ISAPI PACKET FILTER

Project II of 03-60-592
ISAPI Packet Filter

A filter allows only hosts with selected IP address to access

Instructor:

Dr. A.K. Aggarwal:
Submitted By

(Robin) Cong Cai

(Jackie) Jigang Yang

(Louis) Ning Xiao

Date: March 8th, 2002

2I. Overview

II. Project Description
2
III. ISAPI Filter
2
IV. Workflow
3

V. Project Architecture
4

VI. The Code
5

1) IPFilter.cpp
5
2) IPFilterDB.cpp
8
3) IPFilterPool.cpp
11
VII. Installation
15
VIII. Testing and Evaluation
16
IX. Future Work
17
Reference
17

I. Overview

Computer networks and the Internet, by their nature, support the free flow of information; nevertheless we have thousands of reasons to break this rule. Even for publishing website on the internet, we may not want everybody to read that. For small businesses or individuals, we can restrict our web contents accessible only to authorized users by deploying firewall or AAA server, but the simplest and cheapest solution to this general concern might be installing a traffic filter on the IIS web server.

In many circumstances, HTTP server can act as a portal to the internal network, thus packet filter even provides a basic level of security for controlling access to internal network.
II. Project Description

This paper is a report for project II of course 03-60-592. Our group, (Robin) Cong Cai, (Jackie) Jigang Yang and (Louis) Ning Xiao, wrote an ISAPI IP packet filter and tested its functionality. This filter is design to only allow hosts with selected IP address to access our web server.

III. ISAPI Filter

We choose to adopt ISAPI as our traffic filter develop tool. An Internet Server Application Program Interface (ISAPI) filter is a set of Windows program calls that allow you to write a Web server application that is faster than a CGI.

Using ISAPI, we created a dynamic link library (DLL) application file that can run as part of the Hypertext Transport Protocol (HTTP) application's process and address space. There is a special kind of ISAPI DLL which is called an ISAPI filter. The ISAPI filter hooks into the IIS system and monitors certain events that occur while the client tries to read a page from HTTP server.

IV. Workflow

Our ISAPI packet filter application sits between the network connection to the client and the HTTP server, allowing us to control the data exchange between the IIS server and the client.

When the ISAPI filter gets a notification from the IIS, we then can manipulate the notification's data. In our implementation, we monitor the IIS’s OnUrlMap notification. Since we want to capture every URL requests, this is the most suitable notification. When the client attempts to access a HTTP file the server will try to map the logical path to the physical path, and that's when the server will notify us.
When receiving a client’s URL request, the packet filter examines the client’s IP address and determines whether the IIS is to continue to process the request or packets are to be blocked. We use a txt file (ipaddressdb.txt) to keep track of authorized IP addresses. The filter first looks in a cache of recently allowed addresses, and when that fails, it looks in the txt file. This offers an efficient way to authorize connections: as each request comes in first through the filter, speed becomes a critical issue, the cache is then essential to make the filter to allow or deny access without being noticed. If it is a “illegal” client request, then we will block it and display the IP address and “Error 404: Unauthorized User. Access Denied“. Below is the work flow of the entire architecture:

CIPFilter
|

|----- Initialize the IP Database

|

|----- Mapping the incoming URL or IP address into the Database
| |----- Searching the IP in the Cache

| |----- Searching the IP in the Database

| |----- Validate the address

| |----- Accept or Reject

|

|----- Release System Resource upon the class destruction
V. Project Architecture

The project is a standard application-wizard generated ISAPI filter and is written by Visual C++. Our source code’s core class, IPFilter, is derived from an Internet Server API class -- CHttpFilter. Under our test, the filter works well under Windows 2000/Windows XP with IIS 4.0/5.0 installed.

There are 4 parameters that can be changed to fine tune the filter: the maximum number of cached addresses, the position after which a cached entry will be moved to the front of the list (to make the search time shorter!), the name of the file that contains the IP address list and the name of the html file that indicates to the client that a host with its IP address is not allowed to access this server. All these parameters are #define directives in the IPFilter.h header file.

The main functions we provided in our projects are listed as the following:

GetFilterVersion: Overridden ISAPI Function, creates the handle to the IP Database

OnUrlMap: Overridden ISAPI Function, mapping the incoming IP address to database and take appropriate action

AddIPToPool : Add IP to a predefined memory space(ipPool) when found in the DB

CleanUp: Release the predefined memory space.

Initialize: Execute Initialize IPDatabase and InitializePool function

InitializeIPDatabase: Initialize IP Addresses database

InitializePool: Initialize the memory space ipPool

SearchIPInDB: Search IP Addresses in the IP database

SearchIPInPool: Search IP Addresses in the ipPool memory block

ValidateIPAddress: Collect and transfer the search results to ISAPI

ipPool: predefined memory space, the ip addresses are loaded from the file, and stored here.

VI. The Code

1) IPFilter.cpp

/* IPFilter.cpp: this module implement the overrided ISAPI extentensions

 for proper functionality*/

#include "stdafx.h"

#include "IPFilter.h"

///

// The one and only CWinApp object

// NOTE: You may remove this object if you alter your project to no

// longer use MFC in a DLL.

CWinApp theApp;

///

// The one and only CIPFilter object

CIPFilter theFilter;

DWORD CIPFilter::lPoolIPs = 0;

CHAR* CIPFilter::mIPBuffer = NULL;

LIST_ENTRY CIPFilter::listPoolHeader;

CRITICAL_SECTION CIPFilter::CriticalPoolSection;

// Initialize IPFilter class

CIPFilter::CIPFilter()

{

bPoolInitialized = FALSE; //assume the Pool is not initialized

}

//exit and release system resources

CIPFilter::~CIPFilter()

{

 if (mIPBuffer)

 LocalFree(mIPBuffer);

CleanUp();

}

BOOL CIPFilter::Initialize()

{

return (InitializeIPDatabase() && InitializePool());

}

BOOL CIPFilter::GetFilterVersion(PHTTP_FILTER_VERSION pVer)

{

if (!Initialize())

return FALSE;

// Call default implementation for initialization

CHttpFilter::GetFilterVersion(pVer);

// Set the flags we are interested in

pVer->dwFlags = SF_NOTIFY_ORDER_DEFAULT |

SF_NOTIFY_SECURE_PORT | SF_NOTIFY_NONSECURE_PORT |

SF_NOTIFY_URL_MAP;

// Load description string

TCHAR sz[SF_MAX_FILTER_DESC_LEN+1];

ISAPIVERIFY(::LoadString(AfxGetResourceHandle(),

IDS_FILTER, sz, SF_MAX_FILTER_DESC_LEN));

_tcscpy(pVer->lpszFilterDesc, sz);

return TRUE;

}

//mapping the incoming ip address to database

DWORD CIPFilter::OnUrlMap(CHttpFilterContext* pCtxt, PHTTP_FILTER_URL_MAP pMapInfo)

{

char szAddress[80];

DWORD dwSize = sizeof(szAddress);

if (pCtxt->GetServerVariable("REMOTE_ADDR", szAddress, &dwSize))

{

BOOL bAccess;

if (!ValidateIPAddress(szAddress, &bAccess))

return SF_STATUS_REQ_ERROR;

if (!bAccess)

{

strncpy(pMapInfo->pszPhysicalPath, ACCESS_DENIED, pMapInfo->cbPathBuff-1);

}

}

 return SF_STATUS_REQ_NEXT_NOTIFICATION;

}

// Do not edit the following lines, which are needed by ClassWizard.

#if 0

BEGIN_MESSAGE_MAP(CIPFilter, CHttpFilter)

//{{AFX_MSG_MAP(CIPFilter)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

#endif
// 0

2) IPFilterDB.cpp

/* IPFilterDB.CPP - This module implements how the filter can extract valid ip address according to

 the database contents */

#include "stdafx.h"

#include "IPFilter.h"

BOOL CIPFilter::InitializeIPDatabase() //Initialize IP Addresses database

{

DWORD byRead;

HANDLE hFile = CreateFile(IP_LIST_FILE, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);

if (hFile == INVALID_HANDLE_VALUE)

return FALSE;

DWORD szFile = GetFileSize(hFile, NULL);

if (szFile == (DWORD) -1)

{

CloseHandle(hFile);

return FALSE;

}

mIPBuffer = (CHAR *)LocalAlloc(LPTR, szFile + 1);

if (!mIPBuffer)

{

SetLastError(ERROR_NOT_ENOUGH_MEMORY);

CloseHandle(hFile);

return FALSE;

}

if (!ReadFile(hFile, mIPBuffer, szFile, &byRead, NULL))

{

CloseHandle(hFile);

LocalFree(mIPBuffer);

return FALSE;

}

CloseHandle(hFile);

mIPBuffer[byRead] = '\0';
// Zero terminate the file data

return TRUE;

}

//Validate the incoming IP address

BOOL CIPFilter::ValidateIPAddress(const CHAR* pIPContext, OUT BOOL* bValid)

{

*bValid = FALSE;

BOOL bFound;

if (!SearchIPInPool(pIPContext, &bFound))

return FALSE;

if (!bFound)

{

if (!SearchIPInDB(pIPContext, &bFound))

return FALSE;

if (bFound)

AddIPToPool(pIPContext);

else

return TRUE;

}

return *bValid = TRUE;

}

//Search IP Addresses in the ip database

BOOL CIPFilter::SearchIPInDB(const CHAR* pIPContext, OUT BOOL* pFound)

{

*pFound = FALSE;

// Find the external ip address. We're expecting one address per line

CHAR* pch = mIPBuffer;

DWORD cchIPAddress = strlen(pIPContext);

while (pch && *pch)

{

while (((*pch) && ((*pch) == ' ' || (*pch) == '\t' || (*pch) == '\n' || (*pch) == '\r')))

pch++;

CHAR* pchend = strchr(pch+1, '\n');

if (pchend && *(pchend-2) == '*') // -2 because of \r and \n

{

DWORD cchaddr = pchend-pch-2;

if (!cchaddr) // * alone in a line?

return *pFound = TRUE;

if (*pch == *pIPContext && !strnicmp(pIPContext, pch, cchaddr))

return *pFound = TRUE;

}

else

if (*pch == *pIPContext && !strnicmp(pIPContext, pch, cchIPAddress))

return *pFound = TRUE;

pch = pchend;

}

return TRUE;

}
3) IPFilterPool.cpp

/*

IPFilterPool.CPP

 This module implements the ip address Pool.*/

#include "stdafx.h"

#include "IPFilter.h"

//Initialize the IP Pool

BOOL CIPFilter::InitializePool()

{

if (bPoolInitialized)

return TRUE;

InitializeCriticalSection(&CriticalPoolSection);

listPoolHeader.Blink = listPoolHeader.Flink = &listPoolHeader;

bPoolInitialized = TRUE;

return TRUE;

}

//Search IP in Pool for verification

BOOL CIPFilter::SearchIPInPool(const CHAR* pIPContext, BOOL* pFound)

{

LIST_ENTRY* pIPList;

ipPool* pIPAddress;

DWORD position=0;

// Search the Pool for the specified address

EnterCriticalSection(&CriticalPoolSection);

for (pIPList = listPoolHeader.Flink; pIPList != &listPoolHeader; pIPList = pIPList->Flink)

{

pIPAddress = CONTAINING_RECORD(pIPList, IPPool, ip_list);

if (!stricmp(pIPContext, pIPAddress->IPLIST))

goto IPFound;

position++;

}

LeaveCriticalSection(&CriticalPoolSection);

*pFound = FALSE;

return TRUE;

IPFound:

if (position>IPQUEUE)

{

pIPList->Blink->Flink = pIPList->Flink;

pIPList->Flink->Blink = pIPList->Blink;

pIPList->Blink = &listPoolHeader;

pIPList->Flink = listPoolHeader.Flink;

listPoolHeader.Flink->Blink = pIPList;

listPoolHeader.Flink = pIPList;

}

LeaveCriticalSection(&CriticalPoolSection);

*pFound = TRUE;

return TRUE;

}

//Add IP to Pool when found

BOOL CIPFilter::AddIPToPool(const CHAR* pIPContext)

{

LIST_ENTRY* pIPList;

IPPool* pIPAddress;

if (strlen(pIPContext) > MAXLENGTH_IP)

{

SetLastError(ERROR_INVALID_PARAMETER);

return FALSE;

}

EnterCriticalSection(&CriticalPoolSection);

for (pIPList = listPoolHeader.Flink; pIPList != &listPoolHeader; pIPList = pIPList->Flink)

{

pIPAddress = CONTAINING_RECORD(pIPList, IPPool, ip_list);

if (!stricmp(pIPContext, pIPAddress->IPLIST))

goto IPFound;

}

// Allocate a new Pool item and put it at the head of the list

pIPAddress = (IPPool *)LocalAlloc(LPTR,sizeof(IPPool));

if (!pIPAddress)

{

LeaveCriticalSection(&CriticalPoolSection);

SetLastError(ERROR_NOT_ENOUGH_MEMORY);

return FALSE;

}

pIPAddress->ip_list.Flink = listPoolHeader.Flink;

pIPAddress->ip_list.Blink = &listPoolHeader;

listPoolHeader.Flink->Blink = &pIPAddress->ip_list;

listPoolHeader.Flink = &pIPAddress->ip_list;

IPFound:strcpy(pIPAddress->IPLIST,pIPContext);

lPoolIPs++;

if (lPoolIPs > MAX_ADDRESSES_MEMORY)

{

pIPList = listPoolHeader.Blink;

pIPList->Blink->Flink = &listPoolHeader;

listPoolHeader.Blink = pIPList->Blink;

free(CONTAINING_RECORD(pIPList, IPPool, ip_list));

lPoolIPs--;

}

LeaveCriticalSection(&CriticalPoolSection);

return TRUE;

}

// release the allocated memory

VOID CIPFilter::CleanUp()

{

LIST_ENTRY* pIPList;

LIST_ENTRY* pEntryNext;

IPPool* pIPAddress;

if (!bPoolInitialized)

return;

EnterCriticalSection(&CriticalPoolSection);

// Free all of the Pool entries

for (pIPList = listPoolHeader.Flink; pIPList != &listPoolHeader; pIPList = pEntryNext)

{

pIPAddress = CONTAINING_RECORD(pIPList, IPPool, ip_list);

pEntryNext = pIPList->Flink;

pIPList->Blink->Flink = pIPList->Flink;

pIPList->Flink->Blink = pIPList->Blink;

LocalFree(pIPAddress);

}

lPoolIPs = 0;

LeaveCriticalSection(&CriticalPoolSection);

DeleteCriticalSection(&CriticalPoolSection);

bPoolInitialized = FALSE;

}
VII. Installation

We have provided our source code as part of the project report. The user will have to compile it in order to get a working filter. Once the filter’s user has compiled the project he/she will need to take the following steps to install:

1) Firstly run regedit and modify the server's registry. Select the Filter DLLs key KEY_LOCAL_MACHINE\CurrentControlSet\Services\W3SVC\ Parameters.
2) Add a local path, like C:\WinNT\System32\InetSrv.
3) Copy the DLLs file to the directory you specified in the registry.
4) Edit the database file in order that it contains valid IP addresses. The format of the file is: 192.*, 192.168.*, 192.168.1.*, 192.168.1.2;

5) Copy the database file to the directory you specified.
6) Copy the html file to the directory you specified and indicate that the access is denied for this IP address.
7) Make sure the System account have read rights on the html and database files.
8) After that, you should restart the IIS service such as IIS Admin service, FTP publishing service, SMTP and World Wide Web publishing service.

VIII. Testing and Evaluation

Test Objectives:
Testing the IP Packet Filter will help us to ensure that our application is easy to use and can effectively help users to attain their goals. In this case, it would be filter the illegal the users and applications based on IP address.
Descriptions:

The testing environment description can be illustrated as follows:

ISAPI-IPFilter

[image: image4.wmf]

 Server (IIS), 24.57.38.41

[image: image5.wmf][image: image6.wmf]
[image: image1] [image: image2.wmf]

 SHAPE * MERGEFORMAT

 Internet

[image: image7.wmf]

 64.230.18.75 24.57.39.72
	IP Address
	Role
	OS
	ISP
	Included in the IPaddress.txt
	Excluded in the IPaddress.txt

	24.57.38.41
	HTTP Server
	Windows 2000 Server/IIS 5.0
	Cogeco
	--
	--

	64.230.18.75
	Client
	Redhat 7.2/Netscape 6.2
	Sympatic
	accessed
	denied

	24.57.39.72
	Client
	WindowXP home/IE 6.0
	Cogeco
	accessed
	denied

Certification of accuracy:

The tests results showed our traffic filter work as expected. We certify the data herein presented are: to the best of our knowledge, true and accurate representations. We further certify that the instrumentation used was performance before executing the IPfilter code.
IX. Future Work

The filter could be improved in several ways. For current developing process, we are using a txt file to keep track of authorized IP addresses. In the future, we may use a database for IP address information which will surely increase flexibility and scalability.

One serious problem remains to resolve is that currently we grant user’s access only by judging its IP address. This doesn’t prevent hackers from using fake IP or peculate authorized user’s PC to access our HTTP server. We can enhance security by bind username/password to IP address to authenticate the client more strictly.

Reference

All our references are come from web resources.
1. IP Filter and PF resources http://www.obfuscation.org/ipf/
2. The ISAPI Developer’s Site http://www.genusa.com/isapi/isapitut.htm
3. Internet Server API Documentation http://www.bnt.com/inetsdk/default.htm
17/17

