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Photo double ionization of molecular deuterium
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Abstract. A helium-like description of photo double ionization of molecular deuterium is
extended to derive a dependence of molecular excitation amplitudes on electron energy sharing and
dynamical quantum numbers labelling internal modes of excitation of the escaping electron pair.
Both linear and circular polarizations are considered, and predictions regarding circular dichroisms
in the angular distributions of the electron and ion pairs are given. A detailed comparison of the
model with recent (γ, 2e) measurements is also presented.

1. Introduction

Photo double ionization (PDI) of molecular deuterium D2—or equivalently molecular
hydrogen H2—is challenging because of the inevitable full four-particle fragmentation of
the molecule. A thorough study of the resulting few-body escape dynamics clearly requires
measurement ofdifferentialcross sections, particularly for the lowest photon energies. Recent
(γ, 2e) studies of D2 (Reddishet al 1997a, Wightmanet al 1998, Schereret al 1998) have
demonstrated a remarkable likeness of D2 and helium triply differential cross sections (TDCS),
although the characteristic pair of lobes in the helium distributions are closer together in
the molecule and significantly narrower. The two groups’ measurements are in excellent
agreement and were both obtained for equal electron energy sharing,E1 = E2 ∼ 10 eV,
with coplanar detection orthogonal to the photon beam direction. In addition, Dörneret al
(1998b) have performed coincidence experiments between the ion pairs and one of the escaping
electrons. They thus extracted a one-electron angular asymmetry parameterβ1 as a function
of electron energy sharing for parallel and perpendicular ion-axis orientations relative to the
photon polarization. They also made the surprising observation that the electron distribution is
azimuthally symmetric about the photon polarization axis even when the azimuthal symmetry
is broken by a perpendicular ion-axis orientation. These experiments have awakened interest in
PDI of these fundamental molecules after a decade of silence following the pioneering ion–ion
coincidence experiments on H2 of Dujardinet al (1987) and of Kossmannet al (1989).

We have recently developed a very basic description of the TDCS for diatomic molecules
(Feagin 1998) based closely on the PDI amplitude for helium (e.g. Huetzet al 1991, 1995,
Lablanquieet al 1995, Maulbetsch and Briggs 1993, Kazansky and Ostrovsky 1995, Pont and
Shakeshaft 1995, Feagin 1996) and also on the earlier theoretical studies of Le Rouzo (1986,
1988). We thus derive a helium-like expression for the electron-pair angular distribution which
depends on the orientation of the ion axis at the instant of photoionization and therefore on
amplitudes for excitation parallel and perpendicular to the molecular axis. When integrated
over the momentum of an undetected electron for comparison with the ion–electron results of
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Dörneret al (1998b), we obtain the azimuthally symmetric electron distribution they observed
for ion-axis alignments both parallel and perpendicular to the photon polarization axis. When
integrated over the alignment of an undetected ion axis for comparison with our (γ, 2e) data
and also the data of Schereret al (1998), we obtain an expression with two contributions: one
identical in form to the helium TDCS; and one with an angular distribution independent of the
photon polarization direction and proportional to the square of the difference in amplitudes for
parallel and perpendicular molecular excitation. The result is in good agreement with measured
ratios of the TDCS in D2 to that in He and helps to explain a surprising observed increase in
the ratios where the individual angular distributions vanish due to an exact parity-exchange
selection rule.

In this paper, we extend our earlier derivation of the molecular photofragmentation
amplitude (Feagin 1998) to include a fourth-order Wannier description of the electron-pair
continuum wavefunction and thereby obtain an approximateE1, E2 energy dependence of the
amplitudes for excitation parallel and perpendicular to the molecular axis. At the same time,
we attempt to exhibit the role of dynamical excitations internal to the electron pair. Berakdar
and Klar (1992) predicted, and Viefhauset al (1996) and Mergelet al (1998) demonstrated,
that PDI in helium with circularly polarized photons leads to a dichroism in the electron-pair
angular distribution, and that phase-sensitive probes of the internal electron-pair continuum
dynamics are possible (Berakdaret al 1993, see also Berakdar 1998, 1999). Thus, we also
extend our description of molecular photofragmentation to include dichroism, a topic with
a long and rich history in molecular physics, although we focus on the phenomenon as a
tool to probe few-body Coulomb dynamics. Finally, we present further technical details on the
comparison of our description with measured TDCS ratios in D2 and He and provide additional
experimental evidence for some of the conclusions we have drawn.

Our theoretical description of the outgoing electron pair is characterized by the collective
coordinates defined by the separation vectorR = r1−r2 and the centre-of-mass (CM) position
vectorr = 1

2(r1 + r2) of the ionized electron pair relative to the CM of the ion pair. These
vectors replace the usual position vectorsr1 andr2 of the electrons relative to the ion-pair CM,
so that the dipole excitation operator of the electron pair reduces to simplyε·r1+ε·r2 = 2ε·r.
We thus consider a photon absorbed by the electron-pair CM and describe the fragmentation
state of the system by a Wanniermomentumfunction of the detector coordinates

kr = k1 + k2 kR = 1
2(k1− k2)

kr = 2
√

1
2E +

√
E1E2 cosθ12 kR =

√
1
2E −

√
E1E2 cosθ12

(1)

conjugate tor andR. Herek1 andk2 are the conventional detector coordinates, i.e. the
momenta conjugate tor1 andr2, with mutual angleθ12 = cos−1(k̂1 · k̂2) and electron energies
Ei = 1

2k
2
i . Then,E = E1 +E2 is the system excess energy above threshold, an approximate

quantity defined by the ‘vertical transition’ from the molecular ground state to the ion-exploding
continuum state.

We will derive and express our results using vector methods independent of a particular
angular representation. Then, to derive the angular dependence of a cross section as a function
of kr , kR ork1, k2, we will only need the polar-angle representation of the momentum vectors
relative tolab-fixedaxes,

k̂i = sinθi cosφix̂ + sinθi sinφi ŷ + cosθi ẑ, (2)

wherei stands for any of the labelsR, r, 1 or 2.
We use atomic units throughout, except that we label energies in eV.
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2. Photoionization cross section

We retain the axial-recoil description of Feagin (1998) to write down an approximate transition
dipole moment describing the excitation and escape of the electron pair from the molecule.
We thus assume the ion-axis orientationRN is fixed during the quick escape of the electrons
from the instant of photon absorption to the resulting Coulomb explosion of the ion pair (cf
Zare 1988). We will generalize this description, however, to arbitrary electron energy sharing
E1 andE2 = E − E1 and to include circular dichroism. We thus consider just the Wannier
componentψW

krkR
of the electron-pair continuum stateψkrkR which has been photoexcited from

an electron-pair initial stateψi , and define the components of themolecular-frametransition
dipole moment according to (primes denote molecular-frame quantities)

µ′α ≡ 〈ψk′rk′R |x ′α|ψi〉 '
∑
K

〈ψk′rk′R |ψW
LK〉〈ψW

LK |x ′α|ψi〉, (3)

wherex ′α = r′ · ε′α is a component of the electron-pair CM vector along one of the molecular-
frame axesα = x ′, y ′, z′ with thez′ axis along the internuclear axisRN . HereL is the total
angular momentum quantum number of the electron pair, whileK is its projection quantum
number along the interelectronic momentum directionk̂R, |L·k̂R| ≡ K. Once we have rotated
the dipole moment from the molecular frame to the laboratory frameµ′ → µ, we obtain the
molecular PDI amplitude from simplyf (RN) = ε · µ for a given photon polarizationε.

If we take the final state〈ψk′rk′R | to be simply an outgoing plane-wave detector state, then
the overlap〈ψk′rk′R |ψW

LK〉 ' ψ̃W
LK(k

′
r ,k
′
R), i.e. the momentum-space representation (Fourier

transform) of the Wannier wavefunction. This momentum wavefunction then characterizes
for us the dependence of the cross section on the detector coordinateskr andkR. In particular,
the internal excitation amplitudescαK ≡ 〈ψW

LK |x ′α|ψi〉 from equation (3) depend only on the
excess energyE—fully independent of the momentakr andkR. The rotational symmetry of the
diatomic molecule aboutRN requires thatcx ′K = cy ′K ≡ c5K andcz′K ≡ c6K , where6 and5
are the conventional labels distinguishing excitations parallel and perpendicular, respectively,
to the molecular axis. In a partial-wave analysis,6 and5 also specifyperpendicularand
parallel projections, respectively, of the electron-pair angular momentum along the molecular
axis, |L · R̂N |. In principle, these amplitudes contain all initial state effects and the gauge
dependence. Rather than evaluate them here, however, we simply parametrize our results in
terms of their ratios.

Following Feagin (1998), we approximatẽψW
LK(k

′
r ,k
′
R) by the helium1Po momentum

distribution so thatK = 0, 1 and thereby consider excitation of the dominant1Se component
of the molecular ground state†. We thus obtain from fourth-order Wannier theory the simple
and useful geometrical form (see Feagin 1995, 1996, and also Dörneret al 1998a)

ψ̃W
L=1,K(k

′
r ,k
′
R) ∼ 3̃(kr , kR)×

{
−ε′α · k̂′Rk̂′R · k′r , K = 0

ε′α · k′r − ε′α · k̂′Rk̂′R · k′r , K = 1,
(4)

where 3̃(kr , kR) is an ‘internal’ momentum wavefunction. With this approximation the
molecular transition dipole moment equation (3) has the simple and useful form

µ′α ' 3̃(kr , kR)
(
cα1ε

′
α · k′r − (cα0 + cα1)ε

′
α · k̂′Rk̂′R · k′r

)
, (5)

so that if we define a diagonal dyadicC ′K with diagonal componentscx ′K = cy ′K = c5K and
cz′K = c6K , the molecular-framevectordipole moment can be written conveniently as

µ′ ' 3̃(kr , kR)
(
C ′1 · k′r − (C ′0 +C ′1) · k̂′Rk̂′R · k′r

)
. (6)

† Joy and Parr (1958) estimated the ground state components to be 95.8% s2 Se, 2.6% sd De, and 1.5% p2. See also
Bishop (1963).
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This notation facilitates rotation to the laboratory frame. The transformation is readily
accomplished without reference to Euler angles by noting that the molecular-frame diagonal
dyadicC ′K can be expressed asC ′K = c5K I + (c6K − c5K)R̂′NR̂′N , where I is the unit
dyad. Then, sinceR̂′N → R̂N under rotation to the lab frame,C ′K → CK = c5K I +
(c6K − c5K)R̂NR̂N under rotation. (Despite the form invariance,CK is nondiagonal.) It
follows that the lab-frame dipole momentµ is form invariant under rotation with all vectors in
equation (6) simply replaced by their ‘unprimed’ lab-frame counterparts. Hence, the molecular
photoexcitation amplitude for linear polarizationε is given by

f (RN) = ε · µ ' 3̃(kr , kR)
[
ε ·C1 · kr − ε · (C0 +C1) · k̂Rk̂R · kr

]
= 3̃(kr , kR)

[
c51ε · kr − (c50 + c51)ε · k̂Rk̂R · kr

+ ε · R̂N

(
1c1R̂N · kr − (1c0 +1c1)R̂N · k̂Rk̂R · kr

)]
(7)

where1cK ≡ c6K − c5K . We consider circular polarization below. The scalar product
k̂R · kr in this result makes clear that detectingkR⊥kr selectspureK = 1 internal excitation.
On the other hand, detectingkR‖kr selectspureK = 0 internal excitation. In general, the
electron pair occupies aK = 0, 1 mixture, although we might expect from studies of helium
(Dörneret al 1998a) in the 1–20 eV range that theK = 1 amplitudes dominate by roughly
a factor of three. Likewise, detectingRN⊥ε selectspure5 molecular excitation, whereas
detectingRN‖ε selectspure6 molecular excitation. As expected, equation (7) reduces to
the helium PDI amplitude (cf D̈orneret al 1998b) if one ignores6,5 differences and sets
c6K = c5K = cK .

Equation (7) is easily transformed to conventional detector coordinatesk1 andk2 using
equation (1). We thus recover not only the photoexcitation amplitude derived in Feagin (1998),

f (RN) = ε · µ = ε · g(1, 2, θ12) · k̂1 + ε · g(2, 1, θ12) · k̂2, (8)

where the dyadics are defined asg = g5I + (g6 − g5)R̂NR̂N , but also derive an approximate
dependence of the amplitudesg6, g5 on the electron-pair energy sharing,

gα(i, j, θ12) ' 3̃(E1, E2, θ12)
√

2Ei

[
cα1− Ei − Ej

2k2
R

(cα0 + cα1)

]
. (9)

(Note,k2
R = 1

2E −
√
E1E2 cosθ12 from equation (1).) As discussed above, detecting either

RN‖ε orRN⊥ε reducesf (RN) to a helium-like amplitude, eitherf → g6(1, 2, θ12)ε · k̂1 +
g6(2, 1, θ12)ε · k̂2 orf → g5(1, 2, θ12)ε · k̂1 +g5(2, 1, θ12)ε · k̂2. Both of these limits display
azimuthal symmetry about the polarization axisε. Although theRN‖ε limit is expected when
the azimuthally symmetric initial state is aligned alongε, theRN⊥ε limit is at first surprising
since the azimuthal symmetry is broken by the initial-state alignment. This result is of course
just an artifact of our description which considers excitation of only the dominant1Se ground-
state component. Nevertheless, the recent measurements of Dörneret al (1998b) support our
RN⊥ε limit.

Equations (7)–(9) give the correct kinematic dependence on the electron-pairvector
momenta for a helium-like1Se→ 1Po transition, although the internal wavefunction
3̃(kr , kR) ≡ 3̃(E1, E2, θ12) has not been derived for molecular fragmentation. The dynamical
Wannier saddle in the presence of the molecular axis is too complicated to warrant using the
fourth-order internal wavefunction derived for helium (Feagin 1995, 1996, see also Dörner
et al 1998a). We therefore simply replace the internal wavefunction with the conventional
Gaussian ‘correlation function’ predicted by second-order Wannier theory in helium. Namely,
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we use

|3̃(E1, E2, θ12)|2 ≡ G(E, θ12) ∼ exp

(
−4 ln 2

(π − θ12)
2

θ2
1/2(E)

)
(10)

with half-widthθ1/2(E). In the case of equal-energy sharing, this result has proven extremely
useful in parametrizing a variety of helium data even tens of eV above threshold. The Gaussian
wavefunction is a consequence of the harmonic bending motion of the electron pair relative to
the ion charge centre, a feature shared by both the atomic and the molecular potentials in lowest
order. Although we will not do so here, one might introduce separate correlation functions
G6 andG5 with differing half-widths for parallel and perpendicular excitations (cf Dörner
et al 1998b).

The square of the excitation amplitude|f (RN)|2 determines the four-body fragmentation
distributions. For example, if we integrate over all ion-axis alignmentsR̂N , we derive a TDCS
for just the electron pair relevant to the experiments discussed in section 4. (The cross section
is in fact quadruply differential because the Coulomb exploding ions have a small ‘Franck–
Condon’ spread in energy of 2–3 eV.) The integration overR̂N is straightforward with the
two identities

∫
R̂NR̂N dR̂N = 4π

3 I and
∫
(ε · R̂N)

2R̂NR̂N dR̂N = 4π
15 (I + 2εε). We thus

generalize Feagin (1998) again to arbitrary electron-pair energy sharing according to

TDCS[D2] ∼
∫
|ε · µ|2 dR̂N

4π

= 2
15|g6(1, 2, θ12)ε · k̂1 + g6(2, 1, θ12)ε · k̂2|2
+ 7

15|g5(1, 2, θ12)ε · k̂1 + g5(2, 1, θ12)ε · k̂2|2

+ 6
15Re

(
[g∗6(1, 2, θ12)ε · k̂1 + g∗6(2, 1, θ12)ε · k̂2]

× [g5(1, 2, θ12)ε · k̂1 + g5(2, 1, θ12)ε · k̂2]
)

+ 1
15|1g(1, 2, θ12)k̂1 +1g(2, 1, θ12)k̂2|2, (11)

where1g ≡ g6 − g5. In the limit g6 → g5, this result reduces as expected to the helium
cross section TDCS[He]= |g(1, 2, θ12)ε · k̂1 + g(2, 1, θ12)ε · k̂2|2.

We derive doubly differential cross sections (DDCS) for a single electron by integrating the
square of the excitation amplitude|f (RN)|2 from equation (8) or the TDCS from equation (11)
overeitherk̂1 or k̂2. For example, starting with equation (11) and integrating overk̂2, we derive
the familiar form

d2σ

dE1 dk̂1

= 1

4π

dσ

dE1

(
1 +β1P2(ε · k̂1)

)
, (12)

whereP2(ε · k̂1) is a second-order Legendre polynomial andβ1 the angular asymmetry
parameter. On the other hand, theRN -dependent DDCS derived from the square of the
excitation amplitude|f (RN)|2 from equation (8) can be generally expressed in terms of
P2(ε · k̂1) for only the two special geometriesRN‖ε orRN⊥ε. The former limit is a general
result, while the latter is a consequence of our model. In any case, detailed evaluation of
β1 requires a numerical integration because of the complicated angular dependence of the
amplitudesgα(i, j, θ12) (see D̈orneret al 1998b).

We derive anion angular distribution by integrating the square of the excitation amplitude
|f (RN)|2 from equation (8) overboth k̂1 andk̂2, although it is more straightforward to start
with |f (RN)|2 from equation (7) and integrate overk̂r and k̂R. Again, detailed evaluation
requires numerical integration. We can derive, however, a useful approximate expression for
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the ion angular asymmetry parameterβN by ignoring the weaker angular dependence of the
correlation functionG(E, θ12). The integrals are then easily performed with one of the dyadic
identities introduced above equation (11),

∫
k̂i k̂i dk̂i = 4π

3 I, and with some rearrangement we
obtain the familiar form (Dehmer and Dill 1978),

dσ

dR̂N

∝ |ε ·C0|2 + 2|ε ·C1|2 ∼ 1 +βNP2(ε · R̂N) (13)

whereβN = 2(D2
6 − D2

5)/(D
2
6 + 2D2

5) but nowD2
α ≡ |cα0|2 + 2|cα1|2. We compare this

quantity with experiment in section 4.

3. Circular dichroism

If the absorbed photon is circularly polarized then changing the polarization from left to right
ε+→ ε− is tantamount to reflecting the system in a vertical plane passing through the photon
propagation direction̂kγ , which we take to be the laboratorŷz axis withε± = 1√

2
(x̂ ± iŷ).

Consider the unitary reflection operator defined by

σv|x̂, ŷ, ẑ〉 = |x̂,−ŷ, ẑ〉 (14)

under which the dipole excitation operator transforms according to (σ †
v denotes adjoint)

ε+ · r = σvε− · rσ †
v . (15)

If we reflect for simplicity in the vertical plane defined bykγ and the molecular axisRN , then
the electron-pair initial state is unchanged under reflection,σv|ψi(R̂N)〉 = |ψi(R̂N)〉, and the
dipole excitation amplitude transforms as

fM(kr ,kR, R̂N) = 〈ψkr ,kR (R̂N)|εM · r|ψi(R̂N)〉
= 〈ψk′r ,k′R (R̂N)|ε−M · r|ψi(R̂N)〉 = f−M(k′r ,k′R, R̂N). (16)

Herek′r andk′R are the momentum vectors expressed along the reflected coordinate axes
and therefore with components{k′x, k′y, k′z} = {kx,−ky, kz}. Thus, changing the circular
polarization reflects the cross section in thex̂, ẑ plane, and equation (16) relates momentum-
space points on opposite sides of the plane. Of course, this result is not due to any intrinsic
chirality of molecular deuterium. Rather, the chirality of the photon is transferred to the
electron and ion pairs.

It is also clear that one requires at least three distinct directions to establish a handedness,
saykγ and two of the three vectorskR, kr , RN , or k1, k2, RN . Otherwise, the reflection
is degenerate with a rotational symmetry. For example, if one detects justk1 andk2, but
k1 = k2, or if all three vectorsk1, k2, andkγ lie in the same plane, then any reflection
σv can also be generated by a rotation aboutkγ . Likewise, states withkR perpendicular to
kr are also reflection–rotation degenerate. This case corresponds again tok1 = k2, since
kr · kR = E1 − E2 from equation (1). These degeneracies apply to helium as well as to
molecular deuterium. However, note that in helium one must detect both electrons to observe
dichroism, whereas in the molecule one could detect instead one of the ions and just one of the
electrons. In addition, ion-exchange symmetry in D2 simply means that the cross sections are
symmetric with respect toRN → −RN , analogous to the symmetry of singlet electron-pair
states under electron exchangekR → −kR in both the atom and the molecule. For example,
photofragmentation of molecular HD would break this symmetry, though the effect would be
very weak.

The dichroism arises from the fact that|f+1(kr ,kR,RN)|2 − |f−1(kr ,kR,RN)|2 is
generally nonvanishing, despite the reflection symmetry equation (16). (Note here one
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compares momentum points on the same side of the reflection plane.) Physically, the dichroism
means that the photon absorption rate and the resulting electron–ion or electron-pair detection
rates will differ if the ion and electron detectors are held fixed and the circular polarization
changed. We now relate this fact to coherent excitation of distinct dynamical symmetries.

With the excitation amplitude written asfM = εM · µ, the dichroism is defined by

1(RN) ≡ |f+1(kr ,kR,RN)|2 − |f−1(kr ,kR,RN)|2
= µ∗ · (ε∗+ε+ − ε∗−ε−) · µ. (17)

This expression is conveniently evaluated in terms of the dyadic

ε∗MεM = 1
2[x̂x̂ + ŷŷ + iM(x̂ŷ − ŷx̂)]. (18)

The cross term antisymmetric under reflectionŷ→−ŷ delivers the dichroism, while the first
term is reflection symmetric. Thus,

1(RN) = iµ∗ · (x̂ŷ − ŷx̂) · µ = i(µ∗ × µ) · k̂γ . (19)

Hence, dichroism is characterized by the pseudovector iµ∗ ×µ = 2Imµ×Reµ generated by
the transfer of the photon’s chirality to the electron and ion pairs.

To give an idea of the momentum dependence of this general expression, we consider
two limiting cases of our approximate dipole moment from equation (7). First, we integrate
equation (19) over all ion-axis alignmentŝRN to derive a helium-like dichroism relevant to
experiments which might detect only the electron-pair. The integration is straightforward with
just the single identity

∫
R̂NR̂N dR̂N = 4π

3 I, and we obtain∫
1(RN)

dR̂N

4π
= 2|3̃|2 Im (C∗0C1)kr · k̂R(k̂R × k̂r ) · k̂γ

= 2

k2
R

|3̃|2Im (C∗0C1)(E1− E2)(k1× k2) · k̂γ

= 4

k2
R

|3̃|2Im (C∗0C1)(E1− E2)
√
E1E2 sinθγ1 sinθγ2 sinφγ12, (20)

where we have usedkr · kR = E1−E2 andkR × kr = k1× k2 calculated from equation (1)
as well as the polar-angle representation of the momentaki=1,2 from equation (2) withz axis
alongk̂γ such thatφγ12 ≡ φγ1 − φγ2. Here Im(C∗0C1) ≡ 1

3Im (c∗50c51 + c∗50c61 + c∗60c51),
which reduces to Im(c∗0c1) in the helium-like limitc6K → c5K . Equation (20) is geometrically
identical to the helium dichroism derived by Berakdar and Klar (1992) and studied by Berakdar
et al (1993), although it differs in the energy-dependent factorsk−2

R |3̃(E1, E2, θ12)|2(E1 −
E2)
√
E1E2, which derive from the fourth-order Wannier theory. The result makes clear that

a nonvanishing dichroism in helium requires mixed internalK symmetries corresponding to
excitationskr alongkR (K = 0) and perpendicular tokR (K = 1) (see also Berakdar 1998,
1999). In addition, it shows that the dichroism is strongest whenkr andkR (or k1 andk2) lie
in the same plane withεM , so thatkR × kr (or k1× k2) is parallel tok̂γ . As discussed above,
the chirality and hence the dichroism vanish when the fragmentation no longer defines three
distinct directions and therefore when any of the three vectorskr ,kR, k̂γ (or k1,k2, k̂γ ) are
parallel.

As a final example, we consider equation (19) for equal energy electrons. This case is
interesting because the dichroism vanishes in helium whenE1 = E2 (cf equation (20)). The
transition dipole momentµ from equation (7) simplifies considerably whenkr · kR = 0, and
one easily obtains

1(RN) = 2|3̃|2Im (c∗51c61)kr · R̂N(R̂N × kr ) · k̂γ
= 2EG(E, θ12)Im (c∗51c61)(k̂1 + k̂2) · R̂N

[
R̂N × (k̂1 + k̂2)

]
· k̂γ . (21)
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Note that here, unlike in helium and in the helium-like result equation (20), only pureK = 1
internal excitation enters. To emphasize the role of ion detection, we can integrate this result
overk̂2 to correspond to detection of just one electron. (As mentioned already, a nonvanishing
dichroism in helium requires detection of both electrons.) The integration is best performed by
taking thez axis alongk1, so that the correlation functionG(E, θ12) is azimuthally symmetric.
It is then straightforward to show that

∫
1(RN) dk̂2 ∝ k̂1 · R̂N(R̂N × k̂1) · k̂γ → 1

2 sin 2φγ1

for k1 andRN separated by the (azimuthal) angleφγ1 in a plane perpendicular tokγ . This is in
fact the plane defined by our electron-pair analyser, the description of which we now turn to.

4. Experiment

We specialize our molecular electron-pair cross section equation (11) to the case of equal
energy sharingE1 = E2 ∼ 10 eV relevant to our experiments and obtain

TDCS[D2] ∼ 4
15π

[
2|g6|2 + 7|g5|2 + 6Re(g∗5g6)

]
(ε · k̂1 + ε · k̂2)

2

+ 4
15π |g6 − g5|2|k̂1 + k̂2|2. (22)

We thus recover the expression derived in Feagin (1998), but now identifygα(E1 = E2, θ12) '√
EG(E, θ12) cα1. The first term on the right-hand side of this result is proportional to the equal-

energy helium cross section TDCS[He], while the second term is clearly a molecular correction
dependent on just the mutual momentum angle,|k̂1 + k̂2|2 = 4 cos2 1

2θ12, independent of the
polarization vectorε. This change in relative azimuthal symmetry about the polarization axis
ε is manifest in a relaxing of selection rules which have been established foratomic PDI
(Maulbetsch and Briggs 1995). These rules require that the helium TDCS is identically zero
in the following situations for a1Po (M = 0) electron-pair final state: (a) whenk1⊥ε and
k2⊥ε, (b) whenk̂1 · ε = −k̂2 · ε, and (c) whenk1 = −k2†.

Rules (a) and (b) are subtle consequences of parity and exchange symmetry of the electron
pair and are clearly relaxed in the presence of the additional axisRN leading to the molecular
correction term in equation (22) independent ofε. Rule (b) results in a null first term on the
right-hand side of equation (22)—the helium-like contribution—fork2 anywhere on the conical
surface shown in figure 1. Rule (c) on the other hand is a straightforward consequence of parity
and exchange symmetry and holds even in the molecule for ungerade, singlet final states. This
rule, corresponding to back-to-back electron emission, results in a null molecular cross section
along the linek2 = −k1 on one side of the cone in figure 1. As we have shown (Feagin 1998),
the failure of rule (b) in the molecular correction term has measurable consequences in the
vicinity of back-to-back emission (i.e. nearθ12 = 180◦ for coplanar detection geometry) due

Figure 1. A diagram of the conical surface defined byk̂2 · ε = −k̂1 · ε on which the helium
TDCS vanishes identically from selection rule (b) discussed in the text. This surface, also given by
θ2 = π − θ1, includes the exact node from parity and exchange considerations for ‘back-to-back’
electron emissionθ12 = π .

† Note rule (a) holds for all final electron energies, while rules (b) and (c) hold for equal-energy electrons only.
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to the finite detection solid angles resulting in electron collection across a finite portion of the
cone defined by rule (b). As we will show here, the lack of a node in the molecular correction
term on the opposite side of the cone fromk2 = −k1 (top of the cone in figure 1) also results
in a significant increase in the measured molecular TDCS in this angular region in comparison
to helium.

For reasons of brevity, the procedures involved in applying the theory to an experimental
geometry were only mentioned in Feagin (1998). We therefore present the important details
here, not only to make our analysis clear, but also to assist in the theory’s application to
future measurements. We first consider integration of the cross section equation (22) over the
acceptance solid angles defined by our detector. The projectionsε · k̂i in equation (22) are
generally expressed as cosθi in the conventional spherical polar co-ordinate system withz

axis along the polarization axis. Our toroidal analysers, however, are axially symmetric about
the photon propagation directionkγ and define a detection ‘plane’ perpendicular to it (see
Reddishet al 1997b for full details). Therefore integrals over the acceptance solid angles of
the detector are more readily performed in a spherical polar co-ordinate system withz axis
alongkγ . Then, electron pairs passing into the detector have polar anglesθγ1 ' θγ2 ' 90◦

within the range± 1
2δθγ defined by the analyser’s entrance geometry, which is assumed to be

constant for all azimuthal anglesφγ1 andφγ2 (0◦ to 360◦) aboutkγ . The geometrical upper
limit for δθγ is 20◦ (± 1

2δθγ = ±10◦), but electron optical simulations indicate that a somewhat
smallerθγ -angular acceptance is transmitted through the analyser, somewhere between 14◦

and 20◦ depending on the actual tuning conditions.
We analytically evaluate theθγ i integrals over the detector slit with a peaking

approximation to the Gaussian correlation functionG(E, θ12). With θγ1 = θγ2 = 90◦, the
projectionsε · k̂i = cosφγ i . We thus setG(E, θ12) = G(E, |φγ12 ≡ φγ1 − φγ2|) and simply
remove it from the integrals. We then obtain for the helium-like contribution(ε · k̂1 + ε · k̂2)

2

to equation (22)

T1(φγ1, φγ2) = (cos2 φγ1 + cos2 φγ2)
[

4
3(2 + cos2 1

2δθγ ) sin2 1
2δθγ

]
+1

2 cosφγ1 cosφγ2(δθγ + sinδθγ )
2. (23)

As desired, this result reduces toδθ2
γ (cosφγ1 + cosφγ2)

2 in the small-slit approximation.
(Consequently, theθγ i integrations have little effect on the shape of the angular distributions in
helium.) Likewise, we obtain for theθγ i integrations of the molecular-correction contribution
|k̂1 + k̂2|2 = 4 cos2 1

2θ12 to equation (22)

T2(φγ1, φγ2) = 2 sin2 1
2δθγ + 1

8 cos(φγ1− φγ2)(δθγ + sinδθγ )
2. (24)

Although we find these analyticθγ i integralsT1 andT2 to be suitably accurate, it was necessary
to perform the finalφγ i integrations numerically. Our spectrometer’sφγ angular resolution
was quoted in Wightmanet al (1998) for the data presented there as±2.5◦ with angular ‘bins’
of 17◦ and 10◦ for the two analysers. Theφγ1 andφγ2 integrals for the data presented here
have full-widths of 22◦ and 16◦, slightly broader than—but in keeping with—the previously
quoted values. They were chosen to reproduce the degree of ‘filling-in’ of the node in the
measured helium angular distributions. We denoteT1 andT2 integrated overφγ i asT̄1 andT̄2.

Finally, the quantitiesT̄1 and T̄2, fully integrated over detection solid angles, can be
combined in the usual way to take into account the degree of linear polarization, namely
TDCS∝ 1+S1

2 TDCSx + 1−S1
2 TDCSy in terms of the Stoke’s parameterS1 (Schwarzkopfet al

1993).
The ratio of angular distributionsTDCS[D2]/TDCS[He] emphasizes their difference,

which as figure 2(a) demonstrates is most pronounced in the regionθ12 = 180◦. This peak in
the ratio occurs in an angular range where TDCS[D2] and TDCS[He] are both very small, as
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Figure 2. (a) Ratio of the D2-to-He coincidence yield as
a function of the electron-pair mutual momentum angleθ12
from the data of Wightmanet al (1998) forθ1 = 115◦. The
solid curve shows the corresponding ratios computed from the
theoretical fits from equation (25). The dotted curve under the
peak shows the ratio of the two Gaussian correlation functions
used for D2 and He. (b) The helium and (c) the D2 TDCS
data from Wightmanet al (1998) withE1 = E2 ' 10 eV and
Stoke’s parameterS1 = 0.67±0.03. The helium fit includes a
Gaussian correlation function with half-widthθ1/2 = 91◦±3◦.
The D2 fit is from equation (22) with a ratioη = g5/g6 =
−2.1 and correlation function half widthθ1/2 = 76◦±3◦. Both
fits include integration over detection solid angles, as discussed
in the text.

figures 2(b) and (c) show, which explains the relatively large error bars. Collecting results, we
can express this ratio as

TDCS[D2]

TDCS[He]
∼ GD2(|φγ12|)
GHe(|φγ12|)

[
1 +C(η)

T̄2(φγ1, φγ2)

T̄1(φγ1, φγ2)

]
, (25)

whereφγ12 ≡ φγ1− φγ2 andη ≡ g5/g6 = c51/c61 with

C(η) ≡ 4|1− η|2
2 + 7|η|2 + 6 Reη

. (26)

Note that whenη = 1 corresponding tog5 = g6 ,C(1) = 0 and the molecular-correction term
vanishes from equation (25), leaving us with simply the ratio of the two Gaussian correlation
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functions. The quantitiesη andC(η) are generally complex valued, although we assume
both to be real here for simplicity. Using all three data setsθ1 = 98◦, 115◦, and 132◦ from
Wightmanet al (1998) and theφγ i-angular acceptances given above, we obtain a best fit to
the ratio data in figure 2(a) with δθγ = 18◦ ± 1◦ andC(η) = −1.9± 0.4, which corresponds
to η = −2.1± 0.5 orη = +0.01± 0.05†. These values were used to produce the other curves
in figure 2.

We can also relate the ratioη to the ion angular asymmetry parameter from equation (13)
via the approximation

βN ' 2(1− |η|2)
1 + |η|2 or |η|2 ' 2− βN

2(1 +βN)
, (27)

where we have assumed that1
2|cα0/cα1|2 � 1, since analysis of helium data forE = 20 eV

has shown thatc0/c1 ∼ 1
3 (Dörneret al 1998a). Thus, the valueη = +0.01±0.05 determined

in the above fit implies a negligibleg5 amplitude withβN ' +2, values which are inconsistent
with the ion distributions measured by Kossmannet al (1989), who obtained the result
βN = −0.71± 0.05 at a photon energy of 71 eV. (Dörneret al 1998b obtained the value
βN = −0.60± 0.05 at a photon energy of 58.8 eV.) However, the other valueη = −2.1± 0.5
determined in the above fit corresponds toβN = −0.69 ± 0.13, which is in good agreement
with the Kossmann result. We find this correspondence satisfactory despite the approximations,
as a more accurate fit by the above procedure would be inherently difficult because the analysis
depends on the ratio of two ‘null’ signals. This demonstrates that within the assumptions of our
approximation, one can use the measuredβN values to determine the ratiog5/g6 at different
photon energies. The ratio peaks around +2.3 for photon energies near the nominal double
ionization threshold of 51.1 eV and gradually falls off at higher photon energies to about +1.5
at 100 eV. This trend might serve as a rough prediction for future (γ, 2e) measurements and
it will be interesting to compare them with future theoretical and experimental studies of both
equal and unequal electron energy sharing.

Arguably, the most important evidence in support of our description comes from examining
other consequences of the molecular-correction term in the TDCS. Given a ratio ofg5/g6 '
−2.1 with our kinematic conditions, we can use equation (22) (which includes the assumption
that the correlation half-widthθ1/2 is the same for bothg5 andg6 amplitudes) to examine the
shape of the TDCS at otherθ1 (= φγ1) angles. The amplitudes of the two characteristic lobes
are a sensitive function ofθ1 as well as of the degree of linear polarizationS1. The effect of
the molecular correction term is to dramatically alter the relative intensity of the two lobes as
a function ofθ1 in comparison to that of helium. This is particularly evident atθ1 = 144◦, an
angle where the TDCS had been measured earlier (Reddishet al 1997a). The comparison of
the TDCS, using both atomic and molecular descriptions but with the same correlation function
half-widthsθ1/2 = 76◦, is shown in figures 3 and 4.

Figure 3(a) shows a polar plot of the Gaussian correlation functionGwith a 76◦ half-width
along with the He and D2 angular functions defined byTDCS[He]/G andTDCS[D2]/G. The
helium distribution is symmetric about the polarization axis while the D2 distribution is clearly
skewed by the additional molecular correction term. The product of the correlation function
and the two angular functions is shown in figure 3(b). The marked increase in amplitude
of the smaller lobe along the polarization direction is a consequence of the relaxation of the
selection rules we have discussed. As seen in figure 4, this prediction is in good agreement
with earlier data, which were taken withS1 = 0.67± 0.03. This supporting evidence for our

† Noteη as function ofC is double valued, and we therefore include theη > 0 value, although our own partial-wave
analysis indicates thatη < 0 is expected.
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Figure 3. (a) A polar plot for θ1 = φγ1 = 144◦ of the Gaussian correlation function
G(E, |φγ1−φγ2|)with half-widthθ1/2 = 76◦ (dash-dot) and the helium (dot) and D2 (solid) angular
distributions defined byTDCS[He]/GandTDCS[D2]/G. With an amplitude ratiog5/g6 = −2.1,
the D2 function no longer has symmetry about the polarization axis along the horizontal. (b) A
polar plot of the product of the angular distributions and the correlation function with 76◦ half-width
for D2 (solid) and He (dots), representing the TDCS with 100% linear polarization. The solid line
indicates theθ1 angle and the dashed line shows the position of the extra node in helium which
effectively suppresses the TDCS betweenφγ2 = π ± φγ1.

Figure 4. Measured (γ, 2e) D2 TDCS forE1 = E2 ∼ 10 eV with
Stoke’s parameterS1 = 0.67± 0.03 from Reddishet al (1997a).
The solid and dotted curves are the molecular and atomic forms
of theTDCS, respectively, with the same 76◦ correlation-function
half-width. Both curves include integration over detection solid
angles and are normalized at their peak values.

molecular photofragmentation description also suggests that the correlation half-width is not
too dissimilar for theg5 andg6 amplitudes at these kinematic conditions.

5. Conclusion

We have presented a helium-like description of PDI of molecular deuterium—or hydrogen—
for both linearly and circularly polarized photons and therefore for circular dichroism in
the angular distribution of the ions and electrons. Our simple approach affords an angle-
free representation of the cross section that exhibits explicitly its dependence on the electron
momenta and the ion-axis orientation, as well as the amplitudesg6 andg5 for electron-pair
excitation parallel and perpendicular to the molecular axis. By connecting with a fourth-order
Wannier description of the electron-pair continuum wavefunction, we derive an approximate
dependence of these amplitudes on electron energy sharing and a dynamical quantum number
K to classify the internal excitations of the electron pair. The description has thus shown
considerable consistency with recent (γ, 2e) and ion-electron experiments.

Our model is based on the dominant (95.6%) Se component of the molecular ground state
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and neglects entirely higher-order multipoles, although experimental observations to date do
not rule them out and recent calculations by Walter and Briggs (1999) show evidence for
them with small additional structures in the TDCS. Their 5C calculations of the fragmenting
four-particle molecular state are in full analogy with 3C calculations of helium PDI and are
likely to become the ‘virtual reality’ of molecular PDI. The higher-order multipoles may also
account for the observed narrowing of the characteristic lobes in the angular distributions,
also seen in the results of Walter and Briggs. While our model’s angle-independent simplicity
might survive inclusion of the next strongest (2.6%) De component, systematic inclusion of
higher multipoles would likely require a more traditional approach involving a full partial-wave
analysis.

We have assumed that the correlation function half-widthθ1/2 is the same for both
amplitudesg6 andg5. Although this approximation seems acceptable when examining the
shape of the angular distribution in the vicinity of the node atθ12 = π , where the correlation
functions are peaked, it becomes questionable when considering the overall shape of the TDCS.
Extensions of our description might therefore include construction of a Wannier wavefunction
for an ion pair with the ground-state separation of the molecule and an electron pair with
outgoing components parallel and perpendicular to the ion axis.
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