
Inductive Reasoning and Chance Discovery*

AHMED Y. TAWFIK
School of Computer Science, University of Windsor, Windsor, Canada ON N9B 3P4; E-mail:
atawfik@uwindsor.ca

Abstract. This paper argues that chance (risk or opportunity) discovery is challenging, from a
reasoning point of view, because it represents a dilemma for inductive reasoning. Chance
discovery shares many features with the grue paradox. Consequently, Bayesian approaches

represent a potential solution. The Bayesian solution evaluates alternative models generated
using a temporal logic planner to manage the chance. Surprise indices are used in monitoring
the conformity of the real world and the assessed probabilities. Game theoretic approaches are
proposed to deal with multi-agent interaction in chance management.
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1. Introduction

A chance (opportunity or risk) can be characterized as a high impact event,
situation or change. Typically, these situations are rare but their effects
(payoff or loss) are so significant that it is advantageous to discover them as
early as possible to try to avert the risks and exploit the opportunities
(Ohsawa, 2001). The term chance discovery has been coined to refer to the
process of discovering such situations using automated reasoning. From a
reasoning perspective, chance discovery differs from knowledge discovery.
Knowledge discovery extracts common patterns from data while chance
discovery predicts future outcomes. For example, forecasting the market
potential for a new product represents a form of chance discovery.

To illustrate how difficult and how far off human may be in discovering
chance, consider the following examples: In 1943, Thomas Watson, then
chairman of IBM Corporation, predicted a world market for about five
computers. In 1970, Ken Olsen, founder of Digital Equipment Corporation is
reported to have said that no one needed to have a personal computer at
home. In both cases, it was difficult to assess the opportunities because
traditionally, forecasting has relied on extrapolation. Extrapolation is a form
of inductive reasoning that assumes that current trends would carry on into
the future. Clearly, this approach does not work well with new types of
products. This problem is not unique to extrapolation as a procedure but it is
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inherently a problem in inductive reasoning that is closely related to Good-
man’s new riddle of induction (Goodman, 1955).

However, solving the problem of induction does not completely solve the
chance discovery problem. The representational challenge is also as signifi-
cant. Generally, our knowledge representations suffer from functional fixa-
tion, thus, hiding potential opportunities and risks. Thomas Watson’s
forecast implicitly assumes some function for computers that is rather lim-
ited. Certainly, in 1943, the range of computer applications imagined was
rather limited. The same is true for personal computers in the 1970’s. This
work argues that finding the proper knowledge representation is of great
importance for chance discovery.

Knowledge representation and reasoning frameworks typically favor ‘the
normal’ and the ‘common’ to the ‘rare’ or ‘exceptional’. Consequently,
conventional frameworks will likely miss rare situations. Moreover, for these
rare situations, it is necessary to distinguish cases that represent opportunities
or risks from other rare changes. To identify these situations a decision
theoretic approach for assessing such rare situations is needed.

The paper is organized as follows: Section 2 shows that chance discovery is
a practical example of grue. As such, proposed solutions to the grue paradox
are surveyed for clues that may help with chance discovery. The Bayesian
approach seems to hold some promise. Section 3 discusses the use of entropy
maximization to come up with probabilities. Section 4 presents a technique
for managing chance. Section 5 suggests the need for chance monitoring.
Section 6 discusses the impact of intent on probability and utility assessment.

2. Goodman’s Riddle of Induction

The color of an emerald is grue (green then blue) if it is and has always been
observed green until some future time (say year 2222) when it will turn blue.
This notion presents a paradox to inductive reasoning because our obser-
vations support the statement that emeralds are green as well as the claim
that they are grue (Goodman, 1955). This paradox, first proposed in 1955,
has inspired arguments about the validity of induction. The essence of the
problem lies in the inductive temporal uniformity assumption that implies
that the future will look like the past. Many have contended that a correct
solution would justify preferring green emeralds to grue ones. In the context
of chance discovery, the correct solution would be one that minimizes grue
predictions (i.e. by maximizing temporal uniformity) without missing any
cases of grue (i.e. when temporal uniformity does not apply).

It may be necessary to first demonstrate that certain properties are really
grue (Akeroyd, 1991). The statement that gold is soluble is grue (or falue –
for false then true). For a long time in history, observations supported the
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notion that gold cannot be dissolved until the invention of regal water.
Scientific discoveries have generally challenged human conception of the
universe that has proved to be grue in some ways. Grue phenomena challenge
the notion of temporal uniformity. In this treatment, a phenomenon is grue if
it involves an unexpected change. For example, the discovery of a treatment
for a previously untreatable disease is grue. Similarly, we consider the
eruption of a volcano or a strong earthquake in a historically stable area as
grue phenomena. These phenomena present a new challenge to automated
reasoning. Therefore, chance discovery is to some extent about discovering
when our experiences mislead us. It is about identifying situations when grue
is true.

Favoring green over grue for its simplicity is of limited relevance for two
reasons. First, the definitions of green and blue in terms of grue and bleen
(blue then green) are as simple as those of grue and bleen in terms of green
and blue. In other words, measuring complexity by comparing message
length can be an artifact of the representation. Therefore, trying to minimize
message length does not necessarily resolve the problem. Minimum message
length induction approximates a full Bayesian inference over the entire
hypothesis space (Solomonoff, 1999). A better approximation is obtained if
we use more terms corresponding to short codes. In chance discovery,
whether the objective is to identify a risk or an opportunity, it is necessary to
consider the more complex scenarios as long as they are possible no matter
what measure of complexity is appropriate. Notions of simplicity such as
Ockham’s Razor would always miss some chances.

Preferring persistence (as in green) to change (as in grue) corresponds to
the common sense law of inertia (McCarthy and Hayes, 1969). The com-
monsense law of inertia can be considered as a nonmonotonic circum-
scriptive assumption that minimizes change (Shanahan, 1997). This approach
does not capture correctly many practical situations involving indigenous
change or partially observable systems (Dean and Kanazawa, 1989). More-
over, chances will necessarily be missed. The commonsense law of inertia
would prefer to assume that a volcano will not erupt, that a new product will
not sell and in general that different new conditions will not occur.

Bayesian confirmation theory evaluates the probabilities of green and grue
at future times based on prior and conditional probabilities incorporating
evidence and background information (Horwich, 1982). As such the degree
of belief in a particular outcome can be calculated provided an accurate
theory exists to assess the probabilities and the causal dependencies. As such,
Bayesian confirmation theory extends the use of probabilities as a measure of
belief beyond frequency interpretation to include other interpretations such
as subjective probabilities and propensities.

The Bayesian approach is to explicitly list all possibilities including
all alternative models (all possible worlds), assess priors and conditional
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probabilities, and calculate posterior probabilities given all available obser-
vations for the different models under consideration. Therefore, the proba-
bility of a statement (or conclusion) S given some evidence E is given by

PðSjEÞ ¼ PðSÞPðEjSÞP
j

PðEjhjÞPðhjÞ

where the h0js represent all possible models consistent with E.
As chance discovery is the other side of the coin, a Bayesian approach

might help. Consider for example that S represents the occurrence of a strong
earthquake, and that E consists of a history of seismic activity in the region
including small earthquakes. A number of competing theories hi’s are con-
sistent with observations but differ in future predictions. The probability of a
strong earthquake can be derived provided some prior and conditional
probabilities. Typically, the number of possible theories or models can be
very large. This large number of possible models in any practical situation
presents a challenge to Bayesian chance discovery.

If Thomas Watson were to apply the above approach to assess the market
for computers, he would have to consider a myriad of possible models
including the one that actually happened. In hindsight, we know that the
computer market became strong because computer prices went steadily
down, performance increased exponentially and applications have been
developed to fulfill a wide range of needs. This particular scenario was not
very likely in 1943. Having been involved in the efforts to build some of the
very first computers, Thomas Watson might have not seen the information
revolution coming. Considering the complexity of using the early machines,
their poor reliability, high prices, and limited performance as evidence, he
predicted a very limited market for these machines. However, it is fair to
assume that the need for computation in domains such as accounting,
engineering design, banking, and planning, was evident even then. There may
have been some speculations (theories) about ways to reduce prices and
increase performance.

Therefore, to discover a chance, it is important to incorporate relevant
evidence within possible models. This requirement adds additional challenges
to the challenge of coming up with prior and conditional probabilities usually
encountered in Bayesian approaches.

3. Finding the Probabilities

A knowledge representation suitable for chance discovery has to be able
to concisely encode a possibly very large number of models (possible
worlds). To achieve this representation efficiency, models can be grouped in
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equivalence classes or categories such that a group of models belonging to the
same class K share the same PðS;EjhkÞ for all hk in K. The formation of these
equivalence classes can be based on the structural similarities of the models
or on the propensity of the models to support particular evidence (Bacchus
et al., 1996). For example, the probability of increased sales of computers in
the future may be the same according to a theory projecting future educa-
tional applications and another projecting more business applications. In this
case, both theories belong to the same equivalence class.

In Equation 1 above, PðSjEÞ is inversely proportional to RiPðEjhiÞPðhiÞ.
The other terms in the expression do not depend on the particular model, and
are constants for any particular combination of any statement S and evidence
E. However, the choice of priors PðhiÞ and conditional probability distri-
butions PðEjhiÞ has to reflect the background knowledge or the lack thereof
(ignorance). Choosing the values that maximize entropy reflects ignorance
(Jaynes, 1968). This information theoretic approach to the determination of
priors has an advantage over other subjective approaches in the case of
ignorance.However, entropy maximization, like many other probabilistic
inference procedures, is representation dependent (Halpern and Kollar,
2004). It appears that all non-trivial probabilistic inference procedures are
representation dependent to some extent. The entropy is given by

Entropy ¼ �
X

i

PðhiÞ log PðhiÞ

In the context of chance discovery, the determination of conditional proba-
bilities for PðEjhiÞ has to rely on a background theory. Edis (2000) suggests
that, in the absence of any background theory, the evidence Esupports all
competing models equally as long as they are consistent with it. In other
words, if we do not have a background theories allowing us to prefer the
model of green emeralds, all observations of green emeralds also support the
model of grue emeralds to the same extent. This results in equal weights for
all alternatives. For example, in the absence of any information to guide the
assessment of probabilities, scenarios representing computers becoming more
expensive are as likely as scenarios representing computers getting cheaper
and so on.

4. Model Formation

The treatment so far assumed the availability of three elements: a chance
statement S, some related evidence E, and a set of models fh1; h2; . . . ; hNg. All
three elements are hardly ever readily available in a chance discovery context.

Formally, the chance discovery problem can be represented by a Kripke
structure (Kripke, 1963). The structure M ¼ ðW;U;p;RÞ represents a chance
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discovery Kripke structure. W denotes a set of worlds. Each world is de-
scribed using truth assignment p defined for a set of propositions U. An
accessibility relation R determines the set of worlds reachable from a par-
ticular world. Each world w occurs with a probability lðwÞ. The probability
of a proposition / is given by

PðuÞ ¼
X

wj¼u

lðwÞ

A chronicle C is a path between a start world w0 and a final world wf such
that for any two consecutive worlds along the path wi and wj, wi follows wj if
and only if wj 2 RðwiÞ. The evidence set E is a subset of U such that E holds
in a temporally constrained set of worlds in all chronicles. Depending on the
nature of E and W, temporal constraints may be ordering constraints over
points and intervals or clock constraints. The chance states S constitute
another subset of U such that a utility function U when applied to s 2 S in
some world(s) w 2 W results in a significant chance. In chance discovery,
unlike in decision theory, utilities are assessed for worlds irrespective of their
probabilities in order to detect rare chances. Each accessibility relation r 2 R
between a pair of worlds encodes a set of assumptions, actions, or events. A
model h is the conjunction of all the assumptions actions or events along a
chronicle c 2 C.

This deductive approach to chance discovery has some complexity and
feasibility limitations. In realistic domains, it is difficult to encode all possible
combinations of events, actions, and assumptions as well as all their conse-
quences. Moreover, as chances are rare, a chance discovery procedure that
expands all future worlds would waste a tremendous amount of computa-
tional resources, seldom discovering chances. However, this last observation
suggests that backward chaining is a more efficient solution if there is a
proper characterization of risks and opportunities. Accordingly, the chance
discovery process proceeds from a chance statement S. Similarly, McBurney
and Parsons (2001) start with a statement and proceed with building a chance
discovery dialogue between collaborative agents. The Bayesian analogue to
the backward reasoning approach is to consider the probability of the model
given the evidence E and the chance S.

PðhjS;EÞ ¼ PðS;EjhÞPðhÞ
PðS;EÞ

The purpose of the above equation is to measure if there is a model that
explains both E and S well. The model h that maximizes the probability in
Equation (4) above is the model (sequence of actions) to follow or prevent
most depending on our interpretation of S as opportunity or risk respectively.

Thus far, the development does not provide any insights into how to
enumerate the models compatible with given S and E. Assuming that the
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number of models satisfying the constraints imposed by S and E is finite, the
list h1; h2; . . . ; hN represents these models (or equivalence classes of such
models). Recent advances in planning (Bacchus and Kabanza, 2000), allow
us to build efficient backward chaining planners that guide their search by
incorporating temporal domain dependent constraints. Each plan thus gen-
erated corresponds to a model.

The use of planning for model formation leaves one last challenge: how to
enumerate possible actions, events, and assumptions? This is a knowledge
representation issue. The challenge stems from the fact that many threats and
opportunities result from unusual or innovative use or interaction of previ-
ously defined objects. Largely, our knowledge representations suffer from
functional fixation and it is imperative that the actions, events, and
assumptions available be as general as possible. One way to achieve this
generality is using object hierarchies and generic actions. For example, a
saltshaker ought to be defined as a rigid container that has holes and that
may contain salt. Actions that may involve the saltshaker include those
applicable to rigid objects such as using it to drive a nail, as well as actions for
containers (e.g. filling it) and those specific to saltshakers (e.g. pouring salt).

This approach may discover many common situations such as crossing a
street or driving to work as risks and other daily occurrences may be labeled
as opportunities. In risk and opportunity discovery, we have to assume that
such common risks and opportunities have already been addressed and the
focus is on discovering unusual and rare risks and opportunities. Here, the
expedient of setting a threshold on PðSÞ to qualify as a chance avoids this
problem at the risk of missing some chances.

5. Chance Monitoring

As the Bayesian approach to chance discovery relies on subjective probability
assessment, it is important to monitor the chance exploitation plan execution
to verify that these assessments conform to reality. Moreover, our chance
discovery algorithm may still miss some chances because of an inadequate
representation or limited observations. Both of these concerns can be ad-
dressed using chance monitoring. Given some observations during the exe-
cution of the chance exploitation plan, how to identify new chances that may
come about or detect deviations preventing proper chance exploitation? For
example, how to tell if a particular technology is no longer a good investment
opportunity or if another new one is promising?

Chance monitoring relies on surprise measures to detect deviations be-
tween expected behavior and observed behavior. From a Bayesian perspec-
tive, all alternative scenarios must be considered and the probabilities are
used to determine potential risks and opportunities. This approach is
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methodologically sound but of limited practical value because it is nearly
impossible to enumerate all alternatives in a given situation. A considerable
simplification results from enumerating some common subset of alternative
scenarios and using a surprise measure to detect other situations. Surprise
measures reflect the degree of incompatibility of observed data and enu-
merated models (Bayarri and Berger, 1997).

A particular observation is surprising if its probability is small in com-
parison with the probability of other possible results (Weaver, 1948). The
occurrence of an event such as ‘someone won the lottery’ is not surprising
despite its small probability because all other alternatives are equally un-
likely. However, the person who wins the lottery would be surprised because
the alternative event (i.e. not winning) is much more probable. Weaver (1948)
uses the ratio of the expected probability value to the probability of the
observed event as a surprise measure.

Surprise ¼

P
i

P2ðxiÞ

PðxObsÞ

The numeric value of this surprise index is less than 1 as long as the more
likely event takes place. It gets higher the less likely the event is compared to
the alternatives. Other surprise indices that differ in their generality, math-
ematical properties, and ease of use have been proposed1 including loga-
rithmic forms (Good, 1983).

In the context of chance monitoring, the probabilities used for evaluating
the surprise index are model probabilities. The frequent occurrence of sur-
prising events signals model inadequacy. By adding the new surprising
observations as evidence and revisiting the model selection stage, it is possible
to adjust the probabilities as well as choosing a better plan.

6. Intent-Based Chance Management

The chance discovery software agent relies on utilities to assess the desir-
ability of a situation. These utilities express a form of intent. The chance
discovery process typically involves interactions between many intelligent
entities with converging or diverging intentions. These intentions guide re-
sponses to challenges and opportunities forcing a defined structure when a
random response would be expected. For example, knowing that a business
aims at making profits implies that it will not try to exploit a chance in such a
way to maximize its losses. Moreover, chronicles inconsistent with the
intention are highly unlikely. The bias introduced by intentions can be very
significant. For example, Schelling (1960) reports that a group of individuals
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asked to choose head or tail with the intent of matching the choice of another
unknown person, have predominately (86%) chosen head. A preponderance
of participants (90%), asked to divide 100 with a rival to increase the chance
of a match, have divided the sum equally. These observations clearly suggest
that intentions can strongly bias otherwise random choices. Incorporating
motives and intentions within the proposed framework would improve the
probability assessments. By ascribing motives to agents, the behavior of these
agents becomes more deterministic. Multi-agent systems that exploit this
phenomenon, also known as focal points, can achieve a certain level of
coordination without communications (Fenster et al., 1995).

The perception of value depends on the intentions of the agent. Some
agent’s trash could be another’s treasure. The utilities or values assignments
depend to a great extent on the intent of an agent. In a chance management
process involving humans and intelligent agents, a proper formulation would
require a game theoretic framework to account for multi-agent conflict,
coordination, and cooperation. The interaction between two agents may
involve strict competition, strict cooperation, or a combination of cooper-
ation, coordination, and a degree of conflict. The latter results in a non-zero
sum game (Schelling, 1960). In such situations, proper chance management
requires building on common interests and resolving conflicts. Humans tend
to accept conflict resolution compatible with the notion of focal points.
These focal points are zones within a solution space that possess some
specially appealing features like uniqueness, symmetry, simplicity, or pre-
cedence.

Formally, a game theoretic (Osborne and Rubinstein, 1994) formulation
would describes the interaction of a set of agents with a Markov environment
in which they all receive some payoffs for reaching their intended goals. The
game consists of a tuple hS; p;G;T; ri where S is a discrete state space that
corresponds roughly to the set of world states in Section 4; p is a probability
distribution over the initial state; G is a collection of agents, each described
by defining three sets: A, O, B where A is a discrete action space, O is a
discrete observation space, and B is a set of mappings from the observation
space to a probability distribution denoting the world state corresponding to
an observation; T is a mapping from states of the environment and actions of
the agents to probability distributions over states of the environment.; and r :
S� AG ! R is the payoff function, where AG is the joint action space of the
agents. Upon observing an observation o, an agent would try to deduce the
corresponding world state, and act according to a strategy. The objective of
each agent’s strategy is to maximize its reward. Algorithm for optimal and
suboptimal strategy development has been proposed (Boutilier, 1999;
Peshkin et al., 2000). While, this game theoretic formulation is very similar to
the techniques described in previous sections, it is a necessary extension to
account for multi-agency in chance discovery contexts.
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7. Conclusion

The chance discovery process described here relies on a background theory to
build a plan for managing and exploiting chances. By combining abductive
and deductive reasoning, the Bayesian treatment of chance discovery com-
plements the Bayesian solution to the Goodman’s riddle of induction. The
role of probability in chance management is fundamental. Attempts to reap
the rewards of discovery plans are not likely to be productive unless the
chance exploitation plan can reasonably improve the probability of oppor-
tunities and reduce that of risks. A game theoretic approach may be neces-
sary to exploit chances in a multi-agent environment.

Note

1 Consult Bayarri and Berger (1997) for a survey.

References

Brown, J.S. and Burton, R.R. (1978), ‘Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills’, Cognitive Science 2(2), pp. 155–192.

Akeroyd, A. (1991), ‘A Practical Example of Grue’, British Journal for the Philosophy of

Science 42(4), pp. 535–539.
Bacchus, F. Grove, A., Halpern, J. and Koller, D. (1996), ‘From Statistical Knowledge to

Degrees of Belief’, Artificial Intelligence 87, pp. 75–143.

Bacchus, F. and Kabanza, F. (2000), ‘Using Temporal Logics to Express Search Control
Knowledge for Planning’, Artificial Intelligence 116(1–2), pp. 123–191.

Bayarri, M. and Berger, J. (1997), ‘Measures of Surprise in Bayesian Analysis’, Duke Uni-
versity Institute of Statistics and Decision Sciences Working Paper No. 97-46, Durham,

North Carolina.
Boutilier, C. (1999), ‘Sequential Optimality and Coordination in Multiagent Systems’, in

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence.

Dean, T. and Kanazawa, K. (1989), ‘A Model for Reasoning about Persistence and Causa-
tion’, Computational Intelligence 5(3), pp. 142–150.

Edis, T. (2000), ‘Resolving Goodman’s Paradox: How to Defuse Inductive Skepticism’,

Unpublished Manuscript. http://www2.truman.edu/�edis/.
Fenster, M., Kraus, S. and Rusenschein, J. (1995), ‘Coordination without Communications:

Experimental Validation of Focal Point Techniques’, in Proceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA.

Good, I.J. (1983), Good Thinking: The Foundation of Probability and its Applications, Min-
neapolis: University of Minnesota Press.

Halpern, J. and Koller, D. (2004), ‘Representation Dependence in Probabilistic Inference’,

Journal of Artificial Intelligence Research 21, pp. 319–356.
Horwich, P. (1982), Probability and Evidence, Cambridge: Cambridge University Press.
Jaynes, E.T. (1968), ‘Prior Probabilities’, IEEE Transactions on System Science and Cyber-

netics 4, pp. 227–241.

AHMED Y. TAWFIK450



Kripke, S. (1963), ‘Semantical Analysis of Modal Logic I: Normal Modal Propositional

Calculi’, Zeitschrift f. Math. Logik und Grunlagen d. Math. 9, pp. 67–96.
McBurney, P. (2001), ‘Review of: First International Workshop on Chance Discovery’,

Knowledge Engineering Review 16(2), pp. 215–218.

McBurney, P. and Parsons, S. (2001), ‘Chance Discovery Using Dialectical Argumentation’, in
Y. Ohsawa, ed., Proceedings of the First International Workshop on Chance Discovery,
Matsue, Japan, pp. 37–45.

McCarthy, J. and Hayes, P. (1969), ‘Some Philosophical Problems from the Standpoint of

Artificial Intelligence’, Machine Intelligence 4, pp. 463–502.
Goodman, N. (1955), ‘The New Riddle of Induction’, Fact, Fiction and Forecast, Cambridge,

MA: Harvard University Press.

Ohsawa, Y. (ed.) (2001), Proceedings of the First International Workshop on Chance Discovery
Matsue, Japan: Japanese Society for Artificial Intelligence.

Osborne, M. and Rubinstein, A. (1994), A Course in Game Theory Cambridge, MA: MIT

Press.
Peshkin, L., Kim, K., Meuleau, M. and Kaelbling, L. (2000), ‘Learning to Cooperate via

Policy Search’, Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intel-
ligence.

Prendinger, H. and Ishizuka, M. (2001), ‘Some Methodological Considerations on Chance
Discovery’, in Y. Ohsawa, ed., Proceedings of the First International Workshop on Chance
Discovery, Matsue, Japan, pp. 1–4.

Schelling, T. (1960), A Strategy of Conflict, Cambridge, MA: Harvard University Press.
Shanahan, M. (1997), Solving the Frame Problem, Cambridge, MA: MIT Press.
Solomonoff, R. (1999), ‘Two Kinds of Probabilistic Induction’, The Computer Journal 42(4),

pp. 251–259.
Weaver, W. (1948), ‘Probability, Rarity, Interest and Surprise’, Scientific Monthly 67, pp. 390–

392.

INDUCTIVE REASONING AND CHANCE DISCOVERY 451


