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TEMPORAL REASONING AND BAYESIAN NETWORKS
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This work examines important issues in probabilistic temporal representation and reasoning using
Bayesian networks (also known as belief networks). The representation proposed here utilizes temporal
(or dynamic) probabilities to represent facts, events, and the effects of events. The architecture of a
belief network may change with time to indicate a different causal context. Probability variations with
time capture temporal properties such as persistence and causation. They also capture event interaction,
and when the interaction between events follows known models such as the competing risks model, the
additive model, or the dominating event model, the net effect of many interacting events on the temporal
probabilities can be calculated efficiently. This representation of reasoning also exploits the notion of
temporal degeneration of relevance due to information obsolescence to improve the efficiency.
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1. INTRODUCTION

Recent efforts to introduce temporality into Bayesian networks have resulted in
a variety of networks intended primarily for applications such as planning, diagnosis,
forecasting, and scheduling. Dynamic nets (Dagum, Galper, and Horvitz 1992) use
an instantiation of the network for each time point, with the different instantiations
linked by edges representing persistence and causation. Temporal Bayes nets (Dean
and Kanazawa 1989) use survival functions to represent persistence. The underlying
time model is discrete and each time point corresponds to a copy of the network.
Arcs linking two copies propagate the effects of previous states and observations. Net-
works of dates (Berzuini 1990) represent a departure from the multiple instantiations
approach because each temporal duration is represented by a node. Berzuini associates
a probability density with each temporal random variable to represent continuous time.
Time nets (Kanazawa 1992) define a network model that uses continuous time and
extends the “networks of dates” by introducing a representation for facts (or fluents).
The dHugin time-sliced Bayesian nets (Kjaerulff 1995) are based on the multiple-
instantiation approach (each time slice corresponds to a copy of the network) similar to
temporal Bayes nets and dynamic nets but the reasoning is based on a dynamic version
of Hugin and a smoothing operator is used to approximate the effect of temporally
distant occurrences. The kappa calculus approximation of probability functions and the
representation of persistence through suppressors are two features introduced in action
networks (Darwiche and Goldszmidt 1994). Action networks use different instantiations
of the original network for different time points. A time-sliced Bayes nets generation
algorithm (Ngo, Haddawy, and Helwig 1995) optimizes the network to answer a query
efficiently.

Despite these efforts, there is no consensus on several issues such as when to dupli-
cate the network, how to represent instantaneous effects, what conclusions can be made
regarding the time interval between two instantiations, and how to represent continuous
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350 COMPUTATIONAL INTELLIGENCE

time. A host of issues have not been considered yet within this framework. This work
tries to answer some questions in uncertain temporal reasoning using a probabilistic
representation. This representation allows the use of discrete time, continuous time,
hybrid time, and other forms such as counterbased timing. Moreover, it is not based
on multiple instantiations of a probabilistic network, thus avoiding the instantiation-
related problems. This treatment considers a single belief network. The architecture
of the network is only modified when the causal context changes. Changes in condi-
tional probabilities over time reflect changes in causal influences. For example, recent
information has a stronger effect on current beliefs. We define a probabilistic relevance
criterion we call extraneousness that allows us to consider only a limited time interval
when making inference at a particular instant.

The extraneousness criterion extends the notion of independence as it also weeds
out weak dependencies. Exploiting this notion yields smaller, more manageable, prob-
lems. In addition to extending the notion of probabilistic independence, we also present
a set of models of event interaction that help reduce the complexity of knowledge
acquisition and inference. Those models are the temporal equivalent to static models
of interaction (e.g., noisy-or).

The remainder of this section introduces terminology and an example used through-
out the paper. Section 2 shows how to use dynamic probabilities to represent and
reason about fluents. Section 3 examines the degeneration of information relevance
under uncertainty. Section 4 addresses the representation of events and reasoning about
them. Section 5 provides a causal characterization for common models of event inter-
actions. Section 6 is devoted to some issues in reasoning about the past and the future.
Sections 7 and 8 conclude the paper with a discussion of related work and issues.

Throughout this paper, we use the network shown in Figure 1 (from Charniak 1991),
which represents the statements: “When the family goes out they turn on the outdoor light
and put the dog in the backyard. The dog’s barking is heard when it is out in the back-
yard.” This network has four binary random variables: family-out, dog-out, light-on, and
hear-bark, which henceforth are sometimes abbreviated fo, do, lo, and hb.

1.1. Terminology

An event here is an occurrence having subsequent effects. An event may be an
action or an observed change in one or more states. An event can have null dura-
tion or it can happen continuously over an interval of time, producing effects during
some subintervals. “It started raining,” “It has been raining for five minutes now,”

FIGURE 1. Bayesian network.
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or “I opened my umbrella” are events. An event type is a class of events with similar
effects such as “starting to rain.” An event token is a particular instance of the event
class, such as “It started to rain today at 10:05 a.m.” The time of occurrence of an event
can be deterministic (if known or directly observed) or probabilistic (if expressed as a
probability distribution along the time line). “It should have started raining between
10:00 a.m. and 10:15 a.m.” is represented by a distribution. The total probability associ-
ated with an event token is at most one. A total probability less than one indicates that
we are not certain whether the event did (or will) actually happen.

A fluent is a proposition that changes its truth value. Each fluent is either true or
false at any instant. The truth value of a fluent over an interval is represented by a
continuous probability distribution. The truth value over subintervals of this interval
can be deduced from the distribution. “The house is red” is a fluent.

Dynamic probabilities are functions providing a mapping from the set of fluents at
time ¢ to real numbers in the unit interval. P,(X) and Py(z) are used to indicate the
probability of fluent X at time ¢.

2. REPRESENTATION OF FLUENTS

Probabilities can have discrete or continuous distributions. Using discrete proba-
bility distributions to represent discrete time and continuous distributions to represent
continuous time adds more uniformity and flexibility to the knowledge representation.
The choice of a method for associating probabilities with time affects the realizability
of this objective. For example, approaches that instantiate a network for different time
points such as dynamic nets, temporal Bayes nets, and dHugin time-slice nets, cannot
be used for continuous time. The networks of dates represent time intervals as net-
work variables. These networks can therefore represent both continuous and discrete
times.! An extension of this model (Kanazawa 1992) allows a fact to hold over a dura-
tion defined by two end points but the resulting time nets do not provide a uniform
interface for continuous and discrete times.

Consider the problem of adding the following statements to the family-out example
introduced earlier:

1. If the family is out between 6:00 a.m. and 6:00 p.m. they do not turn the light on.
2. If the family is not out during that period they open some windows.

Representing before-six (bs) as a random variable, continuous or discrete, is there-
fore a possible solution. Unfortunately, this complicates the network by increasing the
number of nodes. A further complication is that the probabilities of window-open (wo)
and light-on (/o) depend on the joint probability of bs and fo. The representation may
get even more cumbersome if we try to represent the following additional statements:

3. Usually the family is out from 9:00 a.m. until 5:00 p.m.

4. Sometimes they come home for lunch between 12:00 noon and 1:00 p.m.
5. When they come home for lunch they do not bring the dog in.

6. They visit friends between 7:00 p.m. and 11:00 p.m.

Now, three more temporal variables are needed. It is necessary to define the appro-
priate joint probabilities. Different properties of temporal ordering (e.g., that five o’clock
comes before six o’clock, that it cannot be five and six o’clock at the same time, . . ., etc.)

I Berzuini (1990) does not mention this, however it seems possible if continuous time is represented by
continuous random variables and discrete time is represented by discrete ones.
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will have to be encoded in the network. Alternatively, we can use the probabilistic func-
tion of time to represent the above statements.

Observation 1. Dynamic probabilities can represent fluents.

Rationale. Since a fluent has a single truth value (true or false) at any time, then a
function of time can represent the truth value of a fluent. Under uncertainty, the truth
value is given as a probability instead of true or false. The probability has a single value
at a time and can therefore be represented as a function of time.

Probabilistic reasoning using multiple instantiations of a static network expresses
the probabilities at time ¢ in terms of probabilities at time ¢ — A as recurrence relations.
The dynamic probabilities are a more explicit, nonrecurrent representation of the same
patterns. Figure 2 illustrates the variation of probabilities over a single day. The period
“a day” is a complete cycle after which probabilities follow the same pattern repeatedly.
Cyclic probability patterns capture the cyclic property of time useful in many applica-
tions. If the problem does not exhibit this cyclic property, probabilities are expressed
over a window of interest.

Some economy is provided because not every probability is time dependent. For
example, it is reasonable to assume P(do|hb), P(do|—hb), and P(lo|—fo) are time
independent.

Given this representation, reasoning to answer questions of the form “What is hap-
pening at time t?” is straightforward, but the question “When does x happen?” is more
difficult. However, in most applications a direct probabilistic answer for the first ques-
tion at different time points approximates the probability distribution for the answer to
the second, hence giving the required answer.

3. DEGENERATION OF RELEVANCE

Depending on the dynamic nature of a system, two time intervals (or points) are
either related or extraneous. In general, the relevance of the knowledge K at time ¢; to
the fluent f at time ¢, degenerates as the duration separating them gets longer.? If the
maximum effect of k; on f; is less than a small value 3, then #; and ¢; are temporally
extraneous with respect to f. Temporal extraneousness is a relaxation of probabilistic
independence, indicating that the effect of K; on f; is negligible.

Returning to our example, suppose an observer goes past the house every few days,
instantaneously looks at the lights and checks if the dog is barking. This observer can
use the notion of temporal extraneousness to rely on current observations only and to
reach a conclusion about family-out. It is reasonable to consider, in this case, that each
observation is extraneous to the others given that these observations are separated by
a sufficiently long interval. On the other hand, if the observer stays for a few hours to
continuously observe the light and listen to the dog, then it should be possible to relate
what happens at one instant with previous and future instants.

In this section, we examine extraneousness more formally, then we turn our atten-
tion to related times and introduce a representation of events compatible with the
representation of fluents developed so far.

2 The notation X, means X is true at time ¢,.
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3.1. Extraneous Time Instants or Periods

The extraneousness assumption implies observations made at #; do not affect con-
clusions at ¢; in any significant way. An observer who both sees the light and hears the
dog barking can use the probabilities in Figure 2 to evaluate the probability of family-
out. Any new observations and conclusions are almost independent of previous ones
because changes could have happened between the two time points. To an instanta-
neous observer, temporal reasoning is therefore a set of nontemporal Bayes nets except
that the probabilities must correspond to the time point under consideration. Reasoning
is not any harder than in the nontemporal case.

The following theorem shows that there exists a duration 7 such that the probability
of a fluent f at a time ¢ > #,+ T changes by a small factor & depending on the truth (or
falsity) of f at #;. Moreover, for any choice of an arbitrarily small 3 a different duration
T can be found.

Without loss of generality, we prove the property assuming a discrete-time Markov
chain and a single fluent. Possible generalizations are discussed afterward.

Theorem 1. Consider a fluent f represented by a Markov process with states f; and
/i and transition probabilities P(f; {1f;) = p1, P(fis1lf;) = P2, P(fiz1lf:) =1— py, and
P(fii11f;) = 1 — p, such that 0 < p;, p, < 1. If the system is in state f;, then the fluent
is true at time i. Let the probability that the system described by this Markov process
be in state f, at time ¢t be P(f,). The claim here is that for any & « 1 there exists T

such that B
Vi = T IP(fi|fo) — P(fil fo)l < 3.
Proof.
P(filfo) = P(flf-)P(fizilfo) + P(fl f-)P(fioal fo)
P(filfo) = (1 = p)P(fioilfo) + p2P(fiil fo)-
But P(fi_1lfo) =1 = P(fieilfo)-

P(filfo) = (1 = pO)P(fi-11fo) + p2(1 = P(fi11£0))
P(f,lfo) = (1 = p1 = p2)P(fi_1lfo) + pa-

This is a recurrence relation that can be solved using the iteration method to get
P(flfo) = (1= p1 — p) ' P(filfo) + po(1 = py — p2)'?
+p2(1 = p1 = p) 7+ 4+ p(1 = pr— po) + pa.

By substitution for P(f;|f;) and summing the geometric series in the above expres-
sion, we get

— 1 D2
P(filfo)=p(1=p —p)”[ —1}+ :
o ! ! 2 P11+ D2 P1+ D2

Similarly,
P(flfo) = (1= p1 — p2)' "P(filfo) + po(1 = py = p2)~°
+p(L=pr—p) 7+ -+ py(1— p1— py)+ P2

z _ 1 V%)
P = po(1— py— p “[1— }+ .
s 1) P+l Pt
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Therefore, _
\P(filfo) = P(filfo)l = 1(1 = p1 — p2)'l.

Depending on the values of p;, p,, and 9, the duration 7 that makes the difference
less than & can be determined as follows:

log(3)

= . O
log |1 — p; — psl

This theorem quantifies the intuitive notion of information obsolescence. Informa-
tion about a given time point may not help in reasoning about another time point if
the interval between the two points is long enough. The information is outdated by the
dynamic nature of the system and the lack of knowledge about the developments occur-
ring between the two points. Ignoring such outdated information affects the prediction
within a small range 8.

The probabilities p; and p, determine the rate of change in the system as well as
the duration 7 beyond which we can consider the observations extraneous.

In the special case p; = 0 and p, = 0 the system maintains an initial truth value. In
this case no finite 7' can be found because the denominator log(1 — p; — p,) becomes
zero. If one of the states is an absorption state (i.e., if either p; = 0 or p, = 0) the
system would remain in this state once it reaches it and its behavior is fully deter-
mined henceforth. The other extreme case occurs when p; =1 and p, = 1, the system
oscillates and is always predictable.

Figure 3 shows the change of the time T for different values of the sum of transition
probabilities p; + p, for 8 = 0.01. It is worth noting that this curve is symmetric around
the point p; + p, = 1. At this point the difference P(f7|f,) — P(frl|fy) is equal to zero
for any ¢ and the truth of f at any time is independent from its previous states.

3.2. Generalizing the Theorem

The proof of the theorem assumes a stationary process (i.e., time invariant transition
probabilities), but the same analysis applies to time varying chains. For example, an
upper bound on T may be obtained by considering the lowest possible value for p; + p,
if this sum is less than unity, or the highest possible value for the sum greater than unity.

10000 F T T T T T T T T T

1000

100

Time Limit T

10

1 1 1
0 02 04 06 08 1 12 14 16 18 2
P1+P2

FIGURE 3. Extraneousness time versus sum of probabilities.



356 COMPUTATIONAL INTELLIGENCE

It is possible to generalize the proof to nonbinary variables; for a variable with n
truth values, the proof proceeds in a similar fashion except for the number of proba-
bilities, as n? transition probabilities are needed. The degree of extraneousness can be
defined in the following definition:

Definition 1. The degree of extraneousness of ©; with respect to fluent f; is 3 if, for
all possible initial states of ©;, the maximum change in the probability P(f;|®;) is less
than 8.

This definition avoids the disjunctive factors problem (Hitchcock 1993) that occurs
whenever a factor is compared to a disjunction of other factors. Here, for example,
the probability P(f;10;) would have to be compared to the probability P(f;|—0);), but
—0; is a disjunction of n — 1 possible states at time j. The probability of P( f1|—-® ) =
25,40 P(S )P( f,|S ) 25,40 S; - The definition avoids the problem by comparing pairs
of a551gnments instead of a smgleton and a disjunction.

The convergence property of Markov chains is closely related to the above theorem.
Kemeny and Snell (1976) studied the convergence of regular chains and showed that
dependence on initial state decays. The upper bound on the difference in probabilities
due to initial state is (1 — 2€)”, where e is the smallest transition probability, and »n is
the time. Recent work on convergence time shows that the convergence time 7" and
its distribution can be bounded by K - N, where \ is the absolute value of the second
highest among the eigenvalues of the transition matrix. In many cases, the convergence
of Markov chains exhibits a cutoff behavior (Diaconis 1996); after an initial period of
seemingly little change, the probabilities converge quickly to the steady state.

3.3. Extraneousness in Belief Network

The above proof applies directly to a time-sliced belief network. In fact, we could
have done the proof directly assuming a time-sliced belief network. By definition the
probabilities are given by p; = P(f, alf;) and p, = P(f,,alf;). For example, Figure 4
shows a time-sliced Bayesian network that can be used to calculate p; and p, for a
fluent f. This fluent is affected by two possible events, e; and e,, where e; causes f to

f[ ft+A

FIGURE 4. Generic time-sliced Bayesian network.
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be true and e, turns it false. In this case,

p1=1=P(f;alf))

4
p1=1=3 P(fialE;, f)P(Ef),

i=1

where E; = (e; A ey), E, =(ey A &y), Es=(e; Aey), and E, = (e; A e;).
P2 = P(fH—A'ft)

4
P2 = Y P(fialE;, fDP(EIS,).
i=1

The four terms in the summation correspond to both events happening concur-
rently, a single event happening, or both not happening. The transition probabili-
ties p; and p, are conditional probabilities. Therefore, the knowledge K available
about different states during the interval [¢, ¢t + A] affects the probabilities. In general,

p1 = P(fiialfir Ky iva)) and py = P(fiialfis Kpi, 1a))-

Example 1. The dog is seen in the living room at 9:00 a.m. We are interested in eval-
uating the probability that the dog is in the room at 2:00 p.m. The dog may leave the
room during any minute with probability P(leave|inside) = 0.00579 and it may enter
the room during any minute with probability P(enter|outside) = 0.00773. The theorem
shows that there exists a duration 7' such that the probability of fluent f at a time
t > ty+ T changes by at most & depending on the truth of f at #. Knowing the loca-
tion of the dog at 9:00 a.m. affects the belief dog is in the living room at 2:00 p.m. by
less than 0.02. It is therefore acceptable to answer the query based on the steady state
probability? of the dog being in the living room at 2:00 p.m. without considering a 300
time-slice Bayesian net. This probability is 0.558. At steady state the probabilities do
not change with time. To evaluate the steady state probabilities, we assume that

P(DogInRoom,.pp) & P(DogInRoom.sopy) & P(DogInRoom, )

P(DogInRoom ) = P(DogIlnRoom_ )P(DogStayInRoom|DogInRoom)
+ P(DogOut_ )P(DogEnter|DogOut)

and

P(DogOut_ ) = P(DogInRoom ) P(DogLeave| DogInRoom)
+ P(DogOut_ )(DogStayOut|DogOut).

The probabilities P(DogStayOut|DogIlnRoom) = 1 — P(DoglLeaves|DogInRoom),
and P(DogStayOut|DogOut) = 1 — P(DogEnter|DogOut) are known, therefore we
can solve the linear system described above to get the probabilities P(DogInRoom ) =
0.558 and P(DogOut.) = 0.441. Exact calculations show that the probability
P(DogInRoom,.gpp) = 0.567 and P(DogOut,.\opp) = 0.432.

3 The term steady state probability denotes the value toward which the probability converges as time goes to
infinity.
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An empirical upper bound on relevance time in general Bayesian networks can be
obtained by considering the largest difference between any pair of probabilities in the
conditional probability table associated with a node. The relevance time is obtained by
dividing the logarithm of the desired & value by the logarithm of the obtained largest
difference. This upper bound works in about 98% of the cases (Tawfik and Barrie 2000).

3.4. Dependent Time Instants or Periods

Two time points or intervals are dependent if information available at one point
affects beliefs at the other point. The duration between two dependent times is shorter
than the extraneousness time.

As an example of dependent times, consider an observer monitoring the status of
the light and listening to the barking of the dog. If at time ¢; the dog’s barking is heard,
the observer should conclude that the dog is out in the backyard at this instant and
for some time thereafter. But after listening for some time and not hearing the dog,
the observer should be less certain about whether the dog is out or not. This decay in
certainty with time is also a function of time that relates probabilities at all instants with
an event.

Observation 2. The knowledge required for probabilistic temporal reasoning consists
of probabilistic knowledge about states, events, and a causal structure specifying the
effects produced by the events.

Rationale. For the generic time-sliced Bayesian network as in Figure 4, e¢; and e, are
two events affecting a fluent f that tends to persist if nothing happens with probability

4 4
P(ft+A) = ZP(fz+A|Ei: ft)P(Ei|ft)P(ft) + ZP(ft+A|Eia _'ft)P(Ei|_'ft)P(_'ft)a
i=1 i=1

where E; = (e; A ey), E; = (e A—ey), B3 =(—ey A ey), and Ey = (—ey A —ey).

To get the same expressions as those used for planning using temporal Bayes nets
(Dean and Kanazawa 1989), assume the e; and e, are mutually exclusive (ME). The
mutual exclusion assumption is equivalent to the single event STRIPS assumption.

3 3
P(frin) = 2 P(frsalfi Eve)P(fis Eng) + 2 P(fil=f;» Eve)P(—fis Eug,)

i=1 i=1

where Eyp = (—ey A—ey), Eyg, = e, and Eyp, = e,.

P(feialfes Eve)P(fi> Evp,) = P(frealfis Eve)P(Eyg | f)P(f)-

Similarly,
P(frial=fes Eve)P(—= 1y Ene,) = P(frsal=fis Ene)P(Eng, =) P(=f1)

The purpose of the above observation and analysis is to emphasize that the
three basic elements a probabilistic temporal representation has to express are the
following:

e Probabilities of fluents at any time (P(f,)).
e Probability of occurrence of events and their dependence on states (P(E;|f;)).
e The probabilistic effects of the events (P(f, AlE;)).

The structure of a time-sliced Bayesian network captures the notion of persistence and
that of causation. These two notions must be represented here as well.
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4. REPRESENTING EVENTS, EFFECTS AND INTERACTIONS

In this section, the temporal probabilistic formalism is further developed to rep-
resent the states of the world as a function of time, deduce the possible events from
observations about the world, and predict the possible effects of the events and their
interaction with each other and the rest of the states. To represent the states of the
world as a function of time, we use the dynamic probabilities introduced earlier.

4.1. Representing Isolated Events

A set of characteristic functions represents the effect of each event token of a
given event type on other variables. A probability function defines a relation between
P(x|e) and time ¢ for all # where x is a random variable and e is an event type. Such
functions can represent causation and persistence. For example, if the persistence of
dog-out is given by P,(do) and represents the probability that the dog stays out, then,
assuming that the rate of occurrence of the event the dog enters is constant, we get an
exponentially decaying persistence function of the form e/, where A, is the rate of
occurrence of the event. Using this probability function, and applying Bayes’ rule, we
find that the probability that the dog is outside given that we heard its barking is given
by an exponentially decaying function as shown in Figure 5.

Because the same event may have different effects, it may also have different prob-
ability transfer functions. For example, the event of switching the light on has two
functions: the first represents its effect on fo because somebody at home might have
turned it on; and the second represents the persistence of /o because once turned on,
we expect the light to stay on for some time. Figure 6 shows the network and the
probability functions associated with a light-turned-on event (abbreviated as lton).

Turning the light off is not the complement of turning the light on. Both events
affect family-out, but because the bulb may burn out, turning the light on may provide
stronger evidence supporting that someone is at home than seeing the light go off. On
the other hand, a light going off token should affect light-on by making it false. As
time progresses, the observation that the light was turned on some time ago no longer
contributes to the conclusion of family-out. In the absence of more recent information,
this observation becomes extraneous after few hours.

4.2. Reasoning with Isolated Events

In general, the time of occurrence of an event is uncertain and is expressed as a
probability distribution. The same may be true for effects. Let 7| represent the time of
occurrence of the event and let 7, be the time it takes a subsequent effect to develop.
The time 7 when the effect starts is

T:T1+T2.

The sum of any two independent random variables produces a new random variable
whose distribution is given by the convolution* of the distributions of its constituents.
Let fi, f5, and f be the probability distributions for 7, T,, and T, respectively. Then

f=hHefh.

For example, consider a simplified Bayesian network with two nodes: dog-out and hear-
bark. If f, is the distribution of #,, when the dog barked, and f, is the distribution of

4 For continuous time, the convolution is evaluated with the integral f(¢) = J7, fi(t =) fo(v)dr. For discrete
time f(n) =Y ,_, fi(m)f,(n — m) is used.
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dog-out given hear-bark, the convolution of f; and f, gives the probability of dog-out
following a time-stamped hear-bark token. If the exact instant ¢,, is known accurately,
f> is simply then a unit impulse at time ¢,;,. The transfer functions used here represent
the change in probabilities of the effects following the event. If we choose to represent
the rate of occurrence of the effect, the probabilistic functions then correspond to what
is usually referred to in survival analysis as hazard functions. The Appendix reviews the
basic concepts of survival analysis as they relate to artificial intelligence.

The dog may be out and not barking (thus, dog-out may be true but without a
corresponding hear-bark event). To allow for that, a probability P,(do|hb) is required;
this is the probability that the dog is out and not barking. The probability that the dog
is out at any time ¢ is given by

P,(do) = P,(do, hb) + P,(do, hb).

To provide a failure interpretation for the above representation, consider failure to
be —dog-out. The time to failure T is the duration the dog tends to spend outside after
barking, the duration of persistence of dog-out. Here, the survival function represents
persistence. To represent causation with survival functions, we treat effects as failures,
and the failure time is the time between the cause and the effect. For example, the time
taken by an infection to create a fever is the time to failure.

Events seldom produce the same effects independent of the rest of the environment.
For example, the amount of time the dog spends outside depends on weather conditions.
This dependence takes several forms. For n binary factors, O(2") functions are needed
to represent the interactions. Section 5 addresses interactions between events. Here, we
consider interaction with background information. The background for an event is a set
of variables that affect the outcome of the event under consideration, do not inhibit nor
activate the event, are not affected directly or indirectly by this event, have a known
temporal probabilistic profile or truth value, and are more stable than the event under
consideration.

Representing these interactions requires an exponential number of conditional prob-
abilities. To reduce the exponential complexity associated with this interaction, we pro-
pose the use of two statistical models that have been useful in applications in some phys-
ical sciences, social sciences, medicine, and engineering. The models provide a compact
combination rule that replaces the exponential number of conditional temporal proba-
bility functions by expressing P,(Y| Xy, ..., X,,) as a function (X, ..., X,,, t), where
Xy, ..., X,, are the background factors (or explanatory variables). The factors can be
binary or real-valued.

A temporal distribution giving the probability that a random variable X; takes a
value x; at time ¢ (P,(X; = x;)) is necessary to deal with the uncertainty about the
value of X;. For example, assume a binary outcome Y that depends on n factors, all
having known values except for X, which takes one of m possible values at random.
The probability P,(Y|X,..., X;_1, Xj11,...,X,) can easily be evaluated when the

j
temporal distribution of X is known, in which case

Pt(Yle"“’Xjfl’Xj{»l’“‘ ,Xn):Z(D(Xl,...,Xj:xi,...,Xn, t)Pt(X]=x,),

where @ is a function modeling the interdependencies between Y on the X’s.

The two models proposed here are known in the statistics literature as the propor-
tional hazard model and the accelerated time model. Although distinct, they can be
seen as domain-dependent alternatives (Wei 1992).
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4.2.1.  Proportional Hazard Model. The proportional hazard model is a widely used
survival model; it is a parametric model that allows environmental and background
factors to be taken into consideration. As first proposed (Cox 1972), it assumes that
the natural logarithm of the ratio of the conditional hazard function (in the presence of
explanatory variables) to the hazard hy(¢) (in their absence) is a linear-weighted sum
of the risks, or

WY|X,...X,,) = hy(t)eXim BXiO,

Each risk factor X; multiplies the hazard by a constant ¢P¥: if it is present, hence the
name proportional hazard.

As an example, consider that the dog is less likely to stay out when it is raining.
The hazard function therefore becomes

h(do|X,) = ho(t)eB'X",

where X, represents the rain, B, is a parameter that reflects the effect of the rain on
the probability, and A() is calculated in the absence of rain. This new function models
the effect of rain on dog out. Now, we verify that rain is a background variable. There
is a causal relation between rain and dog-out. Rain results in dog-wet, and dog-out is less
likely given dog-wet. Second, rain does not inhibit nor activate dog-out. Third, it is not
affected by dog out. Fourth, the variable rain is true when the dog is out. Fifth, rain
tends to last longer than dog-out.

The model assumes a linear sum in the exponent Y 7", B,X;(¢), which is similar to
the linearity assumption in linear regression. To overcome the limitations implied by
the linearity assumption made by this model, nonlinear mapping functions may be used
such that the hazard function remains a linear combination of the mapped factors.

A limitation of the proportional hazard model as described above is that it assumes
time invariant effects of the factors, which is not always true. To represent time depen-
dence, it is possible to use functions B;(¢) instead of the parameters ; in the model
described above. Techniques that support such models have been proposed for contin-
uous time (West 1991) and discrete time (Singer and Willett 1993).

4.2.2.  Accelerated Time. Another way of dealing with the effects of background vari-
ables on lifetimes is to consider a different time scale ¢’ and find a function m(X, ..., X,)
such that a normal time unit (e.g., a second) in the absence of the time invariant back-
ground factors corresponds to m(Xy, ..., X,) units’ owing to the effect of the factors.
This is done by assuming that the time depends on the background variables (Kalbfleisch
and Prentice 1980). Substituting ¢ for ¢ in the original survival function produces the
new function in the presence of the factors:

S(YlX] .. Xm) = So(tm(X], ey Xn)).
The hazard function is then
h(Y|X1. . Xm) = m(Xl, ey Xn)ho(tm(Xl, ey Xn))'

For example, rain is a background factor affecting the probability of dog-out. Repre-
senting the effect of rain using this model results in the following hazard function:

h(do|X,) = eP* hy(eP¥rt).
When it is not raining, X, = 0 and A(do|X, = 0) = hy(t).

3 ¢%iBiXi js a commonly used function.
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It is worth noting that the accelerated time model is more suitable when the back-
ground factors affect the time taken by the event to happen. The proportional hazard
is more useful in expressing the change in the likelihood of the event because of the
explanatory variables.

5. CAUSALITY AND MODELS OF INTERACTION

Reasoning just with isolated events restricts the possible application domains of a
probabilistic temporal reasoning formalism. In most applications, repeated events of the
same type or event tokens of different types interact. In nontemporal systems, causal
interactions generally result in intractable knowledge acquisition and inference. Models
such as the noisy-or model (Pearl 1988) or its generalization (Srinivas 1993) are useful
in reducing this intractability. Each is designed to capture some important features
of causal interactions. A similar approach is followed here. In the present treatment
of causal interaction, no distinction is made between interacting recurring (repeated)
events of one type and interactions between events of different types.

A hierarchical nontemporal classification of causal interaction (Heckerman and
Breese 1994) distinguishes six classes of causal interactions. The most general class
is that of general, multiple-cause interaction. The second most general class assumes
independent causal inputs. The usefulness of this classification is rooted in its relation
to some models of interactions. Here, we propose a temporal classification of causal
interaction and show how the different classes are related to some interaction models.

Temporal event interactions can be divided into the following classes:

e Noninteracting events: Each event has a distinct causal structure so that the occur-
rence of one event does not affect the others’ chance of happening nor its effects.

e Temporally independent events: The effect e produced by event ¢; at time ¢ is inde-
pendent of other possible causes of e if none of them occurred concurrently with ¢;
(Heckerman 1993).

e Temporal necessity: The final effect is produced through two or more consecutive
causal processes. Each causal process produces an event that determines the final
outcome only partially by enabling some of the processes in the next level in the
causal chain.

e Interaction through effects: Causes interact to produce a single outcome. This class
includes three subclasses (Allison 1984) that roughly correspond to the following:

— Competing causes: The success of a cause in producing the effect blocks the
success of the other causes.

— Asymmetric blocking: An event can block the other causes but is not affected by
their outcome.

— Collaborating causes: Events that help each other by raising (or lowering) the
likelihood of a given outcome.

The above classification is not meant to cover all possible event interactions. The net
effect of the interaction of two events is not always related to their individual effects. For
example, pressing certain keys on a keyboard simultaneously can produce completely
different effects from those produced if the same keys are pressed sequentially.

Models of interaction can be combined by model composition so that a larger model
can be built by merging some of the simpler models. For example, two of three causes
may collaborate with each other but compete against the third.

It is also possible to use model mixtures. Model mixtures are useful when some
events randomly interact in more than one way. For example, two events may compete
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with probability p,. and collaborate with probability p;. The mixture model is expressed
as

P(Y)= pcPtL.(Y) + plPtI(Y)’

where P, (Y) is the probability obtained from the competition between events and
P, (Y) is the probability of ¥ when the events are collaborating.

Attaching causal semantics to statistical models makes it easier to integrate them
into a knowledge-based system. Causal models assume that events trigger effects either
immediately or after a time lag. The effects produced by an event may be affected
by other events. Events that do not interact at all, at neither the causal side nor on
the effect side, are completely independent or noninteracting. Two causal relation-
ships, RESULT and ENABLE, suffice to describe the causal interactions underlying the
models. RESULT establishes a cause-effect relationship between an event and a state.
A state is said to ENABLE an event if it is a necessary condition for the event to take
place (Pazzani 1990). The less formal notation “X is a RESULT of C; v ---v C,” is
used instead of “RESULT(X, C; v --- Vv C,)” for improved readability whenever possi-
ble. Similarly, for ENABLE it is employed rather casually and “a state DISABLESs an
event” if it inhibits it. The terms more likely and less likely represent the effect on the
probability of an event.

The generalized noisy-or model (Srinivas 1993) can be used for independent events
as well as temporally independent events (Heckerman 1993).

5.1. Events Occurring in Sequence

To represent temporal necessity, we introduce the sequential model. Frequently,
an event E, can only occur after another event E,. For example, walking on the moon
cannot occur except after arriving on the moon. Let T be the time E; occurs and 7, be
the time it takes E, to occur after E;; the total time T required is therefore the sum of
T, and T,. Usually T, and T, are random variables with failure distributions® F,(¢) and
F,(t). The total time T has a distribution f(z) given by their convolution:

F(t) = fooo Fy(t)Fy(1 — 7)dr.

The underlying causal model assumes that event E; is initially enabled. The com-
pletion E; results in a state ENABLing E,. This model generalizes to a sequence of n
events. For example, an E (building the rocket) may be necessary for E;. In this case,
T = Ty+T,+T,, where T is the time required to achieve Ej. If a different requirement,
Eyy (designing the telecommunications equipment), is to be satisfied in parallel with E
then E, cannot start until both tasks have been completed. In this case, assuming that
E, and E, are independent, the distribution is given by Fy,,.g = Fyo(2)Fy(?). This type
of interaction is usually useful in scheduling.

5.2. Competing Risks Model

As the name suggests, the competing risks model represents a world in which two
or more potential causes race to achieve an outcome, but the success of one inhibits the
others. Any one of C, ..., C, RESULTs in state S and state S DISABLEs C,, ...,C,
from succeeding. State S may be death or any state that cannot happen twice within

6 Assuming a failure interpretation, 7; is the time when the failure arrive on the moon occurs. This sounds
awkward but any event (even a success) is a failure from a survival analysis point of view.



366 COMPUTATIONAL INTELLIGENCE

the given time frame, and C,, ..., C, are potential causes for S. S is not necessarily
a final state, but may be one that just briefly blocks the other competing causes. For
example, consider the case of two infections with the same virus. The state antibodies
present in blood blocks second infection. Competition is a relation between events, and
in the statistical analysis of this model the nature of S does not affect the analysis.

The probability distribution for the result of the competition of two causes with
failure densities f; and f, is given by

() = fi(0)S,(1) + f()S(2),

where the survival functions S; and S, are defined as in the Appendix. Intuitively the
equation means that the failure can occur because of the first hazard and surviving
the other one or vice versa. Survival analysis provides a compact and efficient way to
represent and evaluate the overall effect of the class of competing causes. This model
can be used to model the airport pickup problem (Dean and Wellman 1991), in which
John, who has arrived at the airport, tends to wait for some time. His tendency to wait
decays with time as he gets bored. We are interested in the probability that John stays
at the airport until we arrive to pick him up. Fred can meet John at the airport and give
him a ride. Fred and boredom constitute two competing risks, each of which can cause
the failure John leaves the airport. If we have a probability distribution for the time when
Fred arrives at the airport, we can use the above formula to deduce the distribution for
the event John leaves the airport.

5.3. Dominating Events Model

In this model, one event X tends to dominate other events Cj, ..., C, such that
the probability of the outcome Y does not depend on Cy, ..., C, when X is true, or

P(Y|X,C,,...,C,)=P(Y|X).

Here, Y is independent of C, ..., C, given X but Y depends on Ci, ..., C, given
X. For example, the death of a patient prevents the development of symptoms. The
causal pattern captured by this model is as follows: X results in state S and the state
§ is necessary to enable the effect of Cy, ..., C,. Rules to determine the dominating
event are formulated explicitly along with the transfer function of this event. This model
can be also used to capture the Markovian shielding property: given the causes of an
effect, the effect becomes independent of all other events (Goldszmidt and Pearl 1992).
For example, from a complete sequence of changing-bulb events, the probability of
burned-out-bulb depends on the last changing-bulb and the lifetime of the bulbs. For this
model to apply, the dominating event must make the dominated events irrelevant to the
reasoning. Rules indicating domination, in the form “If X at ¢; then ignore Cy, ..., C,
at ¢t; in evaluating the probability of Y,” allow domination to be stated explicitly. The
model checks if the dominating event is known to be true, and ignores the dominated
events accordingly. Constructs like the most recent event, the earliest event, and the event
resulting in a state Z are usually useful in expressing the domination rules. This model
is useful in modeling the interaction for the class of asymmetric blocking.

5.4. Storage Process with Additive Inputs

A storage process, like a reservoir, warehouse, or dam, is characterized by an inflow,
a capacity, and release rules (Glynn 1989). If the events are additive inputs, the release
rules are functions of the inputs and the storage level, and the level is the degree of
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FIGURE 7. Storage model results.

belief. Changes in the storage level reflect changes in belief with time. The level at
any time ¢ corresponds to the hazard h(¢). This model can be used for the dog-out
and hear-bark causal relation. Every hear-bark token tends to fill belief in dog-out to a
certain level and the release rule guarantees exponential decay of this belief. Following
the conservation of mass principle, we cannot believe dog-out unless we hear barking at
least once. But this does not mean P(do) = 0 since the calculated value represents the
contribution of /b to the belief do, and the dog can be out and not barking.

Figure 7 illustrates how the probability of dog-out changes given different hear-
barking event patterns. In this figure, the belief dog-out rises sharply whenever hear-bark
takes place, and the degree of belief reached each time is slightly higher. If the barking
is heard continuously over a period, the belief dog-out keeps rising during that period
and then decays after barking ceases to be heard. The fourth event pattern in the figure
deals with the case when the dog is heard continuously. In this case belief rises and
then almost saturates.

For storage models, the causal model assumes collaboration and the events have an
additive RESULT but limited persistence. The outflow represents the persistence.

This is not generally used as a survival model. It may be useful however for model-
ing failure due to stress build-up. Consider a reservoir with an incoming flow (inflow)
and an outgoing flow (outflow). The incoming flow is the additive stress applied to
the system and the outflow reflects the ability of the system to recover from stressful
situations. Systems with adequate recovery can tolerate large stresses occurring over a
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long duration. They may fail however when the same stress is concentrated during a
shorter duration. The special case of unlimited recovery corresponds to systems that
would only fail if the instantaneous stress applied to them exceeds the maximum stress
they can tolerate. Systems with no recovery let the stress add up until failure. The use
of different release rules (for the outflow) can be motivated by the fact that most sys-
tems exhibit different patterns. Metals have unlimited recovery to low stresses within
the elastic region and have no recovery once the stress exceeds a critical value causing
permanent deformation.

6. PREDICTIVE AND EXPLANATORY REASONING

In a theory of action, inference is a two-stage process of explanation followed by
prediction. The explanation stage is also the backward stage because it tries to find
plausible events to explain an observation. The prediction or forward phase tries to find
the possible consequences of an event.

Performing explanation or prediction based on new evidence usually changes the
set of probabilities assigned to uncertain beliefs. Starting with a set of beliefs K and an
event or observation A, a new set of beliefs incorporating possible explanations for 4
has to be formed first, then K is updated to incorporate the possible consequences of
A and its preconditions.

6.1. Predictive Inference

Tawfik and Neufeld (1999) suggest a causal system that must consider eight cases
corresponding to the four possible persistence patterns of causes and effects paired with
immediate or delayed causation.

We assume that time of occurrence, duration of persistence of the cause, duration
of persistence of the effect, and causation delay are all stochastically independent of
each other. Let the cause starting time be given as a probability density C,(¢), the cause
persistence necessary to start producing effects is C,.(¢), the causation delay D(r),
and the effect persistence E,(¢). In this case, the probability of having effect E at time
t is given by

E(t) = C(1) & C,e(1) ® D(1) ® E, (1),

where ® is the convolution operator.

Depending on the causation-persistence pattern, terms in the above equation may
be omitted. For instance, if there is no causation delay, the delay term D(¢) is omitted.
Similarly, C,c(#) and E,(¢) disappear if the cause and/or the effect do not persist.
The above equation corresponds to a persistent cause, persistent effect, and delayed
causation. Expressions corresponding to other causation-persistence patterns can be
derived in a similar fashion.

The quantities C(7), C,(#), D(t), and E ,(¢) are in general functions of the state
as well as time. The dependence of these quantities on state reflects their conditional
dependencies.

6.2. Explanatory Inference

For explanatory reasoning, it is assumed that the time when the effect manifests
itself is known exactly or as a distribution. Now, given the effect start time Ty, , we are
interested in finding the cause time 7 , knowing the delay 7D, the causation persistence
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of the cause TC,M-’ and the persistence of the effect TEp' The time separating Ty and
T¢, is the delay time. Thus, we have

TCs = TEs - TD - TCpc'

A deconvolution operation can be performed using a transform to determine the
distribution of the time of the cause knowing the distributions of the time of the effect
and delay. Deconvolution is generally harder to evaluate than convolution (Mendel
1990).

6.3. From Subintervals to Intervals

Observing the status of a fluent or observing an event restricts the set of possible
worlds to those in which the fluent can hold or the event can happen. This restriction
is captured by the causal theory. The question that we address here is: What does the
observation tell us about what is being observed? In general, an observation is made
over a short duration (a subinterval); here we study the relationship between this sub-
interval and longer intervals. The study of temporal relationships between intervals and
subintervals has been a point of interest in temporal logic (Shoham 1988). In a proba-
bilistic theory of change, studying these relationships introduces a new set of issues. The
first is that of a sensor model (or reliability of observation). The second issue results
from the fact that different observations may belong to the same occurrence (same
token) or to different tokens. The third issue deals with bidirectional persistence of the
observed entity. How far in the past and in the future is it likely for the observation to
hold?

The present treatment ignores the reliability of observations. Appropriate proba-
bilistic solutions to this problem generally adjust the probability of evidence depending
on the reliability of the observer (Hanks and McDermott 1994). For simplicity, we
assume that observations are reliable.

Let X be a persistent cause or effect. An observation O at ¢, indicates that X holds
at this time point. First consider the persistence properties of X. If X has a limited
persistence time L, it is possible that the observation corresponds to any point within
a 2L duration. It is clear that a single observation indicates that X can start at most
L time units before ¢, and it can persist for at most L units after #,. This results in X
being possible over a 2L interval. This approach allows a formalization of the idea of
regions of bidirectional persistence (Goodwin, Neufeld, and Trudel 1991).

Many logic-based Al formalisms model time as branching into the future at choice
points and compute probabilities of future events by summing over choice points. How-
ever, frequently the past is as uncertain or unknowable as the future. This is the moti-
vation behind the idea of regions of bidirectional persistence.

Example 2. Knowing that Joe is running now suggests he was also running a minute
ago and will continue to run the next minute. Let f,(¢) give the probability that Joe’s
running continues at least ¢ units after Joe starts running. To simplify the arithmetic,
assume that time is discrete, and that a run has a maximum duration of N units. We
use the notation P(e;) for the probability that the run ends at time ¢, P(r;) for the
probability that Joe is running at time #;, and P(s;) for the probability that the run
started at time ¢,.

For a given starting time ¢, it is possible to predict the probability that Joe is still
running at ¢ given that he was running at ¢;. To calculate this probability, we use survival
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analysis, considering stopping as a failure and f,(¢) as a survival function. In this case
the probability of stopping at time ¢ is

[t — 1) = f(t — to).

P(ejlr;) =
! [t — 1)
Therefore, the probability that the run continues at ¢; is
fr(t — 1)
P(rln) = T =2,
[t — 1)

If instead we are interested in an explanation of possible starting times, we assume
prior indifference toward starting times, time invariance of f,, and then use Bayes rule
as follows:

P(s)P(rilsy)
P(r;)
_ P(s)f(4; — 1)
ZLO P(si_a)f(A)
[t — 1)

D SNEYACN]

The denominator in the above expression is constant; the numerator gives more weight
for recent possible starting times (remember that survival functions are monotonically
decaying functions of time). This supports our intuitions and the earlier result concern-
ing the degeneration of relevance of information.

P(sglr;) =

Two identical observations, O; and O, at times 7, and 7, , may belong to the same
occurrence of X or to two different occurrences. Dynamic properties, such as the min-
imum duration required for X’s recurrence or the duration between observations, can
determine the answer.” It may also be possible to determine the answer by estimating
the probabilities in each situation. If O; and O, belong to different tokens, then the
analysis in the previous paragraph continues to apply. If O; and O, belong to a single
occurrence of X, then the possible starting times are limited to the interval (7,, — L, f, ).
Moreover, X is assumed to hold over the interval (¢, , 7, ). Additional observations

regarding the interval (¢, , #,,) do not add new information.

Example 3. The red traffic light at a given intersection persists for four minutes. Arriv-
ing at the intersection, a driver makes five equiprobable hypotheses regarding the time
the light became red (corresponding to 4, 3, 2, 1, and 0 minutes ago). The driver of the
car in the next lane says that the lights were red when she came two minutes earlier.
This new information limits the possible hypotheses to three (4, 3, and 2 minutes).

In many practical situations, it is not possible or useful to assume a time limit for
the persistence of X. Reasons for this may range from the possibility that X may hold
indefinitely or that its persistence time varies widely. In such situations, it is not possible
to proceed with the analysis discussed earlier. To proceed in such situations, additional

7 It can be shown (Shahar 1997) that given a predefined confidence threshold 8 and the transition probabilities
p, and p, in a two-state Markov process, the probability that two observations belong to the same occurrence can
be determined depending on the time separating the two observations and the transition probabilities. The result
can be generalized to an n-state Markov process.
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information about X is useful—in particular, the nearest time point when —X was
observed. It is possible to deduce that at least one transition from —X to X, or vice
versa, took place during the interval between the two observations.

Example 4. Parking a car in the driveway in the evening and not finding it the next
morning may mean that it was stolen (Kautz 1986). Here, we have two observations
at two different time points: car parked in the evening at ¢ and car not parked in
the morning at ¢;. A change has occurred during the interval [7;, #;] and some event
C caused this change. P,(C) is a temporal probability distribution for the cause. This
distribution has a nonzero value at least at one point during the interval [, tj].8 This
condition guarantees that the cause could possibly have occurred, resulting in the effect.
The probability of C given E is

(CIE) Py, )(C)Py,, 1 )(EIC)
] =

o0 P ) (EIC)P, 1(C) + P[z,-,tj](E|E)P[z,-,tj](6)'

i» L

Py

If C is the only possible cause for the change E then C is certain or P[ti,tj](C|E) =
[Pri,, ) (O)P,  ((EICO)]/ [Py, )(EIC)Py, 1(C)] = 1. If C results in E with the same
probability regardless of the time of occurrence of the cause, the temporal profile of
P,(C|E) from the above expression becomes a scaled version of P(E). Therefore, the
car was most likely stolen at the time of the night when most thefts occur.

The techniques described so far in this section serve as inference rules for our
formalism. These rules are similar to logical inference rules in that they allow infer-
ence. Instead of inferring whether X is true or false, only the probability that X holds
is inferred. A consistent theory reaches the exact same conclusion regardless of the
inference rules used or the order of their application. To maintain the consistency of
the present formalism, probabilities assigned have to be consistent. The treatment is
consistent as long as it is true to the theory of probability.

7. RELATED RESEARCH

Reasoning about a changing uncertain world is a basic problem in Al. In addition
to the work done in the subarea of temporal Bayes nets, surveyed in the introduction,
there has been related work in other subareas.

Probabilities can represent the uncertainty of a dynamic world and can also han-
dle unreliable observations (Hanks and McDermott 1994). An interruptible algorithm
for temporal reasoning uses the more recent information first, then looks at the past
for information that may affect the current conclusion. This is a very different solu-
tion for the information obsolescence problem from the one proposed here. Using the
solution proposed by Hanks and McDermott, the probability of a fluent may oscillate
as it looks at older information. This cannot happen with the solution proposed here
because our information obsolescence criteria would consider all the information that
may significantly affect the belief. Our approach however is not interruptible.

Markov processes are used to represent temporal phenomena for planning and
diagnosis. The idea is to use a Markov chain consisting of a number of states where
a transition matrix represents the possible state transitions as a result of an action or
event. This model can predict the time when an observation is useful in a diagnosis

8 If the cause can result in a delayed effect then a corresponding interval [¢,, t,], where t, = t,—At, t, = t;—At,
and At, is the delay between event and effect. In this case, the techniques for delayed response can be used.
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application (Portinale 1993). Dean (1994) uses a decision theoretic approach for choos-
ing plans using this knowledge representation. Semi-Markov models are more general
models, but they tend to be more complex. Starting with a semi-Markov model and
simplifying the model seems to be a promising approach (Hanks, Madigan, and Garvin
1995). Approaches based on Markov models tend to ignore static causal relations. The
approach proposed here allows the representation of static causal relations as well as
dynamic ones.

A statistical event logic (Martin and Allen 1993) uses statistics to associate confi-
dence intervals with the effects of an event in a planning application. This confidence
interval is updated as the planner accumulates more experience. This statistical event
logic uses Allen’s (1984) temporal interval representation.

The use of simulation to perform temporal projections has attracted some attention
(Yampratoom 1994). To calculate the probability of a fluent affected by a number of
interacting events, events are generated based on their probability distribution. This
approach has some advantages, including asymptotic convergence and interruptibility.
The description of this system indicates that it supports to some extent concurrent
interactions and takes into consideration the reliability of sensor observations. Stochastic
simulation is also used to evaluate time-sliced Bayes nets (Kanazawa, Koller, and Russell
1995). Simulation can also be used within the proposed framework as a technique to
calculate the probabilities.

8. DISCUSSION AND CONCLUSIONS

Getting temporal probabilities remains a challenging task. In the examples discussed
here, some probabilities can be objectively determined from frequencies—for example,
P(fo). Others, such as P(do|hb), are more subjective. Failures in circuits can be esti-
mated from reliability models and may be thought of as propensities. Statistical models
allow us to deduce the effect of infections. Such compromises are often forced on the
Bayesian (Good 1983). The use of statistical techniques alleviates this problem to some
extent due to the availability of software tools capable of deducing survival functions
from data. The knowledge acquisition step would involve deducing survival functions
and models of interactions from data.

Semi-Markov models are a generalization of survival models. Actually survival
models can be deduced from semi-Markov models as special cases. They also general-
ize Markov models, which are becoming increasingly popular for probabilistic temporal
representation. A semi-Markov model is similar to a Markov model but the sojourn time
in a state is given by a survival function (Barlow and Proschan 1965). These models may
be a good tool for more complex system. The choice of a knowledge representation is
usually a question of choosing the least computationally demanding tool for the task
at hand.

The knowledge representation consists of a static knowledge base and a dynamic
one. The static knowledge base contains a description of event types, their survival func-
tions, causal description of interactions, possible observations, the structure of possible
cause-effect relationships in different contexts, background factors affecting each sur-
vival function, and Bayesian network structure. The dynamic knowledge base contains
observations, events, and actions known about the time period under consideration. It
also contains the updated probability profiles.

The techniques and results discussed earlier have many uses. For example, the idea
of extraneousness can be used to divide the time line into related periods in virtu-
ally any temporal representation. The original intent of this work is to explore less
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computationally expensive techniques for probabilistic temporal reasoning. For read-
ers interested in implementing some of the ideas discussed here, we propose a system
structure consisting of the following modules:

1. An extraneousness test module that divides the time line into a set of related seg-
ments, and calculates the steady state probabilities.

2. An explanatory inference module that deduces the possible causes and precondi-
tions for each observation.

3. A projection module that projects the effects of events, states, and deduced precon-
ditions into the future.

The system described performs the two basic tasks in temporal reasoning: prediction
and explanation. Many real-life problems including plan evaluation, medical diagnosis,
and fault diagnosis in physical systems require these capabilities.

To evaluate a plan, the probabilities of different desirable and undesirable outcomes
are needed. In medical diagnosis, information about the temporal progress of the symp-
toms may give strong evidence supporting a possible diagnosis. Lifetime information
about the different components is very useful. Dynamic systems cannot be analyzed,
simulated, or diagnosed without some type of temporal representation.

To summarize, the present article analyzes some aspects of temporal probabilistic
reasoning. The results of this analysis are as follows:

1. If the duration between the observation time and the time point of interest is
long enough, the observations can be ignored without loss in the accuracy of the
conclusion.

2. The length of the duration required to make past observations extraneous depends
on the dynamic nature of the system as reflected by the probability of transitions.

3. A temporal reasoning system has to perform three tasks: represent fluents, infer
events from observations, and reason using interacting events.

4. Some interaction models can be used to reduce the elicitation and the inference
complexity in probabilistic temporal reasoning.

In addition to the above, we have tried to provide useful categorization for the
temporal relationship between causes and effects, and a classification for event
interactions.
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APPENDIX: SURVIVAL ANALYSIS AND
ARTIFICIAL INTELLIGENCE

Survival analysis is a relatively new subarea of statistics that emerged in response to
the need to study events and event interaction. It differs from Markov models in that
it uses distributions instead of a single transition probability. It differs from life-table
methods in that it can account for time varying and time invariant factors affecting
lifetimes. Survival analysis techniques, used in a wide variety of disciplines, are mostly
the same whether the center of interest is the failure time of an engine or the success
time in performing a given task in a learning process. The “failure” is any event of
interest that can occur at any point in time. The “hazard” is the rate of occurrence of
the event and a ‘risk’ is a potential cause.

Some earlier works have considered the use of survival models for temporal repre-
sentation (e.g., Dean and Wellman 1991). The use of survival functions here is different.
This difference is mainly attributed to our use of regressive survival functions. Regres-
sive survival analysis expresses the probability of an event conditioned on observations
and other events. To account for events interaction, survival models provide a compact
and efficient solution. They avoid the problem of accounting for some factors more
than once (Dean and Wellman).

In Section 5, survival models are introduced and used to predict the effect of event
interactions. The advantages of using survival analysis are numerous, including the avail-
ability of survival analysis software tools to extract survival functions from historical
data. They are also based on sound probabilistic theory and fit directly in the proba-
bilistic reasoning framework. On the other hand, to make them fit into the Al setting,
we generalize the models in more than one way. First, the concept of time here is not
limited to clock time and utilization time but extends to include other forms such as the
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number of times’ a certain fluent was true. Second, the assumption that a failure can
occur only once corresponds to a single occurrence of events assumption. Often, such
an assumption cannot be allowed; we have to allow multiple occurrences. Third, the
assumption that everything fails eventually is equivalent to assuming that every event
will occur at some future time.

Fortunately, these same assumptions are known to be problematic in social sciences
(Allison 1984). Violating certain assumptions does not affect the models in any serious
way. Others require some caution. The first assumption can be relaxed without prob-
lems. To allow the representation of repeated events, we consider each token of such
events as a different event. The third assumption, the inevitability of death assump-
tion, holds in a range of situations. For example, in model-based diagnosis, it is safe to
assume that any component will eventually fail. In many other cases, this assumption is
not justified. In such cases we can consider events that do not occur as happening at
t = oo. Most of the relationships and analysis continue to hold with some exceptions.
We illustrate below, as an example of such exceptions, how the inevitability of death
assumption affects the evaluation of survival functions. Some particular models make
some assumptions regarding the mathematical properties of some functions (such as
linearity). These assumptions can also be relaxed without serious problems.

In the following, T is the time of occurrence of an event E (or a failure). The
temporal distribution of occurrence of an event can be expressed as a survival function
Sk(t), a probability density function fz(#), a probability distribution Fg(¢), or a hazard
function /g(t). We drop the subscript if there is no confusion about the event. The
probability density function f(¢), defined only for continuous time, is given by

. Pt<T<t+Ar)
@)= Alggo At '

The probability distribution function F(#) is the probability that the event occurs by ¢
and is defined in terms of f(¢) as

t
F(t) = P(T < 1) :/ F(x)dx.
0
The survival function S(¢) is the probability that the failure has not occurred by time
S(t)=1-—F(¢).

If the inevitability of death assumption holds, we have that

Sy =P(T>0= [ f@a.

If death could be avoided, which may be the case given a certain interpretation
of death, then the first expression for S(¢) determines the occurrence of survival. The
second expression fails to account for individuals who never die (or die at t = co). The
inevitability of death assumption is sometimes woven into some survival models. One
ought to be careful when using these models if this assumption does not hold.

9 Using the count of times the key is turned as our time allows us to represent the decreasing belief that the
engine will start as we repeat turning the key over and over. This example is from Darwiche and Goldszmidt (1994).
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The hazard function A(t) is the rate of occurrence of the failure and it is defined as

P(t<T<t+AHT = 1)
At '

b = Jim,

We can also deduce that 4(¢) = f(¢)/S(¢). By substitution and integration we get a
useful general form for the survival function (correct even if the inevitability of death
assumption does not hold):

S(t) = e~ hhx)dx,

From the above equations, we can draw several useful conclusions. First, simple
relations exist among the four functions and knowing one fully specifies the others.
Second, the survival function is monotonically decreasing because an event is more
likely to happen as we allow for more time. For example, a constant hazard would result
in an exponentially decreasing survival probability. Third, the equations described do
not consider the effect of variables other than time. Solution of this problem requires
the use of models. These models replace /(¢) by a conditional version A(t| X1, ..., X,),
where the X; are in general time varying factors affecting the survival. These factors
are sometimes called explanatory variables.

For small At, h(t)At, according to its definition, approximates the conditional prob-
ability that the event occurs during the period Az. The conditional probability that an
event E takes place during an interval At is given by

Se(t) — Sp(t + A)‘

Pp(t<T<t+AT>1)=
Se(1)




