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Electron-pair excitations in the molecular hydrogen continuum are described by quantizing rotations of

the momentum plane of the electron pair about the pair’s relative momentum. A heliumlike description of

the molecular photodouble ionization is thus extended to higher angular momenta of the electron pair. A

simple three-state superposition is found to account surprisingly well for recent observations of non-

coplanar electron-pair, molecular-axis angular distributions.
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One of the surprises of early observations of photodou-
ble ionization of molecular hydrogen was the close simi-
larity with the corresponding electron-pair angular
distributions well established in helium, especially for
relatively low-energy electron pairs [1]. The helium
(free-atom) double ionization angular distributions, viz.,
the triple differential cross sections (TDCS), have a re-
markably simple form for equal-energy ejected electrons,
namely,

TDCS � j�̂ � k1 þ �̂ � k2j2 ¼ j�̂ � kþj2; (1)

with �̂ the photon polarization. Here "kþ ¼ "k1 þ "k2 is
the momentum of the photoejected electron-pair center of
mass. The simplicity of this result derives from the under-
lying 1Se ! 1Po dipole excitation. In molecular dipole
excitation, the geometry of the molecule naturally resolves
the photon polarization into components parallel (�) and
perpendicular (�) to the relative momentum direction
K� � ðK1 �K2Þ=2 of the Coulomb-exploding ion pair
[2], so that

�̂ ! �� þ �� ¼ sin�N�̂� þ cos�NK̂�; (2)

with cos�N � �̂ � K̂�. Thus, with the heliumlike amplitude
�̂ � kþ from Eq. (1), one obtains an approximate molecular
double ionization distribution or fully differential cross
section (FDCS) for equal-energy ejected electrons accord-
ing to

FDCS ¼ ja� sin�N�̂� � kþ þ a� cos�NK̂� � kþj2; (3)

where the a� are undetermined dipole amplitudes internal
to the molecule but independent of the momenta of the
ionization fragments. This expression helps to explain the
observed close similarity of low-energy helium and mo-
lecular hydrogen angular distributions. It is readily ex-
tended to unequal energy sharing and thus gives
remarkably good fits to a variety of data, especially for
coplanar geometries with respect to the ion- and electron-
pair momenta and photon polarization.

Gisselbrecht et al. recently identified, however, equal-
energy-sharing electron-pair configurations in the molecu-
lar fragmentation for which the heliumlike description
categorically fails [3]. Their observations follow from ear-
lier experiments by Weber et al. [4]. These anomalous
angular distributions are noncoplanar and occur when
one electron is observed perpendicular to the plane of the
other and the polarization direction with the ion-pair di-
rectionK� either parallel or perpendicular to the polariza-
tion. Gisselbrecht et al. termed these and related
configurations frozen correlation, since the electron-pair

angular separation k̂1 � k̂2 is held fixed in all three cases.
Parallel to these experimental achievements and in-

sights, the community has seen decisive advancement in
the ab initio computation of Coulomb few-body fragmen-
tation, in particular, from two groups, one using a time-
independent close-coupling approach with exterior com-
plex scaling (ECS) [5] and one using a time-dependent
close-coupling approach (TDCC) [6]. Their abundant ‘‘vir-
tual data’’ are in excellent agreement in both magnitude
and angular distribution with a wide variety of experimen-
tally measured cross sections for both the coplanar and
noncoplanar geometries. Results of the TDCC calculation
[6] for these three distributions are shown in Fig. 1 and
when folded over the experimental angular acceptances
agree well with experiment (see the insets).
For each of these three configurations, one readily sees

that Eq. (3) predicts the same simple k2 angular distribu-

tion of one electron, namely, FDCS� ð�̂ � k̂2Þ2 � cos2�2
with respect to a laboratory zL axis along �̂ and a yL axis
along k1 of the other electron held fixed perpendicular to
the k2, �̂ plane. Thus, although Fig. 1(a) with ion-pair
direction K� held fixed along k1 shows good agreement
with the heliumlike cos2�2 description, Figs. 1(b) and 1(c)
show increasing deviations which become especially
strong in Fig. 1(c) with K� held fixed along �̂.
One is thus lead to reconsider the heliumlike description

of molecular fragmentation and the role of higher angular
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momentum contributions to the electron pairs. In the mo-
lecular ground state, the electron-pair total angular mo-
mentumL ¼ l1 þ l2 is not a good quantum number, so the
heliumlike dipole selection rule 1Se ! 1Po generalizes to
1Se; 1Pe; 1De; . . . ! 1Po; 1Do; 1Fo; . . . (the exchange and
parity dipole selection rules remain the same).

Based on our longtime experience with electron-pair
excitations in helium and H�, it turns out to be advanta-
geous—perhaps surprisingly so—to define states of total L
by quantizing rotations of the momentum plane of the
electron pair, depicted in Fig. 2, based on a z axis along
their relative momentum direction k� ¼ ðk1 � k2Þ=2.
One thus introduces symmetric-top wave functions
~DL
Mmðk̂�Þ defined by projections "m ¼ L � k̂� and "M ¼

L � ẑM, where ẑM is a molecular-frame z axis, which we
will take here to be along the ion-pair relative momentum
direction K�.

One thus constructs electron-pair momentum states of
definite LS�e symmetry for L � 1 according to

~cMð2Sþ1L�Þ ¼ ~��ðkþ; k�Þ
� ½ ~DL

M�ðk̂�Þþ�eð�ÞLþ� ~DL
M��ðk̂�Þ�; (4)

where � � jmj. Here ~��ðkþ; k�Þ is an internal state of the
electron pair that describes only the relative orientation of
the pair within the rotating k1, k2 plane and thus depends

on kþ, viz., kþx and kþz � kþ � k̂�, and the magnitude
k� ¼ jk�j only.
In the case of dipole-allowed molecular fragmentation

with linearly polarized photons in the axial-recoil approxi-
mation [2], we have the selection rules 1�þ

g ! 1�þ
u , with

� � jMj ¼ 0; 1 only, and therefore to consider just the two
sets of states 1�þ

u and 1�þ
u for any given L. We thus

require the electron-pair states in Eq. (4) all to have un-
gerade (u) molecular symmetry and therefore �e ¼ odd.
We also require an additional even (þ) symmetry with
respect to reflections at any plane throughK� [7]. We find

that the states in Eq. (4) reflect according to ~cM !
�eð�ÞLþM ~c�M. Thus, the dipole-allowed � � jMj ¼ 0
1�þ

u states have L ¼ odd only. In particular, the 1�þ
u states

with L ¼ even are dipole forbidden. For �> 0, we intro-
duce the usual ‘‘�-doublet’’ linear combination

~c�þ ¼ 1ffiffiffi
2

p ½ ~c � þ �eð�ÞLþ� ~c���; (5)

which has even reflection symmetry for all L.
Although the analytic form of the internal wave function

remains unknown (the few-body Coulomb problem re-
mains unsolved), the decomposition of electron-pair states
into symmetric-top wave functions has been used with
good success to interpret and correlate a variety of ob-
served dynamical symmetries and propensity rules in the
doubly excited spectrum of helium and H� both above and
below the double ionization threshold [8].
For example, one can show quite generally [9] that the

internal states have an inversion symmetry and therefore

nodes as a function of kþz ¼ kþ � k̂�, viz., ~��ð�kþzÞ ¼
�eð�ÞSþ� ~��ðkþzÞ, so that in the case of equal energy
sharing of interest here with kþ � k� ¼ E1 � E2 ¼ 0,
the dipole-allowed (singlet, �e ¼ odd) internal states

FIG. 2 (color online). Rotating k1, k2 plane of an ejected
electron pair following the photofragmentation of molecular
hydrogen. Here kþ ¼ k1 þ k2 and k� ¼ ðk1 � k2Þ=2 refer to
the electron pair andK� ¼ ðK1 �K2Þ=2 to the ion pair. The top
three insets illustrate the three frames of reference used in the
text. Left to right: Laboratory, molecular, and electron-pair.
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FIG. 1 (color online). H2 photodouble ionization cross sec-
tions computed using time-dependent (TDCC) [6] and time-
independent (ECS) [5] close coupling as a function of the
orientation �2 of the momentum direction k2 of one electron
relative to a laboratory zL axis along the polarization direction �̂
for 25 eV electron pairs with equal energy sharing. In each plot,
the momentum direction k1 of the other electron is aligned along
a yL axis perpendicular to the k2, �̂ plane. The three plots (a),
(b), and (c) thus show three orientations �N , �N of the ion-pair
direction K� along the three axes yL, xL, and zL, respectively.
The polar-plot insets show a folded comparison with the experi-
mental measurements of Gisselbrecht et al. [3].
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with � ¼ even vanish identically, i.e., ~��¼evenðE1 ¼
E2Þ � 0, for a given L � �. For unequal energy sharing,
these states will be weakly populated, and we have an
example of a propensity rule.

We are now in a position to generalize to L > 1 electron
pairs the heliumlike description of molecular fragmenta-
tion embodied in Eq. (3) by combining allowed 1�þ

u and
1�þ

u states. We thus define dipole-allowed momentum
states of an electron pair ejected into the molecular con-
tinuum according to

~c ¼ X

L�1

X

��L

aL�� sin�N ~c�þð1L�Þ

þ a2L�1;�� cos�N ~c �þð1½2L� 1��Þ; (6)

where the aL�� are undetermined dipole amplitudes de-
scribing the internal molecular excitation dynamics but
independent of the momenta of the ionization fragments.
Here, without loss of generality, we have taken the polar-
ization �̂ to lie in the molecular x̂M, ẑM plane, so that

cos�N ¼ K̂� � �̂ as before.
To connect our expansion Eq. (6) with Eq. (3), it is

convenient to express the symmetric-top wave functions
~DL
��ðk̂�Þ in an angle-independent fashion in terms of the

direction cosines x̂M � x̂, ŷM � ŷ, ẑM � ẑ, etc., connecting the
molecular and the electron-pair frames. Along with a z axis
along k�, it is convenient here for equal energy sharing
kþ � k� ¼ 0 to take the electron-pair-frame x axis along
kþ and thus the y axis along k� � kþ ¼ k1 � k2 (see
Fig. 2). We keep the molecular-frame zM axis along K�
with ẑM ¼ K̂� ¼ �̂� and take x̂M ¼ �̂� [cf. Eq. (2)], so

that ŷM ¼ K̂� � �̂�.
With the frame axes thus defined in terms of the mo-

mentum vectors, we obtain the first three L contributions to
Eq. (6) in a form analogous to Eq. (3) describing the
dipole-allowed molecular states of the equal-energy
electron-pair continuum according to

~c ð1P1Þ�a1�1 sin�N�̂� �kþþa1�1 cos�NK̂� �kþ;
~c ð1D1Þ�a2�1 sin�Nð�̂� �kþ�2K̂� � k̂�ŷM � k̂��kþÞ;
~c ð1F1Þ�a3�1 sin�Nf½15ðK̂� � k̂�Þ2�1��̂� �kþ

�10K̂� � k̂�ŷM � k̂��kþg
þa3�1 cos�N½1�5ðK̂� � k̂�Þ2�K̂� �kþ; (7)

where we have dropped miscellaneous normalization con-
stants. We have also introduced the analytic (Wannier)
threshold limit E1 ¼ E2 ¼ E=2 ! 0 [9] for the internal

wave functions ~��¼odd � k�þ � E�=2, which suggests the
1F�¼1 state is favored in the low-energy spectrum over the
allowed 1F�¼3 mode, which will be presented elsewhere.

Recall that the 1P�¼0 as well as the
1D�¼0;2 contributions

are internal-inversion forbidden for equal energy sharing.
These results are readily applied to the frozen-

correlation (fixed k̂1 � k̂2) configurations of Fig. 1 defined

relative to a laboratory zL axis along the polarization
direction �̂ and a yL axis along the momentum direction
k1 of one electron held fixed perpendicular to the k2, �̂
plane of the other. Superposing the three states in Eq. (7)
thus gives the generalization of the molecular fragmenta-
tion distribution Eq. (3) according to

FDCS ¼ Ncos2�2j1þ Bð�N;�NÞsin2�2j2; (8)

with cos�2 ¼ �̂ � k̂2. Here N is a normalization constant,
while Bð�N;�NÞ is a ratio involving the various amplitudes
aL�3;�1 but independent of �2.
For the configuration in Fig. 1(a) with K� held fixed

parallel to k1 along the yL axis, we thus find in fact that
B � 0, so that Eq. (8) reduces to the pure cos2�2 depen-
dence observed [10]. For the configurations in Fig. 1(b)

with K̂� ¼ x̂L and in Fig. 1(c) with K̂� ¼ ẑL ¼ �̂, we find
that B / a3�1 and B / a3�1, respectively, giving the addi-
tional sin2�2 dependence in Eq. (8). In Fig. 1(c), for the
pure 1�þ

g ! 1�þ
u transition, there is no 1D�¼1 contribution

[11]. We have thus fitted Eq. (8) to the TDCC calculations,
and Fig. 3 demonstrates that our rather simple three-state
superposition captures surprisingly well the experimen-
tally observed and ab initio close-coupling results from
Fig. 1 [12].
The appearance of the axial vector k� � kþ ¼ k1 � k2

and the resulting pseudoscalar ŷM � k̂� � kþ in the de-
scription of the molecular state Eq. (7) is a new feature of
the L > 1 electron-pair continuum that is not observed in
atoms. This special class of molecular fragmentation dis-
tributions was recently predicted in general terms [13].
Thus, it would be of interest to try to isolate the axial-
vector contributions k� � kþ experimentally. Inspection
of Eq. (7) shows that these arise in the � excitation only
and could therefore be extracted by fixingK� ? �̂, so that
cos�N ¼ 0, while selecting electron pairs with kþ ? �̂.

From Eq. (7), one then obtains ~c ð1P1 þ 1D1 þ 1F1Þ �
K̂� � k̂�ŷM � k̂� � kþ, as desired. To fix kþ ? �̂, one
might start with the configuration in Fig. 1(b) with the zL
axis along �̂ and the xL axis along K̂� (so that ŷL ¼ �ŷM)
and as depicted in Fig. 4 drop k1 in the yL, �̂ plane behind
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FIG. 3 (color online). Fits (solid curves) using Eq. (8) and thus
a three-state superposition 1P�¼1 þ 1D�¼1 þ 1F�¼1 from Eq. (7)

to the H2 photodouble ionization cross sections in Figs. 1(b) and
1(c). The dashed curves show the TDCC result from Fig. 1.
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k2 in the K̂�, �̂ plane taking �1 ¼ �� �2. To maintain a
frozen-correlation configuration, one can then sweep the

electron pair azimuthally about �̂ keeping k̂1 � k̂2 fixed
by varying the azimuthal angles �1, �2 of k1, k2 together
with �1 ¼ �2 þ �=2. One then obtains the angular de-

pendence K̂� � k̂�ŷM � k̂��kþ�cos�2sin
2�2 cos2�2 and

thus a unique four-lobe angular distribution as a function of
�2 [14].

In Fig. 4, we present evidence for this special configu-
ration in the molecular fragmentation cross section cal-
culated with the TDCC theory. One thus finds good agree-
ment with the predicted cross section FDCS� cos22�2

from the axial-vector contributions to Eq. (7). Besides
being relatively weak, we find the distribution to be sensi-
tive to folding over experimental angular acceptances
(compare with the insets in Figs. 1 and 3), which quickly

mixes back in the competing �̂� � kþ and K̂� � kþ distri-
butions from Eq. (7) and tends to wash out the four-lobe
structure.

Our molecular fragmentation description embodied in
Eq. (6) might also be viewed as a judicious resummation of
the expansions of the transition amplitudes used in the
close-coupling approaches [5,6] based on pairs of one-

electron harmonics Yl1m1
ðk̂1ÞYl2m2

ðk̂2Þ [15]. The frozen-

correlation configurations we have examined here with

fixed k̂1 � k̂2, especially out of the K̂�, �̂ plane, have
proven to be a strong test of the convergence of these
approaches. (Typically, �100 channels are needed.) The
usefulness of the electron-pair modes defined in Eq. (4) is
in the compact description of the continuum spectrum they
afford even for frozen-correlation configurations. The

same modes should in principle describe any low-energy
electron-pair continuum, once appropriately symmetrized.
Different systems would require only different sets of
mixing coefficients aL��. One might hope to thus establish
a robust tool for analyzing a variety of experimental data
including modeling of electron pairs ejected from more
complex molecules and even surfaces and solids, for which
ab initio calculations may not exist for some time.
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FIG. 4 (color online). An electron-pair angular distribution for
fixed k̂1 � k̂2 looking down a zL axis along �̂ onto the x̂L ¼ K̂�,
ŷL plane as a function of the azimuthal orientation �2 of the pair.
Here k2 and k1 are oriented above and below, respectively, the
K̂�, ŷL plane (cf. 3D inset) with fixed polar angles �2 ¼ �=4
and �1 ¼ �� �2 while varying �2 along with �1 ¼ �2 þ �=2.
The solid four-lobe curve is the resulting cos22�2 distribution
predicted from the axial-vector contributions to Eq. (7), arbi-
trarily scaled to a TDCC calculation shown with the dashed
curve. The circle radius equals 0:03 b=sr2 eV.
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