When
integrated over the alignment of an undetected ion axis for comparison witly p2e) data

and also the data of Schewdral (1998), we obtain an expression with two contributions: one
identical in form to the helium TDCS; and one with an angular distribution independent of the
photon polarization direction and proportional to the square of the difference in amplitudes for
parallel and perpendicular molecular excitation. The resultisin good agreement with measured
ratios of the TDCS in Bto that in He and helps to explain a surprising observed increase in
the ratios where the individual angular distributions vanish due to an exact parity-exchange
selection rule.

In this paper, we extend our earlier derivation of the molecular photofragmentation
amplitude (Feagin 1998) to include a fourth-order Wannier description of the electron-pair
continuum wavefunction and thereby obtain an approxiniatet, energy dependence of the
amplitudes for excitation parallel and perpendicular to the molecular axis. At the same time,
we attempt to exhibit the role of dynamical excitations internal to the electron pair. Berakdar
and Klar (1992) predicted, and Viefhaasal (1996) and Mergeét al (1998) demonstrated,
that PDI in helium with circularly polarized photons leads to a dichroism in the electron-pair
angular distribution, and that phase-sensitive probes of the internal electron-pair continuum
dynamics are possible (Berakdatral 1993, see also Berakdar 1998, 1999). Thus, we also
extend our description of molecular photofragmentation to include dichroism, a topic with
a long and rich history in molecular physics, although we focus on the phenomenon as a
tool to probe few-body Coulomb dynamics. Finally, we present further technical details on the
comparison of our description with measured TDCS ratios;iam He and provide additional
experimental evidence for some of the conclusions we have drawn.

Our theoretical description of the outgoing electron pair is characterized by the collective
coordinates defined by the separation ve&os r1 —r, and the centre-of-mass (CM) position
vectorr = %(rl + r,) of the ionized electron pair relative to the CM of the ion pair. These
vectors replace the usual position vectarandr; of the electrons relative to the ion-pair CM,
so that the dipole excitation operator of the electron pair reduces to sémglye-r, = 2¢-r.

We thus consider a photon absorbed by the electron-pair CM and describe the fragmentation
state of the system by a Wannimomentunfunction of the detector coordinates

k, = ki +ks kg = 3 (k1 — ko)
k. = 2\/%E + ./ E1E>C0SH12 krp = \/%E — Vv E1E,c0S012

conjugate tor and R. Herek; and k, are the conventional detector coordinates, i.e. the
momenta conjugate t& andr,, with mutual angl@,, = cos(k; - k») and electron energies

E; = %klz Then,E = E; + E5 is the system excess energy above threshold, an approximate
quantity defined by the ‘vertical transition’ from the molecular ground state to the ion-exploding
continuum state.

We will derive and express our results using vector methods independent of a particular
angular representation. Then, to derive the angular dependence of a cross section as a function
of k,, kg or k1, k2, we will only need the polar-angle representation of the momentum vectors
relative tolab-fixedaxes,

1)

k; = sin®; cose; & + sind; sing; g + cos; 2, 2)

wherei stands for any of the labeR, r, 1 or 2.
We use atomic units throughout, except that we label energies in eV.
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2. Photoionization cross section

We retain the axial-recoil description of Feagin (1998) to write down an approximate transition
dipole moment describing the excitation and escape of the electron pair from the molecule.
We thus assume the ion-axis orientatiBy is fixed during the quick escape of the electrons
from the instant of photon absorption to the resulting Coulomb explosion of the ion pair (cf
Zare 1988). We will generalize this description, however, to arbitrary electron energy sharing
E; andE, = E — E; and to include circular dichroism. We thus consider just the Wannier
componenty,”, of the electron-pair continuum statg, x, which has been photoexcited from
an electron-pair initial state;, and define the components of tlecular-frameransition
dipole moment according to (primes denote molecular-frame quantities)

Moy = (Wi X0 2> (Wi W5 () 10 1), 3)

K
wherex,, = r’ - €, is a component of the electron-pair CM vector along one of the molecular-
frame axesx = x’, y/, 7/ with thez’ axis along the internuclear axi3y. HereL is the total
angular momentum quantum number of the electron pair, whils its projection quantum
number along the interelectronic momentum direcﬁ@n|L-I%R| = K. Once we have rotated
the dipole moment from the molecular frame to the laboratory frame- u, we obtain the
molecular PDI amplitude from simply(Ry) = € - u for a given photon polarizatioa
If we take the final statéy, . | to be simply an outgoing plane-wave detector state, then
the overlap(wk;k;eWLWK) >~ &XVK (k.. k%), i.e. the momentum-space representation (Fourier
transform) of the Wannier wavefunction. This momentum wavefunction then characterizes
for us the dependence of the cross section on the detector coordéipatedk,. In particular,
theinternal excitation amplitudes,x = (y," |x.|;) from equation (3) depend only on the
excess energf—fully independent of the momenka andkg. The rotational symmetry of the
diatomic molecule abouRy requiresthat, x = cyx = cng andcyx = cxx, wherex andIl
are the conventional labels distinguishing excitations parallel and perpendicular, respectively,
to the molecular axis. In a partial-wave analysSisand I also specifyperpendicularand
parallel projections, respectively, of the electron-pair angular momentum along the molecular
axis, |L - Ry|. In principle, these amplitudes contain all initial state effects and the gauge
dependence. Rather than evaluate them here, however, we simply parametrize our results in
terms of their ratios.
Following Feagin (1998), we approximafe{",((k;, k) by the helium'P® momentum

distribution so thak = 0, 1 and thereby consider excitation of the domin&sftcomponent
of the molecular ground statet. We thus obtain from fourth-order Wannier theory the simple
and useful geometrical form (see Feagin 1995, 1996, and dlsoelet al 1998a)

. . —€,, - kizky - k., K=0

wzvzl,l((k;7 k/R) ~ Ak, kg) x { ¢ ka/ fel/: . ’%’/;Q];/R . k;, K=1,

o r

(4)

where A (k,, kg) is an ‘internal’ momentum wavefunction. With this approximation the
molecular transition dipole moment equation (3) has the simple and useful form

i = Ay k) (carel, - K, = (Cao + car)€l, - Rl - K] ) (5)

so that if we define a diagonal dyadit, with diagonal components. x = c,x = cnx and
¢k = csk, the molecular-framgectordipole moment can be written conveniently as

'~ Ak, kg) (c; K — (CL+C}) - Kk, k) . 6)

t Joy and Parr (1958) estimated the ground state components to be $53892.$% sd [, and 1.5% P. See also
Bishop (1963).
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This notation facilitates rotation to the laboratory frame. The transformation is readily
accomplished without reference to Euler angles by noting that the molecular-frame diagonal
dyadic C, can be expressed a8 = cnkl + (csx — cng)R) R}, wherel is the unit

dyad. Then, sincek?, — Ry under rotation to the lab frame&, — Cx = cnxl +

(cxx — cnK)RNRN under rotation. (Despite the form invarian@@y is nondiagonal.) It
follows that the lab-frame dipole momegts form invariant under rotation with all vectors in
equation (6) simply replaced by their ‘unprimed’ lab-frame counterparts. Hence, the molecular
photoexcitation amplitude for linear polarizatieis given by

f(Ry) = e+ = Alhr ki) e+ Cu-ky — €+ (Co+ Cy) - ek - Iy
= Ak, kg) [Cme -k, — (crio + cmy)e - krkg - K,
+e- Ry (Aclsz “ky — (Aco+ Act)Ry - krkg - k)] @)

where Ack = cgx — cng. We consider circular polarization below. The scalar product
kg - k, in this result makes clear that detectibg L k. selectgpure K = 1 internal excitation.
On the other hand, detectirig; | k, selectspure K = 0 internal excitation. In general, the
electron pair occupies E = 0, 1 mixture, although we might expect from studies of helium
(Dorneret al 1998a) in the 1-20 eV range that the= 1 amplitudes dominate by roughly
a factor of three. Likewise, detectinBy Le selectspure IT molecular excitation, whereas
detectingRy ||e selectspure ¥ molecular excitation. As expected, equation (7) reduces to
the helium PDI amplitude (cf Brneret al 1998b) if one ignore&, I differences and sets
Cxk = Cnk = Ck-

Equation (7) is easily transformed to conventional detector coordiatendk, using
equation (1). We thus recover not only the photoexcitation amplitude derived in Feagin (1998),

f(Ry)=€-p=e-g(1,2,612) - k1 +e-9g(2, 1,01 - ka, (8)

where the dyadics are defined@s: grl + (g5 — gn) Ry Ry, but also derive an approximate
dependence of the amplitudgs, gy on the electron-pair energy sharing,

- —E.
8a(i, j,012) = A(Ey, Ez, 612)+/ 2E; |:C(x1 - L (cun + Cal)] . ()]

232

(Note, k2 = 1E  E1E; cos;, from equation (1).) As discussed above, detecting either

RyleorRyle reducesf (Ry) to a helium-like amplitude, e|the;f — g5(1, 2,010)€ - ky +

gx (2,1, 010)e- ko or f — gn(1,2,061)e- k1+gn(2 1, 61p)e - k. Both of these limits display
azimuthal symmetry about the polarization axif\lthough theRy || e limit is expected when

the azimuthally symmetric initial state is aligned alanghe Ry Le limitis at first surprising

since the azimuthal symmetry is broken by the initial-state alignment. This result is of course
just an artifact of our description which considers excitation of only the dom#8&mround-

state component. Nevertheless, the recent measuremenésredrbt al (1998b) support our

Ry Lelimit.

Equations (7)—(9) give the correct kinematic dependence on the electromguaar
momenta for a helium-like!S*— P° transition, although the internal wavefunction
A(k,, kg) = A(E1, E», 612) has not been derived for molecular fragmentation. The dynamical
Wannier saddle in the presence of the molecular axis is too complicated to warrant using the
fourth-order internal wavefunction derived for helium (Feagin 1995, 1996, see éiseD
et al 1998a). We therefore simply replace the internal wavefunction with the conventional
Gaussian ‘correlation function’ predicted by second-order Wannier theory in helium. Namely,
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we use

< > ( (r — 912)2>
|A(E1, E>, 912)| = G(E, 012) ~ exp —41n 22— (10)
91/2(E)
with half-width6y2(E). In the case of equal-energy sharing, this result has proven extremely
useful in parametrizing a variety of helium data even tens of eV above threshold. The Gaussian
wavefunction is a consequence of the harmonic bending motion of the electron pair relative to
the ion charge centre, a feature shared by both the atomic and the molecular potentials in lowest
order. Although we will not do so here, one might introduce separate correlation functions
Gy and G with differing half-widths for parallel and perpendicular excitations (&irier
et al 1998b).
The square of the excitation amplitug& Ry )|? determines the four-body fragmentation

distributions. For example, if we integrate over all ion-axis alignméhiswe derive a TDCS
for just the electron pair relevant to the experiments discussed in section 4. (The cross section
is in fact quadruply differential because the Coulomb exploding ions have a small ‘Franck—
Condon’ spread in energy of 2-3 eV.) The integration okdgr is straightforward with the
two identities [ RyRy dRy = %1 and [(e - Ry)?RyRy dRy = 2Z(1+ 2ee). We thus
generalize Feagin (1998) again to arbitrary electron-pair energy sharing according to

TDCS[D,] ~ / le- p dRN

= Zlg=(L.2, 912>e k1t g5(2, 1, 010)€ - kol
+&lgn(L, 2, 01)€ - k1 + gn (2, 1, 010)€ - ko)
+5Re ([ 2. 6ro)e - oy + g5 2. 1, 0x0)e - ol

x [gn(L 2. 610)e - by +gn (2, 1, 6r)e - ol
+&|Ag(1, 2, O10)ky + Ag(2, 1, 012)ko |, (11)

whereAg = gs — gn. Inthe limitgs — gn, this result reduces as expected to the helium
cross section TDCS[Hef |g(1, 2, 612)€ - k1+g(2 1, 610)€ - k:2|

We derive doubly differential cross sections (DDCS) for a single electron by integrating the
square of the excitation amplituflé(Ry) |2 from equation (8) or the TDCS from equation (11)
overeitherk; or k,. For example, starting with equation (11) and integrating dyawe derive
the familiar form

d’o 1 do
B dh,  4r OE: (1+,31P2(6 kl)) (12)

where P(e - kq) is a second-order Legendre polynomial afidthe angular asymmetry
parameter. On the other hand, tih&,-dependent DDCS derived from the square of the
excitation amplitudd f(Ry)|?> from equation (8) can be generally expressed in terms of
Ps(e - ky) for only the two special geometrid®y |l e or Ry Le. The former limit is a general
result, while the latter is a consequence of our model. In any case, detailed evaluation of
B1 requires a numerical integration because of the complicated angular dependence of the
amplitudesg, (i, j, 612) (see Drneret al 1998b).

We derive anon angular distribution by integrating the square of the excitation amplitude
| f (Ry)|? from equation (8) oveboth k; andks,, although it is more straightforward to start
with | 7 (Ry)|2 from equation (7) and integrate ovkr andkx. Again, detailed evaluation
requires numerical integration. We can derive, however, a useful approximate expression for
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the ion angular asymmetry paramegar by ignoring the weaker angular dependence of the
correlation functiorG (E, 612). The integrals are then easily performed with one of the dyadic
identities introduced above equation (l]I)%,- k; dk; = ‘%’I, and with some rearrangement we
obtain the familiar form (Dehmer and Dill 1978),

d .
T~ o le- Col? +2le - C1I? ~ 1+ By Pole - Ry) (13)
Ry
wherefy = 2(D% — D3)/(D% + 2D%) but now D2 = |ca0|? + 2|cq1/?. We compare this
quantity with experiment in section 4.

3. Circular dichroism

If the absorbed photon is circularly polarized then changing the polarization from left to right
e+ — €_ is tantamount to reflecting the system in a vertical plane passing through the photon
propagation directionﬁ:w which we take to be the laboratofyaxis withey = %(9} +ig).
Consider the unitary reflection operator defined by

O-vkiv :’;1 2) = |{i:7 _:&7 2) (14)
under which the dipole excitation operator transforms according;taénotes adjoint)
€+ T = Oy€_ - roJ. (15)

If we reflect for simplicity in the vertical plane defined ky and the molecular axiRy, then

the electron-pair initial state is unchanged under reflectigny; (Ry)) = [V (Ry)), and the
dipole excitation amplitude transforms as

Fu (e, kg, Ry) = (Yk, 1o (RN €n - 719 (RA))
= (Y, (B e - PV (RY)) = fom (K], K. Ry). (16)

Here k, and k}, are the momentum vectors expressed along the reflected coordinate axes
and therefore with components,, k|, k;} = {k., —k,, k;}. Thus, changing the circular
polarization reflects the cross section in thez plane, and equation (16) relates momentum-
space points on opposite sides of the plane. Of course, this result is not due to any intrinsic
chirality of molecular deuterium. Rather, the chirality of the photon is transferred to the
electron and ion pairs.

Itis also clear that one requires at least three distinct directions to establish a handedness,
sayk, and two of the three vectoisg, k., Ry, or ki1, k2, Ry. Otherwise, the reflection
is degenerate with a rotational symmetry. For example, if one detectg;justd ko, but
k1 = ko, or if all three vectorsk,, k,, andk, lie in the same plane, then any reflection
o, can also be generated by a rotation aldeut Likewise, states wittk perpendicular to
k, are also reflection—rotation degenerate. This case corresponds adain=td,, since
k. - kg = E1 — E, from equation (1). These degeneracies apply to helium as well as to
molecular deuterium. However, note that in helium one must detect both electrons to observe
dichroism, whereas in the molecule one could detect instead one of the ions and just one of the
electrons. In addition, ion-exchange symmetry indiinply means that the cross sections are
symmetric with respect t&2y — — Ry, analogous to the symmetry of singlet electron-pair
states under electron excharige — —ky in both the atom and the molecule. For example,
photofragmentation of molecular HD would break this symmetry, though the effect would be
very weak.

The dichroism arises from the fact thpf.i(k,, kg, Ry)|° — | f-1(k,, kg, Ry)|? iS
generally nonvanishing, despite the reflection symmetry equation (16). (Note here one
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compares momentum points on the same side of the reflection plane.) Physically, the dichroism

means that the photon absorption rate and the resulting electron—ion or electron-pair detection

rates will differ if the ion and electron detectors are held fixed and the circular polarization

changed. We now relate this fact to coherent excitation of distinct dynamical symmetries.
With the excitation amplitude written 86, = €y, - u, the dichroism is defined by

A(Ry) = | fur(ky, kg, Ry)I1? = | f-1(ky, kg, Ry)I?
=p" - (eles —€le ) - p. 17)

This expression is conveniently evaluated in terms of the dyadic

ehen = 3[22 + gy +iM (&g — 9B)]. (18)
The cross term antisymmetric under reflectipr> —v delivers the dichroism, while the first
term is reflection symmetric. Thus,

ARy) =ip" - @9 —gz) - p=1(p" x p) -k, (19)
Hence, dichroism is characterized by the pseudoveptoxiu = 2Im o x Reu generated by
the transfer of the photon’s chirality to the electron and ion pairs.

To give an idea of the momentum dependence of this general expression, we consider
two limiting cases of our approximate dipole moment from equation (7). First, we integrate
equation (19) over all ion-axis alignmenky to derive a helium-like dichroism relevant to
experiments which might detect only the electron-pair. The integration is straightforward with
just the single identity Ry Ry dRy = %21, and we obtain

A

dR ~ A~ A o o
/A(RN)4_7TN =2|A12Im (C3C)k, - kr(kg x k,) -k,
2 - A
= k—2|A|2Im (C4C1(E1 — E2) (k1 x k) - ky,
R

4 . . . .
= k—2|A|2Im (C5C1)(E1 — E2)y/ E1E> SN0, 15iN6,2 SiNg, 12, (20)
R

where we have usded. - kg = E; — E; andkg x k, = k1 x k; calculated from equation (1)

as well as the polar-angle representation of the momigntg, from equation (2) withy axis
annglAcy such thatﬁylz = (/J)y]_ - (/J)yg. Here Im(CSCl) = %Im (CﬁOCnl + C?[OCE]_ + C;OCnl),

which reduces to Inicjc1) in the helium-like limitcx x — cngx. Equation (20) is geometrically
identical to the helium dichroism derived by Berakdar and Klar (1992) and studied by Berakdar
et al (1993), although it differs in the energy-dependent fackgrg A (E1, E2, 612)|%(E1 —
E»)«/E1E>, which derive from the fourth-order Wannier theory. The result makes clear that
a nonvanishing dichroism in helium requires mixed interkiadymmetries corresponding to
excitationsk, alongkr (K = 0) and perpendicular tk; (K = 1) (see also Berakdar 1998,
1999). In addition, it shows that the dichroism is strongest wheandky (or k; andky) lie

in the same plane withy,, so thatk; x k, (or k1 x k) is parallel tofcy. As discussed above,

the chirality and hence the dichroism vanish when the fragmentation no longer defines three
distinct directions and therefore when any of the three vedarkg, I%y (or k1, k2, I%y) are
parallel.

As a final example, we consider equation (19) for equal energy electrons. This case is
interesting because the dichroism vanishes in helium whea E, (cf equation (20)). The
transition dipole moment from equation (7) simplifies considerably when- kz; = 0, and
one easily obtains

A(Ry) = 2|A1PIm (¢iyes)k, - Ry(Ry x k) - Ky,
— 2EG(E, 619)Im (cyen1) (k1 + ko) - Ry [RN x (hy + 1%2)] k. 1)



2480 T J Reddish athJ M Feagin

Note that here, unlike in helium and in the helium-like result equation (20), only Busel
internal excitation enters. To emphasize the role of ion detection, we can integrate this result
overks; to correspond to detection of just one electron. (As mentioned already, a nonvanishing
dichroismin helium requires detection of both electrons.) The integration is best performed by
taking thez axis alongk;, so that the correlation functldﬁ(E 912) is a2|muthally symmetrlc

It is then straightforward to show thﬁtA(RN) dkz % k;l RN(RN X kl) k — sm 2¢y1

for k, andRy separated by the (azimuthal) anglg in a plane perpendlcular fo,. Th|s isin

fact the plane defined by our electron-pair analyser, the description of which we now turn to.

4. Experiment

We specialize our molecular electron-pair cross section equation (11) to the case of equal
energy sharing:"l = E, ~ 10 eV relevant to our experiments and obtain

TDCS[D,] ~ w7 [2lgx|? + 7Ign|? + 6Re(gfigx) ] (e - k1 + € - ko)?
+Eﬂ|g>: — gnl’lky + ko). (22)

We thus recover the expression derived in Feagin (1998), but now idgptiif = E», 612) ~
VEG(E, 012) co1. Thefirstterm on the right-hand side of this resultis proportional to the equal-
energy helium cross section TDCS[He], while the second term is clearly a molecular correction
dependent on just the mutual momentum anlgdg+ k2|2 4cog 1912, independent of the
polarization vectoe. This change in relative azimuthal symmetry about the polarization axis

€ is manifest in a relaxing of selection rules which have been establisheatdoric PDI
(Maulbetsch and Briggs 1995). These rules require that the helium TDCS is identically zero
in the following situations for @P° (M = 0) electron-pair final state: (a) whef_Le and

koLe, (b) whenk; - € = —k5 - €, and (c) wherk; = —koT.

Rules (a) and (b) are subtle consequences of parity and exchange symmetry of the electron
pair and are clearly relaxed in the presence of the additionalRxiading to the molecular
correction term in equation (22) independentofRule (b) results in a null first term on the
right-hand side of equation (22)—the helium-like contribution—kgpanywhere on the conical
surface shown in figure 1. Rule (c) on the other hand is a straightforward consequence of parity
and exchange symmetry and holds even in the molecule for ungerade, singlet final states. This
rule, corresponding to back-to-back electron emission, results in a null molecular cross section
along the lingk, = —ky on one side of the cone in figure 1. As we have shown (Feagin 1998),
the failure of rule (b) in the molecular correction term has measurable consequences in the
vicinity of back-to-back emission (i.e. ne@y, = 180 for coplanar detection geometry) due

U/ef{n— 0

k,

Figure 1. A diagram of the conical surface defined by - e = —k1 - € on which the helium
TDCS vanishes identically from selection rule (b) discussed in the text. This surface, also given by
62 = m — 01, includes the exact node from parity and exchange considerations for ‘back-to-back’
electron emissiofijz = 7.

T Note rule (a) holds for all final electron energies, while rules (b) and (c) hold for equal-energy electrons only.
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to the finite detection solid angles resulting in electron collection across a finite portion of the
cone defined by rule (b). As we will show here, the lack of a node in the molecular correction
term on the opposite side of the cone frém= —k; (top of the cone in figure 1) also results

in a significant increase in the measured molecular TDCS in this angular region in comparison
to helium.

For reasons of brevity, the procedures involved in applying the theory to an experimental
geometry were only mentioned in Feagin (1998). We therefore present the important details
here, not only to make our analysis clear, but also to assist in the theory’s application to
future measurements. We first consider integration of the cross section equation (22) over the
acceptance solid angles defined by our detector. The projeatioRsin equation (22) are
generally expressed as apsn the conventional spherical polar co-ordinate system with
axis along the polarization axis. Our toroidal analysers, however, are axially symmetric about
the photon propagation directidy), and define a detection ‘plane’ perpendicular to it (see
Reddishet al 1997b for full details). Therefore integrals over the acceptance solid angles of
the detector are more readily performed in a spherical polar co-ordinate system axith
alongk,. Then, electron pairs passing into the detector have polar afigles 6,, ~ 90°
within the rangeﬂ:%(wy defined by the analyser’s entrance geometry, which is assumed to be
constant for all azimuthal anglgs1 and¢,» (0° to 360°) aboutk,. The geometrical upper
limit for 86, is 20° (+386, = +10°), but electron optical simulations indicate that a somewhat
smalleré, -angular acceptance is transmitted through the analyser, somewhere between 14
and 20 depending on the actual tuning conditions.

We analytically evaluate thé,; integrals over the detector slit with a peaking
approximation to the Gaussian correlation funct®(£, 6,2). With 6,1, = 6,, = 9, the
projectionse - k = cos¢,;. We thus seG(E, 012) = G(E, |¢,12 = ¢,1 — ¢,2]) and simply
remove it from the integrals. We then obtain for the helium-like contribtmorizl +e- 12:2)2
to equation (22)

T1($y1, py2) = (COS ¢, 1 + COS ¢,2) [2(2 + co$ 156,) sin® 250,
+1 Ccosg, 1 COSP,2(86, +SiNsH, )2, (23)

As desired, this result reduces aeﬁ(cosq&;,l + cos¢y2)2 in the small-slit approximation.
(Consequently, the,; integrations have little effect on the shape of the angular distributions in
helium.) Likewise, we obtain for th&,; integrations of the molecular-correction contribution
k1 + ko|? = 4 cog 161, to equation (22)

To($y1, y2) = 2sir? 186, + L cosp,1 — ¢,2)(86, +sinsé, ). (24)

Although we find these analyti,; integralsT, and7; to be suitably accurate, it was necessary
to perform the finalp,; integrations numerically. Our spectrometep,s angular resolution
was quoted in Wightmaet al (1998) for the data presented theret#s5° with angular ‘bins’
of 17° and 10 for the two analysers. Theg,; and¢,» integrals for the data presented here
have full-widths of 22 and 16, slightly broader than—but in keeping with—the previously
quoted values. They were chosen to reproduce the degree of ‘filling-in’ of the node in the
measured helium angular distributions. We derfatand7; integrated ovep, asT, andTy.

Finally, the quantities/y and 7>, fully integrated over detection solid angles, can be
combined in the usual way to take into account the degree of linear polarization, namely
TDCS o B2 TDCS, + 152 TDCS, in terms of the Stoke’s parametsy (Schwarzkopkt al
1993).

The ratio of angular distribution§DCS[D,]/TDCS[He] emphasizes their difference,
which as figure 2{) demonstrates is most pronounced in the regigr= 180°. This peak in
the ratio occurs in an angular range where TDG$fhd TDCS[He] are both very small, as
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Figure 2. (a) Ratio of the D-to-He coincidence yield as
a function of the electron-pair mutual momentum argjle
200 from the data of Wightmaet al (1998) for¢; = 115°. The
D solid curve shows the corresponding ratios computed from the
2 theoretical fits from equation (25). The dotted curve under the
TDCS peak shows the ratio of the two Gaussian correlation functions
100 - _ used for B and He. b) The helium andd) the D, TDCS
data from Wightmaret al (1998) withE1 = E» ~ 10 eV and
Stoke’s parametef; = 0.67+0.03. The helium fitincludes a
Gaussian correlation function with half-widtfy, = 91°+3°.
0 | ] 1 The D, fit is from_ equation (22) Wit_h aratig = gn/gs =
100 150 200 —2.1and correlation function half width » = 76°+3°. Both
fitsinclude integration over detection solid angles, as discussed
842 (degrees) in the text.

figures 2b) and €) show, which explains the relatively large error bars. Collecting results, we
can express this ratio as

TDCS[D;]  Gp,(I¢y12]) 14Cap) To($y1, $,2) 25)
TDCS[He]  Grell®,12) T1(dy1, y2) |
whereg, 12 = ¢,1 — ¢,2 andn = gn/gs = cn1/cx1 With
41 — p?
cop= -l (26)

2+7n2+6Ren’

Note that whem = 1 corresponding tgn = gx, C(1) = 0 and the molecular-correction term
vanishes from equation (25), leaving us with simply the ratio of the two Gaussian correlation
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functions. The quantitieg and C(n) are generally complex valued, although we assume
both to be real here for simplicity. Using all three data ggts= 98, 115, and 132 from
Wightmanet al (1998) and thep, ;-angular acceptances given above, we obtain a best fit to
the ratio data in figure 2§ with §6,, = 18" £ 1° andC(n) = —1.9 & 0.4, which corresponds
ton =—-2.1+050rny = +0.01+ 0.05t. These values were used to produce the other curves
in figure 2.

We can also relate the ratipto the ion angular asymmetry parameter from equation (13)
via the approximation

_21—nP

2— By
Py =13

2 o
or Inl® ~ 204 By’ 27)

where we have assumed t@tao/ca1|2 <« 1, since analysis of helium data far = 20 eV
has shown thaty/c1 ~ ; (Dorneret al 1998a). Thus, the valug= +0.01=+ 0.05 determined
in the above fitimplies a negligiblg; amplitude withgy ~ +2, values which are inconsistent
with the ion distributions measured by Kossmagtnal (1989), who obtained the result
By = —0.71+ 0.05 at a photon energy of 71 eV. §ineret al 1998b obtained the value
By = —0.60+ 0.05 at a photon energy of 58.8 eV.) However, the other valee—2.1+ 0.5
determined in the above fit correspondgip= —0.69 + 0.13, which is in good agreement
with the Kossmann result. We find this correspondence satisfactory despite the approximations,
as amore accurate fit by the above procedure would be inherently difficult because the analysis
depends on the ratio of two ‘null’ signals. This demonstrates that within the assumptions of our
approximation, one can use the measutgd/alues to determine the ratig; /gx at different
photon energies. The ratio peaks around3#®r photon energies near the nominal double
ionization threshold of 51.1 eV and gradually falls off at higher photon energies to ab&ut +1
at 100 eV. This trend might serve as a rough prediction for futur@€¢) measurements and
it will be interesting to compare them with future theoretical and experimental studies of both
equal and unequal electron energy sharing.

Arguably, the mostimportant evidence in support of our description comes from examining
other consequences of the molecular-correction term in the TDCS. Given a rafig of ~
—2.1 with our kinematic conditions, we can use equation (22) (which includes the assumption
that the correlation half-width » is the same for bothy andgs amplitudes) to examine the
shape of the TDCS at othér (= ¢, 1) angles. The amplitudes of the two characteristic lobes
are a sensitive function @f as well as of the degree of linear polarizatiin The effect of
the molecular correction term is to dramatically alter the relative intensity of the two lobes as
a function off; in comparison to that of helium. This is particularly evidenfat 144, an
angle where the TDCS had been measured earlier (Redt@i997a). The comparison of
the TDCS, using both atomic and molecular descriptions but with the same correlation function
half-widthsé,,, = 76°, is shown in figures 3 and 4.

Figure 3&) shows a polar plot of the Gaussian correlation funcGonith a 76 half-width
along with the He and pangular functions defined ByDCS[He)/ G andTDCS[D,]/G. The
helium distribution is symmetric about the polarization axis while thelBtribution is clearly
skewed by the additional molecular correction term. The product of the correlation function
and the two angular functions is shown in figurdn)3( The marked increase in amplitude
of the smaller lobe along the polarization direction is a consequence of the relaxation of the
selection rules we have discussed. As seen in figure 4, this prediction is in good agreement
with earlier data, which were taken with = 0.67 + 0.03. This supporting evidence for our

T Noten as function ofC is double valued, and we therefore include fhe 0 value, although our own partial-wave
analysis indicates that < O is expected.
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0, = 144°
Si=1

Figure 3. (a) A polar plot for 9, = ¢,1 = 144 of the Gaussian correlation function
G(E, |¢,1—¢y2|) with half-widthd,» = 76° (dash-dot) and the helium (dot) and Bolid) angular
distributions defined byDCS[He)/ G andTDCS[D;]/ G. With an amplitude ratigr /gx = —2.1,

the D, function no longer has symmetry about the polarization axis along the horizohjah (
polar plot of the product of the angular distributions and the correlation function withalBwidth

for D, (solid) and He (dots), representing the TDCS with 100% linear polarization. The solid line
indicates the; angle and the dashed line shows the position of the extra node in helium which
effectively suppresses the TDCS betwegn = 7 + ¢,1.

0,=144°

Figure 4. Measuredy, 2e) D, TDCS forE; = E» ~ 10 eV with
Stoke’s paramete$; = 0.67 + 0.03 from Reddistet al (1997a).

The solid and dotted curves are the molecular and atomic forms
of the TDCS, respectively, with the same“76orrelation-function
half-width. Both curves include integration over detection solid
angles and are normalized at their peak values.

molecular photofragmentation description also suggests that the correlation half-width is not
too dissimilar for theg; andgs amplitudes at these kinematic conditions.

5. Conclusion

We have presented a helium-like description of PDI of molecular deuterium—or hydrogen—
for both linearly and circularly polarized photons and therefore for circular dichroism in
the angular distribution of the ions and electrons. Our simple approach affords an angle-
free representation of the cross section that exhibits explicitly its dependence on the electron
momenta and the ion-axis orientation, as well as the amplitgdesnd gr; for electron-pair
excitation parallel and perpendicular to the molecular axis. By connecting with a fourth-order
Wannier description of the electron-pair continuum wavefunction, we derive an approximate
dependence of these amplitudes on electron energy sharing and a dynamical quantum number
K to classify the internal excitations of the electron pair. The description has thus shown
considerable consistency with recept 2e) and ion-electron experiments.

Our model is based on the dominant (95.6%&mponent of the molecular ground state
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and neglects entirely higher-order multipoles, although experimental observations to date do
not rule them out and recent calculations by Walter and Briggs (1999) show evidence for
them with small additional structures in the TDCS. Their 5C calculations of the fragmenting
four-particle molecular state are in full analogy with 3C calculations of helium PDI and are
likely to become the ‘virtual reality’ of molecular PDI. The higher-order multipoles may also
account for the observed narrowing of the characteristic lobes in the angular distributions,
also seen in the results of Walter and Briggs. While our model’s angle-independent simplicity
might survive inclusion of the next strongest (2.6%6) @mponent, systematic inclusion of
higher multipoles would likely require a more traditional approach involving a full partial-wave
analysis.

We have assumed that the correlation function half-wigth is the same for both
amplitudesgs andgp. Although this approximation seems acceptable when examining the
shape of the angular distribution in the vicinity of the nodé;at= 7, where the correlation
functions are peaked, it becomes questionable when considering the overall shape of the TDCS.
Extensions of our description might therefore include construction of a Wannier wavefunction
for an ion pair with the ground-state separation of the molecule and an electron pair with
outgoing components parallel and perpendicular to the ion axis.
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