SOME USEFUL NETWORK THEOREMS

Thevenin’s Theorem
NORTON THEOREM

\[a \]

\[a' \]

\[Z_i \]

\[I_n \]

\[Z_n \]

\[B \]

\[A \]

\[a \]

\[a' \]

\[I_n \]

\[A \]

\[a \]

\[a' \]
Note that $I_n = \frac{V_i}{Z_i}$, $Z_n = Z_i$.

Note:

In either Thevenin’s or Norton’s theorem, network A should be connected to network B through only two wires.

Example:
\[V_{oc} = V_t = V^+ \times \frac{R_2}{R_1 + R_2} \]

\[Z_t = \frac{R_1 R_2}{R_1 + R_2} \]
∴

\[V^+ \frac{R_2}{R_1 + R_2} \]

\[v_{t} \]

\[R_3 \]

\[R_4 \]

\[V_i = V^+ \frac{R_4}{R_3 + R_4} \]

\[R_i = \frac{R_3 R_4}{R_3 + R_4} \]
Source-Absorption theorem:

Example:
From the circuit, $v_{\pi} = -v_t$

$R_{in} = \frac{v_t}{i_t}$

From the circuit, $v_{\pi} = -v_t$

\therefore Voltage across dependent current source $(g_mv_{\pi}) = v_{\pi}$

\therefore Dependent current source can be replaced by a resistance.

$$= \frac{v_{\pi}}{g_mv_{\pi}} = \frac{1}{g_m}$$
$R_{in} = r_\pi \parallel \left(\frac{1}{g_m} \right)$

MILLER’S THEOREM
The Miller equivalent circuit is valid as long as the conditions that existed in the network when \(K \) was determined are not changed. It shows that the Miller equivalent circuit cannot be used directly to determine the output resistance of amplifiers.

Example:
At node A, apply KCL:

\[
\frac{V_i - V_o}{R_f} = \frac{V_o}{R_o} + G_m V_i
\]

\[
\therefore V_i \left(\frac{1}{R_f} - G_m \right) = V_o \left(\frac{1}{R_f} + \frac{1}{R_o} \right)
\]

\[
\therefore K \equiv \frac{V_o}{V_i} = \frac{-G_m + 1/R_f}{1/R_o + 1/R_f} = -0.1 + 10^{-6}
\]

\[
\approx -1000
\]

\[
\frac{1}{R_1} = y_1 = y(1 - K) = \frac{1}{R_f}(1 - K)
\]

\[
\therefore \frac{1}{R_1} = 10^{-6}(1 + 10^3) = 10^{-3}(1/\Omega)
\]

\[
\therefore R_1 = 10^3 \Omega = 1k\Omega
\]

\[
\frac{1}{R_2} = y_2 = y(1 - \frac{1}{K}) = \frac{1}{R_f}(1 - \frac{1}{K}) = \frac{1}{R_f}(1 - \frac{1}{K}) = 10^{-6}(1 - 10^{-3}) \approx 10^{-6}(1/\Omega)
\]

\[
\therefore R_2 = 10^6 \Omega = 1M\Omega
\]