
Web based metacomputing using DEDIP: application development perspectives

A. K. Aggarwal*, S. C. Patodi**, Paresh Patel§, and Haresh S. Bhatt¥

* Professor & Head
Department of Computer Science
Rollwala Computer Centre
Gujarat University
Ahmedabad – 380 009
Email: aka19@hotmail.com

** Professor
Faculty of Technology & Eng.
M. S. University of Baroda
Baroda - 395001
Email: appmech@vsnl.com

§ Lecturer
Dept. of Civil Eng.
Nirma Institute of Technology
Ahmedabad – 382 481
Email: parpat1@yahoo.com

¥ Scientist “SE”
ND/ITAG/SITAA
Space Application Centre (ISRO)
Ahmedabad – 380 053
Email: haresh@ipdpg.gov.in

Abstract

Development of a parallel application, a distributed application or a web-based application is quite
a challenging job. DEDIP is a metacomputing environment which makes such a development very
easy. DEDIP was mainly developed for image processing applications. However, users from other
fields can use it with advantage. This paper presents the use of DEDIP in two such fields, one in
civil engineering for a parallel processing application development and the second in a web-based
application developed for distributed processing over Internet.

1. Introduction

Network of workstations has been used for parallel and distributed processing for years.
PVM [1] was considered as the parallel machine of a poor man. The invention of Internet
has increased the scope of usage of network of workstation.

Internet was invented mainly for information sharing. However it can also be used for
parallel processing and distributed processing. Meta computing is the emerging technology
that uses the Internet for parallel and distributed processing. Many scientists are working in
this field for many years and different metacomputing environments are being developed [2-
11]. DEDIP is one of the metacomputing environment that was developed in a research
project at Gujarat University mainly for parallel and distributed image processing [10,11]. It
has been used operationally at the Space Applications Centre, Ahmedabad.

This paper presents the usage of DEDIP in parallel application & web-based application
development in the fields other than the image processing. We have considered one civil
engineering application for parallel processing and a group of web-based applications for
distributed processing.

 22.1

mailto:aka19@hotmail.com
mailto:appmech@vsnl.com
mailto:haresh@ipdpg.gov.in

2. Metacomputing Environment

Many scientists are working in the field of metacomputing [2-11] providing different
facilities to the users.

JavaParty [2] provides mechanisms for transparently distributing remote objects. ParaWeb
[3] is an implementation of the JVM that allows Java threads to be transparently executed
remotely. Charlotte [4] provides a high level solution that decouples programming
environment from the execution. Its disadvantage is that the programmer does not have
explicit control over resource utilization. However, its eager scheduling enables the runtime
systems to efficiently provide load balancing. Popcorn [5] provides a Java API for writing
parallel programs for Internet distribution. Applications are decomposed, by the
programmer, into small, self-contained subcomputations, called computelets. The Popcorn
is based on buyer-seller concept. It has a centralized entity called the market that determines
which CPU seller executes the computelet. Javelin [6] is an infrastructure for Internet based
parallel computing. Any free computer system can volunteer to execute a task using the
applets supported by Javelin. It follows a client-broker-server architecture. Bayanihan [7]
and Ninflet [8] are also very similar to the Javelin.

 The methods, reported in most of the above, concentrate in providing computation power to
a large and complex application efficiently. All of them expect efficient parallel and
distributed programming skills. Their definition of ease of use is around application
compilation, scalability, load balancing, fault tolerance, etc.

The WebFlow [9] provides Java-Swing based visual programming environment for
metacomputing using Java.

The programmer needs to use Java for metacomputing in the above models. Furthermore,
the GUIs of the above models support the monitoring and controlling of an application in
the stand-alone mode. Therefore, they do not require elegant & easy GUI for simultaneous
execution, monitoring and controlling of multiple applications.

DEDIP [10,11] concentrated on the vast community of scientific users rather than on the
efficient programmers for parallel and distributed computing. It made the distributed
application development very easy. It supports all languages like Fortran, C, C++ and Java.
Its GUI supports all the needs of operational environment executing multiple heterogeneous
applications simultaneously. It has its own backend support for process scheduling and
monitoring.

3. DEDIP Overview

DEDIP was mainly developed for helping the image processing scientist for parallel and
distributed processing over a network of heterogeneous system consisting of VAX/VMS
and Unix work stations. Later it was extended for other platforms using Java. It is using
Internet for parallel and distributed processing. The DEDIP makes the application
development very easy. The user has to simply visualize the parallel & distributed
processing possibilities in his application. He then has to divide the application in small
tasks accordingly. He should interface all tasks using intermediate files and test the
complete applications on a single machine. DEDIP provides browser based GUI to the user

 22.2

to configure his tasks to make a parallel or distributed application as per his visualization.
DEDIP builds the application components (tasks) on remote machine as per the user
configuration. DEDIP provides a full-fledged operation environment for executing the user
application. The entire DEDIP user interface is user friendly. It is browser based, enabling
the user to operate from any node over the Internet.

4. DEDIP applications

DEDIP has proved its usage in the field of image processing. We have used DEDIP in two
other fields. One is in civil engineering for parallel processing using a network of Windows
& Unix work stations. The second is for developing a group of web based applications.

4.1 Distributed parallel processing

Under a research project work, being carried out at Nirma Institute of Technology
(affiliated to Gujarat University) jointly with M.S. University for solving structural
analysis problem in the field of civil engineering. We have used DEDIP, instead of
PVM or any other parallel machine, to carry out the feasibility study.

Analysis of large-sized complex structure such as multistoried buildings, long span
bridges and tall towers involves formulation and solution of a large number of
equations. Either matrix stiffness method or finite element method can be used to solve
such complex structures. The analysis of such large structures, involving thousands of
unknowns, may be expedited by subdividing it into smaller parts referred to as
substructures.

In the substructure technique [12], each substructure is analyzed separately and the
results are combined to yield the displacements and stresses in the actual structure. The
use of substructure technique depending on the size of each substructure and the
number of substructures, may results in a considerable saving of storage (about 30 to
40%) and nearly 10 to 20% saving in computational time. To speed up the analysis
time, the parallel processing approach can be used. A hardware system, dedicated to
parallel processing, is expensive. Parallel processing over a network of workstations is
an economical alternative. A network of workstations can be visualized into a
distributed computing environment for tackling each substructure on a separate
workstation using message passing functions [13] for the communication of data
between the computers.

4.1.1. The Sub Structural Technique

The method of sub-structuring for static structural analysis is based on subdividing
the large structure into smaller parts, which is known as substructure to obtain the
relationship between forces and displacements at the common interfaces or
boundaries. These boundary variables are then determined and are used to obtain the
unknowns within each substructure. The division of the structure into smaller parts is

 22.3

totally left to analyst, but it will affect the communications between the computer
and subsequently the efficiency of computation.

In the displacement formulation for structural analysis, the basic equation is the
equilibrium equation applied to the structure as a whole and is given by

[K] {r} = {P} …….(1)

Where [K] is the stiffness matrix, {r} is the displacement vector and {P} is the load
vector.

Using the substructure technique, the above equilibrium equation is obtained by the
assemblage of substructure equations. For each substructure, the stiffness matrix, the
displacement vector and the load vector are partitioned corresponding to internal and
boundary degrees of freedom {di} and {db} respectively as follows:

 [kii] [kib] {di} {Qi}
 = …………….(2)
 [kbi] [kbb] {db} {Qb}

In the above equation, a boundary node is defined as a node which is a part of more
than one substructure and the degrees of freedom at the boundary nodes are termed
as boundary degrees of freedom.

Now the analysis can be performed in two stages,

1. Considering degrees of freedom at the boundaries as fixed, each substructure
is analysed on different computers in parallel. Denote the solution obtained
from this step by a superscript α.

2. Combine the condensed stiffness of the substructures from different
computers to get the global structure stiffness matrix and analyse the
assemblage by releasing the boundary degrees of freedom. Denote the
processing carried out in this step by a superscript β.

The displacement and load vectors can now be expressed as the sum of above two
cases as,

 {di} {di

α} {di
β}

 = + …………..(3)
 {db} {db

α} {db
β}

and

 {Qi} {Qi

α} {Qi
β}

 = + …………..(4)
 {Qb} {Qb

α} {Qb
β}

 22.4

where subscript i and b denote the terms corresponding to the internal and boundary
degrees of freedom respectively.

Obviously as {db

α} is the displacement at the boundary degrees of freedom, when
boundaries are fixed, it will be zero. Thus

{db
α} = {0} …………….(5)

Also in the first stage of the analysis, all the forces are applied at the internal nodes
of the substructure and hence these forces do not appear at the second stage. Hence,

{Qiβ} = {0} and {Qiα} = {Qi} ……….….(6)

STAGE I : ANALYSIS WITH FIXED BOUNDARIES : Substituting the value of
{db

α} = {0} from Eq. 5 into the equilibrium Eq. 2, the set of equations for the first
stage of analysis with boundaries of substructure fixed can be written as,

 [kii] [kib] {di

α} {Qi}
 = ………….(7)
 [kbi] [kbb] {0} {Qb

α}

Solving the first set of above equation ,

{di
α} = [kii]-1 {Qi} ……………..…(8)

Substituting the value of {diα} in the second equation

{Qb
α} = [kbi][kii] -1 {Qi} …………………(9)

Here {Qb

α} is the force required to be applied at the substructure boundaries to keep
the boundary displacements equal to zero. The above analysis is performed on all the
substructures in parallel on different computers .

STAGE II : ANALYSIS WITH BOUNDARIES RELEASED : Again substituting
the value of {Qb

β} in Eq. 2 the set of equations for the second stage of analysis with
boundaries released can be written as,

 [kii] [kib] {di

β} {0}
 = ……….(10)
 [kbi] [kbb] {db

β} {Qb
β}

Solving the first set of equation we have,

 22.5

{di
β} = -[kii] -1 [kib]{db

β} …………(11)

Solving the second set of equation we get,

[kbi]{di
β} + [kbb]{db

β} = {Qb
β} ……..(!2)

Substituting from Eq. 11 for {di

β} into Eq. 12 we get,

-[kbi][kii] -1 [kib]{db
β} + [kbb]{db

β} = {Qb
β} ……….(13)

or

[k*] {db
β} = {Qb

β} ………...(14)

where

[k*] = [kbb] – [kbi][kii] -1 [kib] ………..…(15)

The Eq. 15 is the equilibrium equation for the substructure in terms of its boundary
degrees of freedom and [k*] is the corresponding stiffness matrix called as
condensed stiffness matrix. This analysis will be carried out in parallel for all the
substructures on different computers and the condensed stiffness matrix for each
substructure are assembled to form the global structure stiffness matrix. Thus,
 s=n
 [K] = ∑ [k*]s ……………….(!6)
 s=1
and

 s=n
 {P} = {Qb} – ∑{Qb

α}s ………….…(17)
 s=1

In the above equations n stands for the number of substructures which is equal to the
number of computers. The assemblage of the substructures through Eq. 16 and 17
leads to Eq. 1 where all the degrees of freedom are along the common boundaries of
the substructures. Solution of Eq. 1 gives the global displacements along the
boundaries of the substructure. Now, picking up the appropriate displacements, the
vector{db

β} can be obtained for each substructure, which will be communicated to
different computers and from that {di

β} can be determined as per Eq. 11.

Thus all the values of {d} required in Eq. 3 are known for each substructure and
from that other quantities like member end forces, stresses and strains can be
calculated.

4.1.2. Implementation method

Here the method of substructure technique is illustrated with the help of a simple
example of a plane truss by subdividing into three substructures. Obviously, it is
easier to analyze this structure without subdividing it into substructures. Therefore

 22.6

its analysis by the method of substructures using distributed computing strategy is
presented here solely for the purpose of demonstration of use of DEDIP environment
in structural engineering.

10

10

10

10 (b) Substructure 1 (c) Substructure 2 (d) Substructure 3

10

10

 3m

Complete Structure

FIG 1 : EXAMPLE OF ANALYSIS OF A PLANE FRAME

Fig. 1 (a) show the whole truss of width 3m and height 18m subjected to horizontal
load. The number of unknowns in complete structure is 25. The whole structure is
divided in to three substructures as shown in Fig. 1 (b), (c) and (d). Using
substructure technique, the number of unknowns for substructure 1 is 8, for
substructure 2 it is 4, and for substructure 3 it is 4. These structures are solved in
parallel on three computers and condensed stiffness matrix is assembled for the
whole structure, where the number of unknown is 9. So the number of equations to
be solved at any time will be reduced, which will increase the computational
efficiency.

4.1.3. Parallel processing using DEDIP

Such an implementation using either parallel machine or PVM needs dedicated
efforts. Civil engineers need to develop the skills in parallel programming that
includes the process forking, joining, synchronization, data communication issues,
etc. Furthermore he needs to learn the special debugging techniques for testing his
parallel application. DEDIP helps him in avoiding all such additional overheads.

Structural analysis application was divided into 5 small tasks named Parant1,
Parant2, ..Parant5. The interface among different tasks is carried out using
intermediate files. For example, A1.dat is used between Parant1 and Parant2. These
tasks were executed on a single system in accordance with the required sequence to
carry out the functional test.

 22.7

All the tasks are then inter linked using DEDIP GUI to configure the application for
parallel processing. Figure 2 shows screen shot depicting the required
interdependency.

Figure 2: DEDIP GUI to configure the parallel application

The task Parant21, Parant22 and Parant23 are the copies of Parant2 running in
parallel. The same is true for parant4 also. The DEDIP GUI was used to provide the
information about remote node on which the process is to be executed.

Following type of modifications were carried out at a few places for satisfying the
DEDIP requirements. It was possible to complete them in one day.

 Original code

 fp = fopen(“A1.dat”, “r”);

 Modified code

 {

 char DedipArea[150], ApplicationName[50];

 22.8

 int counter;

 strcpy(DedipArea,argv[argc-2]);

 strcpy(ApplicationName,argv[argc-3]);

 counter = atoi(argv[argc-1]);

 fp = fileopen (“A1.dat”, “r”, DedipArea, ApplicationName, counter,
“Intermediate”);

 }

The DedipArea is the logical working area in which the temporary files will be
stored on any remote machine. The physical area will differ from one system to
another. ApplicationName is required to find out the actual path of the application to
which process belongs. Counter is used to provide the SAMD facility to the
application. The intermediate and output files created will become unique by using
the method incase the same application is started multiple times for different dataset.
The argument decides whether the file is input file (Constant), intermediate file or
the output file. DEDIP will delete all the intermediate files on successful completion
of the application. DEDIP delete output files periodically at define by the DEDIP
administrator.

The application was executed using the DEDIP run time environment.

4.2 Web applications

Another usage of the DEDIP was in the field of developing web based applications.
Recently, DEDIP was used by scientists were for developing web-based applications
for automating several tasks using Intranet [14].

4.2.1. Different applications

The scientists needed to develop various web-based applications like hierarchical
progress reporting & compilation, meeting management, project task management,
personal task management, document authentication, resource booking, complaint
management, job workflow, remote system configuration detection, etc.

These applications have front-end browser based GUI to interact with the user. Each
application has the business logic at the back-end. Each application needed to store
& retrieve the information into the database on the database server. The application
needed to create the required web pages dynamically on the web server and link
them to the application. Some applications required connecting to the email server
for sending information to the user in electronic form. Thus each application follows
web based client-server model where the back-end business logic is executed on
different servers while the front-end GUI is executed on the user node through the
standard browser.

 22.9

4.2.2. Solutions

Each application had complex GUI that cannot be implemented using simple
HTML. Active Server Pages were also not found adequate for the application. Hence
it was decided to opt for Java applets. The server side execution as well as inter
server communication can be supported by CGI scripting or Java servlet. It needs to
work out communication protocol, server to server interface and tedious coding for
data communication for each application. Furthermore, it would restrict the
modifiability due to complexity involved in development. The protocol and network
communication may be required to be changed every time a new functionality is
added in an application.

Initially, a feasibility study was carried out for DEDIP usage to reduce the
application development complexity. On success, all the applications were
developed using the DEDIP.

4.2.3. DEDIP Usage

The DEDIP has three major components; DEDIP server, DEDIP agent on every
machine and browser based GUI. The DEDIP GUI was not used as each application
has its own complicated browser based GUI. The DEDIP server and agents were
found useful for executing business logic on different servers. The generalized
implementation model is shown in figure-3.

DEDIP agent on
web server

Result

Result
Request

Request

DEDIP agent on
email server

DEDIP agent on
database server

DEDIP server
on web server

Application
GUI on User
browser

Figure 3: Application implementation model interfacing DEDIP components

The application GUI communicates directly with DEDIP server. It requests the
DEDIP server to execute its business logic on the specific node. The DEDIP server

 22.10

passes the request to the DEDIP agent on the specific node. The DEDIP agent
satisfies the requests and returns the result to DEDIP server. DEDIP server returns
the result to the application GUI.

The DEDIP has its own library for communication among DEDIP server, DEDIP
agents and DEDIP GUI. The application designers were asked to use a class named
“RequestObject”. They need to call only one function
“RequestToServer(remotenode, Object)” to interface with server. The passed-object
implements the business logic. The user should develop this class based on his
application requirement. He needs to implement an interface called “void ExecuteOn
Server()” where he controls the business logic. He need not bother about the client-
server programming, communication protocol, and server-to-server communication.
He simply has to interface his business object with his GUI.

When client GUI invokes RequestToserver(….) function, it passes application object
to DEDIP server residing at the web server. The DEDIP server passes application
object to the required agent at “remotenode”. The agent executes the function
“ExecuteOnServer()” of the application object. It returns the application object back
to DEDIP server. The DEDIP server returns the application object back to the
application GUI. The returned object contains status as well as the data generated by
the user’s business logic.

All this communication and execution is transparent to the user. It is carried out by
DEDIP.

The user has to simply develop an interface with DEDIP. Each application designer
could easily understand the interface and adept it within an hour.

DEDIP needed a small modification in the communication library for such an
interface. This modification was carried out within one day.

5. Conclusion

It is observed during the implementation of the structural analysis algorithm for civil
engineering using DEDIP that the user had to modify his code as required by the DEDIP.
However, the modification is quite simple, easy to understand and easy to implement. On
the other hand, the parallel programming using an environment like PVM would have been
too complex. As the analysis model taken for the test case was quite simple, we could not
compare the computation timings for sequential processing and parallel processing.
However the ease of implementation has encouraged as well as given confidence in using
DEDIP for complex analysis algorithms.

The web based application had really proved the DEDIP capabilities in simplifying a
complex client-server implementation. DEDIP is currently being used by 10 to 15 web
based applications. The users have started using DEDIP for other applications, which are
under development.

 22.11

 22.12

Acknowledgement

Authors thank Mr. Pranav Vora for his implementation.

References

1. http://www.epm.ornl.gov/pvm
2. M. Philippsen, M. Zenger, JavaParty – transparent remote objects in Java, Proc. of ACM

1997 PPoPP Workshop on Java for Science and Engineering Computation, (1997).
3. T. Brecht, H. Sandhu, M. Shan, J. Talbot, ParaWeb: towards world-wide supercomputing,

Proc. of 7th ACM SIGOPS European Workshop, (1996).
4. Baratloo, M. Karaul, Z. Kedem, P. Wijckoff, Charlotte: Metacomputing on the Web, Future

Generation Computer Systems, Vol. 15, (1999), 559-570.
5. N. Camiel, S. London, N. Nisan, O. Regev, The POPCORN project: Distributed

Computation over the Internet in Java, 6th International World Wide Web Conference,
(1997).

6. M. Neary, B. Christiansen, P. Cappello, K. Schauser, Javelin: Parallel computing on the
internet, Future Generation Computer Systems, Vol. 15, (1999), 659-674.

7. L. Sarmenta, Bayanihan: Web-Based Volunteer Computing Using Java, 2nd International
Conference on World Wide Computing and its Applications, (1998).

8. H.Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, U. Nagashima, Ninflet: a
Migratable Parallel Objects Framework using Java, Proc. of the ACM 1998, Workshop on
Java for High_performance Network Computing, Palo Alto, CA, (1998).

9. T. Haupt, E. Akarsu, G. Fox, W. Furumanski, Web based metacomputing, Furture
Generation Computer Systems, Vol. 15, (1999), 735-743.

10. Haresh Bhatt, CVS Prakash, A K Aggarwal, DEDIP: Development Environment for
Distribute Image Processing, Submitted to DS Online, http://computer.org/channels/ds/

11. Haresh Bhatt, V H Patel, A K Aggarwal, Web enabled client-server model for development
environment of distributed image processing, accepted in GRID-2000, International
conference on metacomputing to be held at Banglore, India, during 17-20 December, 2000.

12. Ghali, A. and Neveille, A. M. : “Structural Analysis – Unified, Classical and Matrix
Approach”, Chapman and Hall, 1989.

13. Umesha, P. K. and Venuraj, M. T.: “structural Design Optimization with Parallel Sensitivity
Analysis on Message Passing Systems”, Advances in Structural Engineering - Proceedings
of the International Conference on Structural Engineering, Ghaziabad, pp. 704-710, Sept.
1999.

14. Design overview of project & work-flow management automation, Technical report,
CNF/SIIPA, Space Applications Centre, Ahmedabad, India.

http://www.epm.ornl.gov/pvm
http://computer.org/channels/ds/

	Web based metacomputing using DEDIP: application development perspectives
	Email: aka19@hotmail.com
	Abstract

