
128

+ −
= < > < = > =

+ + − − < < > > = = =
+ = − = = = = = = =
< < = > > = − > − >

* / % ^ |& |
~ ! ,

! && ||
* / % ^ & |
[] () * new delete

Chapter VIII

Operator Overloading
Operator overloading simplifies the code needed for object manipulation. For example

instead of writing A.add(B) where A and B are instances of a class Matrix one can simply write
A+B. This simplifies extensively programming using classes. Being able to extend the use of most
operator to objects gives C++ its extensibility feature. That is, C++ has the power of extending the
language to include new types. For example, Matrices are not variables which are part of the
language but because of the extensibility feature of C++ one can add Matrix as new type and
manipulate matrices as regular built-in variable.

8.1 Rules of Operator Overloading
• You can overload any of the following operators.

• You cannot extend the language by inventing new operators. You must limit yourself
to existing operators.

e.g. a**2 // illegal ** is not an existing operator
• You cannot change an operator precedence. For example, the multiplication operator

has a higher precedence than the addition operator, so that multiplication is formed
first as in:

a = b + c*d; // same as a = b + (c*d);
• You cannot change an operator’s associativity. For example, the addition and

subtraction operators are both left associative, so the following expression is
evaluated from left to right

a = b + c - d; // same as a = (b + c) - d;
• You cannot change the way an operator works with built-in types. For example, you

cannot change the meaning of the + operator for integers.
• You cannot overload the following operators:

129

.

.*
 class member operator
 pointer to member operator

:: scope resolution operator
?: conditional expression operator

The syntax for overloading an operator
Class Name & operator a valid operator(Class Name & variable)
e.g. _Complex& operator += (_Complex c); // overloading +=

Note that for binary operators, (e.g. +, -, *, etc.), there is only one argument in operator. For unary
operators (e.g. negation -, ~, !) no arguments are allowed. The compiler interprets c1+=c2 as
c1.operator+=(c2); where c2 is the argument placed between the brackets in the statement:
_Complex& operator += (_Complex c).

To allow more than one argument when a overloading binary operator we use operator as a
friend function. A friend function is not a member function but is allowed to access all private
members of the befriended class.

To illustrate operator overloading and friend functions we will develop a class for complex
numbers that allows assignment, addition, etc of complex values.

#include <iostream.h>
#include <conio.h>

class _Complex
 {
 private:
 double Real, Imag;
 public:
 _Complex(double realval=0, double imagval=0)
 {
 assign(realval, imagval);
 }

 _Complex(_Complex &c); //copy constructor

 double getReal() const
 {
 return Real;

130

 }

 double getImag() const
 {
 return Imag;
 }

 void assign(double realval=0, double imagval=0)
 {
 Real=realval;
 Imag=imagval;
 }

 //overloading assignment operator =
 _Complex& operator = (_Complex c);

 //overloading +=
 _Complex& operator +=(_Complex c);

 //overloading +
 // the argument c2 is considered as the second operand
 // i.e. c1+c2
 _Complex& operator + (_Complex c2);
 // Note that c1+c2 is interpreted by the compiler as
 // c1.operator+(c2)

 //friend function
 //allows addition of double + _Complex
 friend _Complex& operator + (double c1, _Complex c2);

 //allows addition of _Complex + double
 friend _Complex& operator + (_Complex c1, double c2);

 //output stream
 // overloading <<
 friend ostream& operator << (ostream &os, _Complex c);

 //input stream
 // overloading >>
 friend istream& operator >> (istream &is, _Complex &c);
 }; // end of class definition

131

 _Complex::_Complex(_Complex &c) //Copy constructor
 {
 Real=c.Real;
 Imag=c.Imag;
 }

_Complex& _Complex::operator = (_Complex c)
 {
 Real = c.Real;
 Imag = c.Imag;
 return *this;
 }

_Complex& _Complex::operator += (_Complex c)
 {
 Real += c.Real;
 Imag += c.Imag;
 return *this;
 }

_Complex _result; // variable declared outside the proceeding functions

_Complex& _Complex::operator + (_Complex c2)
 {
 double r=Real + c2.Real;
 double i=Imag + c2.Imag;
 _result = _Complex(r,i);
 return _result; //note that local variables cannot be
 } //returned by reference - hence _result is
 // declared external to the function

_Complex& operator + (double c1, _Complex c2)
 {
 double r = c2.Real + c1;
 double i = c2.Imag;
 _result = _Complex(r,i);
 return _result;
 }

_Complex& operator + (_Complex c1, double c2)
 {
 double r = c1.Real + c2;

132

 double i = c1.Imag;
 _result = _Complex(r,i);
 return _result;
 }

ostream& operator << (ostream& os, _Complex c)
 {
 if(c.Imag > 0)
 os << c.Real << " + i" << c.Imag;
 else
 os << c.Real << " - i" << -c.Imag;
 return os;
 }

istream& operator >> (istream& is, _Complex& c)
 {
 is >> c.Real >> c.Imag;
 return is;
 }

//---

int main()
{
_Complex c1(4,5);
_Complex c2(8,-9);
_Complex c3;
_Complex c4(3,7);

c3=c1+c2;
cout << c3 << endl;

c4+=c3;
cout << c4 << endl;

c3=5+c1;
cout << c3 << endl;

cout << "Enter a complex number: --> ";
cin >> c3;
cout << c3 << endl;

getch();

133

 return 1;
 }

The above class overloads the =, +, +=, <<, >> operators. You can of course, as an exercise,
extend the class to include division and multiplication. Two friend functions are used to allow the
addition of double with _Complex. These, however, will not be needed if we have a function for
conversion of double to complex and vice versa. We will cover that topic after the next section. One
other thing to notice is that data representation is internal to the class. For example, the print-out of
complex numbers is carried-out by a member function. This characteristic of C++ is called data
abstraction. Data abstraction goes beyond just simple printing of data. For example, data can be
stored in a special form that is totally transparent to the user of the class. This form can be modified
in the future by the developer of the class without causing error in programs developed under
previous versions of the class.

8.2 Overloading operators for an Array
Before we study this topic we will first re-examine return by reference.

Functions Calls on the Left of the equal sign
Consider the following program:

#include <iostream.h>
#include <conio.h>

int x;

int& getx()
 {
 return x;
 }

//---

int main()
{

getx()=4; //same as x=4;
cout << " x= " << x << endl;
cout << " getx= " << x << endl;
getch();
 return 1;
 }

134

Output:

 x= 4
 getx= 4

From the above program one can conclude that a function that returns a reference can be
treated as if it were a variable. We will use that feature in the next topic.

Overloading the [] Operator for Arrays
The following program illustrates an example in which the [] is overloaded. We have

utilized the fact that a function having a return by reference can appear on the left-hand side and
accepts values in the main program in the statement a[i]=double(i);

#include <iostream.h>
#include <conio.h>

const unsigned MIN_SIZE=5;
const double BAD_VALUE=-1.0e30;

class Array
 {
 private:
 double *dataPtr;
 unsigned size;
 double badIndex;

 public:
 Array(unsigned length = MIN_SIZE);
 ~Array()
 {
 delete [] dataPtr;
 }
 unsigned getSize() const
 {
 return size;
 }

 double& operator [](unsigned index);
 };

Array::Array(unsigned length)
 {

135

 unsigned i;
 size=(length < MIN_SIZE)? MIN_SIZE:length;
 badIndex=BAD_VALUE;
 dataPtr=new double[size];
 for(i=0; i<size; i++)
 *(dataPtr+i)=0.0;
 }

 double& Array::operator [](unsigned index)
 {
 if(index < size)
 return *(dataPtr + index);
 else
 return badIndex;
 }

//---

int main()
{
Array a(12);
int i;
int n=a.getSize();

for(i=0; i<n; i++)
 a[i]=double(i);

for(i=0; i< n+2; i++)
 cout << a[i] << endl;

//Using a single-dimensional array to store
// 2-D data (matrix)

int j, NR, NC;
NR=3; NC=4;

for(i=0; i<NR; i++)
 for(j=0; j<NC; j++)
 a[j+i*NC]=j+i*NC;

for(i=0; i<NR; i++)
 {
 cout << endl;

136

 for(j=0; j<NC; j++)
 cout << a[j+i*NC] << ' ';
 }
cout << endl;
getch();
 return 1;
 }

Print out
0
1
2
3
4
5
6
7
8
9
10
11
-1e+30
-1e+30

0 1 2 3
4 5 6 7
8 9 10 11

The above also illustrates the use of a 1-D array in storing a 2-D array. As a matter of fact
a 1-D array can readily store a multidimensional array, this is how arrays of any dimension are stored
in memory.

8.3 Conversion Operators
In C++ you can define conversions between classes, or between a class and a built-in type.

Conversion by Constructor
The constructor in the class _Complex is:

Complex(double realval=0, double imagval=0);
converts _Complex(6) to 6+i0.

Conversion operator
The syntax of the conversion member from class type to double is:

137

operator double() const;
Note that it accepts no return type and no arguments.
As example we will add the conversion type in _Complex and remove the two friend
functions for adding double to _Complex and _Complex to double.

#include <iostream.h>
#include <conio.h>

class _Complex
 {
 private:
 double Real, Imag;
 public:
 _Complex(double realval=0, double imagval=0)
 {
 assign(realval, imagval);
 }

 _Complex(_Complex &c); //copy constructor

 double getReal() const
 {
 return Real;
 }

 double getImag() const
 {
 return Imag;
 }

 void assign(double realval=0, double imagval=0)
 {
 Real=realval;
 Imag=imagval;
 }

 //overloading assignment operator =
 _Complex& operator = (_Complex c);

 //overloading +=
 _Complex& operator +=(_Complex c);

138

 //overloading +
 // the argument c2 is considered as the second operand
 // i.e. c1+c2
 _Complex& operator + (_Complex c2);
 // Note that c1+c2 is interpreted by the compiler as
 // c1.operator+(c2)

 //Conversion function from _Complex to double
 operator double () const;

 //output stream
 // overloading <<
 friend ostream& operator << (ostream &os, _Complex c);

 //input stream
 // overloading >>
 friend istream& operator >> (istream &is, _Complex &c);
 }; // end of class definition

 _Complex::_Complex(_Complex &c) //Copy constructor
 {
 Real=c.Real;
 Imag=c.Imag;
 }

_Complex& _Complex::operator = (_Complex c)
 {
 Real = c.Real;
 Imag = c.Imag;
 return *this;
 }

/*_Complex _Complex::operator = (_Complex c)
 {
 Real = c.Real;
 Imag = c.Imag;
 return *this;
 } */

_Complex& _Complex::operator += (_Complex c)
 {
 Real += c.Real;

139

 Imag += c.Imag;
 return *this;
 }

_Complex _result; // variable declared outside the proceeding functions

_Complex& _Complex::operator + (_Complex c2)
 {
 double r=Real + c2.Real;
 double i=Imag + c2.Imag;
 _result = _Complex(r,i);
 return _result; //note that local variables cannot be
 } //returned by reference - hence _result is
 // declared external to the function

_Complex::operator double() const
 {
 return (double)Real;
 }

ostream& operator << (ostream& os, _Complex c)
 {
 if(c.Imag > 0)
 os << c.Real << " + i" << c.Imag;
 else
 os << c.Real << " - i" << -c.Imag;
 return os;
 }

istream& operator >> (istream& is, _Complex& c)
 {
 is >> c.Real >> c.Imag;
 return is;
 }

//---

int main()
{
_Complex c1(4,5);
_Complex c2(8,-9);

140

e ix
ix ix ixix = + + + + +1
2 3 4

2 3 4

()
()

!
()

!
()

!
....

_Complex c3;
_Complex c4(3,7);

c3=c1+c2;
cout << c3 << endl;

c4+=c3;
cout << c4 << endl;

c3=_Complex(5)+c1;
 //The _Complex(5) to prevent the conversion of c1 to double
cout << c3 << endl;

double a=c3; //uses conversion function
cout << a << endl;

cout << "Enter a complex number: --> ";
cin >> c3;
cout << c3 << endl;

getch();
 return 1;
 }

Note that in the main program we explicitly had to convert 5 to _Complex in c3=_Complex(5)+c1,
by using the constructor member for the class.

To convert from a user defined class to a user defined class the syntax is the same as from
user-defined to built-in.

Problems
2. Extend the class _Complex developed in this chapter to include multiplication, division,

conjugate value, absolute value of _Complex numbers.
3. The round brackets, (), can be overloaded to take on two arguments. Develop a C++ class

for handling matrices and overloads the round brackets for assigning a value to a matrix
element or reading a value of a matrix element.

4. Using the class _Complex develop C++ function for: where x is reale x xix , sin(), cos()
and

141

sin()

cos()

x
e e

i

x
e e

ix ix

ix ix

=
−

=
+

−

−
2

2
5. Develop a class ComplexMatrix to handle matrices with complex values. Include a member

function for solving a set of linear algebraic equations with complex coefficients.
6. Include member functions in the class developed in question 4 for converting a matrix of

complex type to one of real type by assigning the real values of the complex matrix to the
real matrix.

7. Extend question 4 to deal with the exponent, sine and cosine of a matrix.

