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Abstract 

 
Vehicle reidentification is the process of tracking a 
vehicle along a highway as it crosses inductive loop 
detectors. The present work uses decision tree 
induction to generate a specific decision tree for 
tracking vehicles along specific high sections. Initial 
experimental results show that this approach performs 
well specially when coupled with signature matching 
techniques.  
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Introduction 
 
Despite recent advent of an array of new detection 
systems, such as video, ultrasound, infrared, and 
microwave based detectors, Inductive Loop Detectors 
(ILD) still remain among the most widely used, and 
the most widely invested-in detection technologies. 
The ILDs provide the Intelligent Transportation 
Systems (ITS) with a constant source of information 
on traffic system conditions. ILDs detect vehicles as 
they pass over their electromagnetic field and provide 
counts, occupancies, and speeds. These 
measurements however are 'point' measures and do 
not necessarily reflect wide-area traffic conditions. 
For this reason, ITS researchers have been searching 
for 'better' detection systems. If these detectors could 
be used in a "smarter" way, more useful information 
or section measures of traffic system performance 
such as travel time and density could be obtained. 
This in turn translates into better traffic management 
and information systems via the use of accurate 
section measures. One critical application using 
section measures is dynamic origin/destination 
demand estimation. This application is a vital 
component of other intelligent traffic management 
strategies such as traveller information, traffic 
assignment, and route guidance. The way to "squeeze 
out" more information from loop detectors is by using 
the vehicle waveforms that are produced when a 
vehicle passes over the loop detector. In order to 
produce meaningful traffic information such as travel 
time and density, the signature of a vehicle needs to 
be reidentified at different sites.  
 

Recently, research investigating the possibility of 
more 'intelligent' usage of ILD, has focused on 
deriving 'wide-area'/'section-related' measures from 
their outputs, as opposed to the limited conventional 
point measurements [3]. Such new approaches rely on 
matching vehicle features at two successive ILD 
stations in order to uniquely identify individual 
vehicles and hence derive true travel times and 
densities over a highway section. The significant 
implication of these emerging efforts is that the 
already existing vehicle detection infrastructure can 
be revived and used for numerous ITS applications 
without the need for additional expensive sensor 
technology, and without the loss of functionality.  
 
Section-related tracking aims at detecting and re-
matching vehicle signatures from successive loop 
detectors. As an individual vehicle passes over a loop 
sensor location for instance, a spatiotemporal 
signature is generated reflecting the levels of 
inductance unique to the vehicle as it spatially 
progresses over the detector in time. The uniqueness 
of the distribution of the metal mass along the body 
of a given vehicle results in a unique signature.  
 
A general transportation network can be modelled 
using individual links where each link has only one 
ingress point and one egress point. Some examples of 
network links include multilane freeway sections, 
arterial sections, and ramps. If both the beginning and 
the end of each link is appropriately instrumented 
with a detector station, say a loop station with vehicle 
signature output, then vehicle waveforms can be 
obtained from the beginning (upstream) and ending 
(downstream) detectors. A vehicle waveform pair can 
then be formed using one downstream waveform and 
one upstream waveform. The set of vehicle waveform 
pairs is increasing over time as more vehicles enter 
and exit the link. If approached in a sequential 
fashion, the vehicle reidentification problem is to find 
the matching upstream vehicle waveform given a 
downstream vehicle waveform. Stated more formally, 
the vehicle reidentification problem is as follows:  
 
Given a set of vehicle waveform pairs xi, where xi ?  
S, i= 1,...,Nc, S is the set of vehicle waveform pairs, 
and Nc  is the number of waveform pair 
combinations. Find the waveform pair which is 
produced by the same vehicle. 
 



 

The single solution of the reidentification problem 
produces the origin/destination tracking of a single 

while the sequential solution of a stream of vehicles 
will produce measures such as link density and group 
travel time. Both kinds of solutions produce valuable 
data that are of interest to operating agencies, 
researchers, and individual travellers.  
 
The inductive loop detector (ILD) operates on the 
principle of mutual inductance between the loop and 
the equivalent conducting plate of a vehicle. When a 
metallic mass passes through the magnetic field 
generated by the inductive loop, the disturbance 
produces a net reduction in the loop inductance or 
frequency, and the resonance circuit properties are 
altered. A motorcycle could, for example, produce a 
frequency shift of up to 0.08% (80 nHz, while an 
automobile could cause a shift of up to 3% (3500 
nHz). The metallic component of the vehicle is what 
disturbs the loop inductance. As a result, double-axle 
trucks produce a twin-peaked vehicle signature 
(Figure 1) when the resolution of the detector is 
adequate. Thus, in concept this method can easily be 
used for vehicle-type identification purposes as the 
signature of a van (Figure 2) or that of a car (Figure 
3) will be significantly different. 
 
Vehicle identification is based on a set of feature 
vectors extracted from the raw vehicle waveforms, 
and other information. Such additional information 
can include vehicle speed computed from speed trap, 
known lane number, and location geometry. The 
main assumption in this approach is that the feature 
vectors would be less sensitive to the error 
disturbances than to the input, otherwise noise would 
dominate the system making classification 
impossible. 
 
Raw data are obtained from sampling the inductive 
loop magnitude at intervals of every 11-14 ms (i.e. 
the scan rate of the detectors cards used during SR-24 
data collection).  The signal magnitude is normalized 
with respect to it’s maximum amplitude to eliminate 
upstream and downstream variations. Further 
normalization adjusted for speed difference and re-
sampling of a spline interpolation allowed point to 
point comparison despite differences in initial signal 
sampling. 
 
Even after the described waveform transformation, 
some variability remained between upstream and 
downstream waveforms due to the following reasons: 
?? Vehicle entrance angle into inductance field. 
?? Vehicle offset from the physical loop center, 

even straddling (e.g.  vehicle’s inductance if 
covering half the loop is  reduced from 3500 nHz 
to 2000 nHz). 

?? Height from loop due to the suspension system. 
?? Inaccuracies in the measured speed from the 

speed trap configuration . 
?? Errors in the interpolation. 
?? Aliasing due to sampling. 
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Figure 1. Vehicle Signature for a small truck 
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Figure 2. Vehicle Signature for a small van 

Figure 3. Vehicle Signature for a car 



 

?? Quantization error in the A/D process. 
?? Variability between upstream and downstream 

inductive loop systems including the physical 
loop installation and the loop energizing 
circuitry. 

 
Lexicographic Optimization Problem. 
  
The vehicle re-identification problem can be 
formulated as a lexicographical optimization problem 
[3,4].  
The first objective constrains the set of vehicle pairs 
to those who had travel times within a  lower and 
higher limit (i.e. a time window). 
 
The second objective selects the pairs of vehicles that 
contain a candidate upstream vehicle magnitude that 
was within a certain percentage of the downstream 
vehicle that is being reidentified. This results from 
the fact that the inductance magnitude is inversely 
proportional to the height of the vehicle. For example, 
trucks would have much smaller magnitudes than 
passenger vehicles, so the candidate set is limited to 
trucks by using this constraint.     
 
The third goal limits the candidate vehicle’s length to 
be within a certain percentage of the downstream 
vehicle. 
The fourth level lexicographic optimization objective 
is 
to minimize the discrepancies between the upstream 
feature vector and the downstream feature vector in a 
vehicle waveform pair. Five different distance 
measures are used in the research: Euclidean, 
Correlation, Similarity, Lebesque, and Neural 
networks [5]. 
 
The last level objective is tries to optimize the 
distance measure with the maximum posterior 
probability. Equivalently, this resulted in the 
choosing of the "most likely" distance measure that 
would identify the correct match between a vehicle 
pair. The selection of the optimum objective function 
is therefore done by Bayesian analysis.About 75% 
correct matching was reported using the above 
described method for the passenger cars. 
 
Decision Trees 
 
Lexicographic methods provide an order of 
preferences in which options are compared on the 
most important criterion, and the best option is 
chosen unless other options tie for first place. In that 
case, evaluations on the second most important 
criterion are considered to break the tie. If that is not 
possible then the third most important criterion is 
consulted, and so on until one option can be chosen. 
 
Decision tree induction algorithms [2] rely on 
information theoretic measure known as entropy to 

prioritize the most informative attributes. The 
resulting decision diagram shows the outcomes that 
may occur for a series of interdependent decisions. 
The actual outcome of each of the individual 
decisions at each stage is not known with certainty.  
 
The attributes available for reidentification include 
vehicle specific ones such as the vehicle length and 
its signature, as well as other attributes that rely on 
the spatiotemporal context, the behavior of the driver 
and traffic/road conditions. These attributes include 
lane change, speed variation, and the time taken to 
cross a highway section.  
 
Therefore, it is realistic to expect that for each 
highway section, a different decision tree should be 
used. Moreover, we expect that the induced trees may 
vary significantly with traffic conditions. 
  
To induce decision trees, it is necessary to perform 
visual matching for some training data and apply a 
decision tree induction algorithm.  The decision trees 
generated are reviewed by the user for soundness and 
tested on a validation set before adoption for practical 
use.  
 
Experimental Evaluation 
 
The test data were obtained from a field site on the 
westbound SR-24 freeway in Lafayatte, California in 
December 1996. Two data acquisition stations were 
instrumented with video, loop waveform dataloggers, 
and speed trap dataloggers. Standard 6’x 6’ (1.82 m) 
loops were used at both stations. Several hours of 
data were collected, but a smaller portion of the data 
was reduced into two data sets and used for this initial 
investigation in vehicle reidentification. The reduced 
data set contains the waveforms of the upstream 
vehicles along with their speed, electrical length 
(derived from occupancy time), arrival time at 
stations, and the vehicle identification number. One 
data set was composed of moderate flow traffic (1000 
Veh/h.l) and contained approximately 2000 vehicles. 
This dataset was recorded on December 6 at about 
12:00 pm. Another dataset was composed of 
congested flow traffic (1800 veh/h.l) and contained 
approximately 3000 vehicles. The second dataset was 
recorded on December 12 at 8:00 am during the 
morning rush hour. Both datasets were divided into 
training and testing datasets. Figure 4 shows the data 
collection set-up for the SR-24 site. 
 
The test data were stored in SIG (signature) files and 
ground truthed by video correlation. The unprocessed 
signature files and PVR (Per Vehicle Record) files 
were collected in the field. The video correlation 
database was produced in the laboratory from the 
video footage taken during data collection. Manual 
correlation of the downstream with the upstream 
vehicle using video was required for the development 
of the video correlation database. 



 

  
Figure 4. Lafayette data collection site 

 
The dataset used for learning decision trees consists 
of the following attributes for an upstream and a 
downstream vehicles: absolute length difference, time 
difference between crossing the two IDLs, absolute  
speed difference, and aboslute lane difference. The 
training / test datasets have an additional attribute 
indicating if the record represents a match.  
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Figure 5. Simple Vehicle Reindentification Decision 

Tree. 
 
The dataset is highly imbalanced as there are a lot 
more mismatches that matches. However, this 
imbalance is artificial to some extent because it is not 
necessry to compare each vehicle with all others. 
Spatiotemporal constraints would limit the 
comparison to vehicles that have crossed one ILD and 
not the other as described laster in this Section.  
Many techniques have been developed to allow 
effective learning from imbalanced data [1]. In this 
work, we use random sampling from the larger class 
to introduce some balance and avoid trivial decision  

 
trees that simply assume no matching. In addition, the 
ability to reliably determine the car type or category 
(car, truck, van, ...etc) eliminates many candidates. In 
order to eliminate the dependence on the actual traffic 
intensity in the experimental dataset we considered 
the  following criteria to limit the number of vehicles 
to be compared to a given vehicle: 
?? randomly selecting the comparison set 
?? forcing a fixed size comparison set, and 
?? limiting the comparison set by a fixed time 

duration 
Initially, we have also limited the test set to a small 
set of vehicles containing 180 to 360 vehicles. 

 
The decision trees generated differ somewhat in their 
complexity and performance depending on the 
constraints imposed on the training set.  A simple 
decision tree, shown in Figure 5, that considers length 
and lane differences only properly matches 85% of 
the training set and 75% of the test set. 
 
However, in all decision trees generated, the length 
difference attribute and the lane difference attribute 
proved to be important in identifying matches. Other 
attributes such as time difference and speed 
difference appear in some trees.  A rather complex 
tree involving these attributes has been successful in 
learning 95% of the training cases and correctly 
matching 85% of test cases.  
 
In a subsequent set of experiments, we used the travel 
time distribution shown in Figure 6 to limit the set of 
vehicles in the comparison group. About 95% of the 
vehicles arrive at the second loop detector within 160 



 

seconds from crossing the first one but not before 88 
seconds. This condition reduced the average number 
of vehicles to compare to 80 vehicles during the rush 
hour dataset and 46 vehicles for the other dataset. 
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Figure 6. Travel time between the loop detectors 
 
 
lengthDifference <= 0.23 : 
|   laneDifference <= 0 : true  
|   laneDifferemce > 0 : 
|   |   lengthDiffference > 0.16 : false  
|   |   lengthDifference <= 0.16 : 
|   |   |   laneDifference <= 1 : true  
|   |   |   laneDifference > 1 : false  
lengthDifference > 0.23 : 
|   laneDif fernce> 0 : false 
|   laneDifference <= 0 : 
|   |   timeDifference<= 0.79 : 
|   |   |   lengthDifference <= 0.38 : 
|   |   |   |   lengthDiffence <= 0.29  
|   |   |   |   lengthDifference > 0.29  
|   |   |   lengthDifference > 0.38 : 
|   |   |   |   lengthDifference > 0.51 : false  
|   |   |   |   lengthDifference <= 0.51 : 
|   |   |   |   |   timeDifference <= 0.552 : false  
|   |   |   |   |   timeDifference > 0.552 : 
|   |   |   |   |   |   speedDifference<= 9.7 : true  
|   |   |   |   |   |   speedDifferemce > 9.7 : false  
|   |   timeDifference > 0.79 : 
|   |   |   lengthDifference <= 1.59 : true  
|   |   |   lengthDifference > 1.59 : false  
 
Figure 7. A more complex decision tree 
 
The more complex decision tree shown in Figure 7 
has been used to classify vehicles in the rush hour test 
set after imposing the travel time constraints. The 
decision tree correctly identified 89% of the matches, 
and 78% of the mismatches. However, about 20% of 
the records were incorrectly labelled as matching. In 
fact,  less than 10% of the reported matches are actual 
matches. To address this problem, it is necessary to 
compare the electromagnetic signatures for all 
reported matches as described in [5] to eliminate the 

majority of incorrect matches. This brings the 
percentage of correctly classified records to 90%.  
 
Although the training set used to generate the tree in 
Figure 7 has been extracted from the rush hour 
dataset, the same tree performed well when tested on 
the lower traffic dataset. About 82% of the matches 
are correctly labelled as well as 82% of the 
mismatches. However, true matches continued to 
represent 10% of the records labelled as matching.  
 
It is therefore necessary to consider the signature data 
to get reliable reidentification of vehicles. The 
decision tree can successfully reduce the number of  
records requiring signature verification by more than 
75%  making it possible to achieve 90% correct 
classification. It is also worth noting that correct 
identification of each vehicle may be impossible 
without using additional visual clues.  
  
The following table compares the performance of 
different approaches to vehicle reidentification of 
passenger cars 
 

Approach Correct 
matching 

Lexicographic Optimization[3,4]  75% 
Signature matching [5] 61% 

Decision Tree 82% 
Decision tree + signature 90% (estimated) 

 
Table 1. Accuracy of Vehicle Reidentification 

 
The accuracy result reported in the above table for 
signature matching is based on the percentage of 
correctly matched passenger cars in heavy traffic. The 
accuracy of signature matching varies for different 
types of vehicles ranging from 42% for passenger 
cars in moderate traffic to 100% for trucks. The 
estimated rate of correct matching in the last row of 
the above table is based on some initial results.  
 
Conclusion and Future Work 
 
Comparing these results to those reported in [3], [4], 
and [5], the decision tree achieves comparable results 
even without comparing actual signatures. 
Performing signature matching as described in [5] 
helps further reducing the error rate by an additional 
5% to 10%.  We are currently experimenting with 
applying signature matching algorithms to branches 
of the decision tree with a high error rate, this error is 
decreased.  
 
It is clear form the decision tree generated that spatio-
temporal properties such as persistence of lane, speed 
can provide useful clues for vehicle reidentification. 
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