The Classification and Detection of Computer Worms
(60-592 survey report)

Instructor: Dr. A. K. Aggarwal
Session: Winter 2004
By

Student Name: Sheng Bai

1The Classification and Detection of Computer Worms

1Chapter 1. Introduction

2Chapter 2. Motivations

22.1 Experimental Curiosity:

32.2 Pride:

32.3 Extortion and Criminal Gain:

42.4 Random Protest:

42.5 Political Protest:

42.6 Terrorism:

52.7 Cyber Warfare:

5Chapter 3. Classification

63.1 Target Discovery

93.2 Propagation Carriers and Distribution Mechanisms

103.3 Action

113.4 Payloads

13Chapter 4. Detection

154.1 Preprocessing

164.2 Monitoring and detection

18Chapter 5. Conclusion

18Reference:

Chapter 1. Introduction

Since first have gained widespread notice in 1988, computer worm becomes one of the most regardful problems in computer security. A computer worm is a self-propagating program with some malicious objectives. Via some security holes or policy flaws, this program could permeate across a network very quickly.
Although both are malicious codes, there are some differences between worms and viruses. The most significant one is the speed of propagation. Since viruses require some sort of user action to trigger their propagation, they will need more time to permeate. And mature viruses defense software also slower their speed of contagion.
But it is very difficult to draw a sharp line between worms and viruses. Some particular worms could also be regarded as special viruses. Instead of activation by the users in the traditional form, they hide their spread in unconnected user activity. Thus, we make some compromise of the definition that all malicious codes in which there are less of user actions would be considered as worms.
Chapter 2. Motivations

Before talking about the technology of worms, it is very important to understand the motivations why attackers launch this attack. That will help us to understand the nature of this threat more clearly, and the make more efficient defenses. Basically, there are 7 types of motivations: experimental curiosity; pride and power; extortion and criminal gain; random protest; political protest; terrorism; and cyber warfare.

2.1 Experimental Curiosity:
On November 2 1988, the "Morris Worm", an experimental, self-replicating, self-propagating program, was started spread over almost entire Internet. This was the first, great Internet Panic. Just like Robert Morris, Jr., the author of morris worm, there are some people who are curious about the technology, experimenting with viruses and worms. Another famous example is the ILoveYou worm. Before it was released, ILove You worm was proposed as a thesis project.

2.2 Pride:
There are some attackers or small groups of them who would like to execute an attack when they discover vulnerability on a system. By doing this, they could show off their knowledge about computer security and they would be very proud of having the ability to inflict harm on others.
2.3 Extortion and Criminal Gain:
Extortion or other criminal gain is also a potential motive of launching worms. Nowadays, as the speed of communications is increasing, the costs are going down, the Internet changes the way we do business. More and more companies rely on Internet-based transactions. A well-constructed worm could launch an effective DOS(Deny of Service) attack. That will cause the target website temporary disrupted from the Internet and then cannot supply proper services. So attackers could use this worm threaten some major e-commerce or portal companies to get some payment. As another criminally motivated representation, there are also some worms that search for credit-card information on the Internet.
2.4 Random Protest:
Some authors of worms have no particular or clear objectives. The only reason why they release worms is disrupt networks and infrastructure. Since they have studies Internet and security systems, they would like to construct topological, optimized worms not seen commonly as others.

2.5 Political Protest:
There are some radical groups trying to prevent their opponents from publicize messages that are perceived as critical of their goals on the Internet. As an example, the Yaha Mail worm [30] was written as a tool of political protest by unknown parties claiming affiliation with Indian causes, to launch a DOS attack on Pakistani governmental web sites.

2.6 Terrorism:
Terrorist groups who believe that large corporations are an evil, as well as those with animosity directed against particular nations or governments, could employ worms as attractive economic weapons to execute in large, networked environments. In order to cause the maximum damage, such attack always target all computers infectible.

Attackers could include Al-Quaeda, splinter groups derived from the antiglobalization movement, or ecoterrorist groups such as ELF or ALF, which claim to exclusively practice economic terrorism. Such an attack does not aim to loss of life, but to cause significant monetary disruption.
2.7 Cyber Warfare:
As a result of the development of computer and Internet, more and more countries are gradually dependent on computing infrastructure for both economic and governmental needs, any nation has to face the threaten of an electronic attack launched by other nations with a significant interest in its economic disruption, either as a positive attack, or in response to your action.
governmental computers, networked military, and large e-commerce sites would be primary targets for such worms. The potential anonymity of cyber attacks also make it possible to frame others as the apparent perpetrators.
Chapter 3. Classification

There are a lot of types of worms in the Internet. Being aware of the differences among various types of worms will help us understand the threat of worm more clearly, and then make some effective defenses. The classification in this report is just a fundamental sorting of various possible worms and payloads. As the time pass, new techniques, and payloads will arise, and new worms will appear on the stage, so this classification may be incomplete.

There are four primary factors that affect the classification of worms: target discovery, carrier, activation, and payloads. Target discovery concerns with the methods via which a worm discovers targets to infect. The carrier is the means by which a worm transmits itself onto the target machines. Activation is the mechanism a worm's code use to begin operating on the target systems. Payloads are the non-propagating parts code a worm may use to fulfill the author's goal. That is the most important factor above the others.

In addition, it is very important to be note that some of the most successful worms are multi-types, they use multiple means of target discovery, carrier, and payload. Thus defenses address single type of worm will become vulnerable facing this combination.
3.1 Target Discovery

In order to infect a machine, a worm must find where the target machine is. As days passed, there are a bunch of techniques a worm use to discover vulnerable machines: scanning, external target lists, pre-generated target lists, internal target lists, and passive monitoring.
Scanning: The basic mechanism of Scanning is sending probes to a set of addresses to discover vulnerable hosts. There are two simple types of scanning: in sequential form, a worm works through an address block orderly; in random form on the other hand, a worm try addresses out of a block in a random fashion. Comparing with other discovery methods, Scanning worms are a type with slow propagating speed. But it will increase the spread very quickly if they are combined with automatic activation.

According to the problem mentioned above, several optimizations were applied to scanning worms. One effective optimization is emphasized on local addresses. Although it is some original comparing with Internet-scale propagation, it enables the worm to explore the entire local network. Permutation scanning is another effective optimization. By using this technique, A worm could use distributed coordination to more effectively scan the net. The most effective optimization is a bandwidth-limited scanner. For example, some famous worms such as Code Red I required roughly 12 hours to reach endemic levels, but it would takes it only 2 hours to finish the same job if it contained sophisticated scanning mechanisms, or less than 15 minutes if it utilized a bandwidth-limited scanner.
The anomalous behavior of scanning worms makes it very distinguishing from normal Internet traffic. Many software such as the Williamson “virus throttle” and the Silicon Defense CounterMalice product could detect the exist of scanning worms and respond with some defenses.

Externally Generated Target Lists: There is an external target list maintained on a server, such as the metaserver of a matchmaking service. In order to begin an attack, a metaserver worm first queries the metaserver to get the target list. Such a worm could quickly spread through a game like HalfLife or others that has metaservers for quarrying to discover the potential targets. If using Google as the metaserver, such technique could also be used to spread a worm attacking web servers. Although we have not found a metaserver worm in the real world, according its great speed, the risk of such a worm is significant.

Internal Target Lists: Many network-based applications on one machine always contain information about other hosts with who it may communicate before. By searching local information, topological worms could find this host lists to create an attack. The original Morris worm used topological techniques including the Network Yellow Pages, /etc/hosts, and other sources to find new victims.
Although topological worms will present a global anomaly, since each infected machine only needs to contact a few other machines those are already known, the local traffic may appear normal. Thus highly distributed sensors may be needed to detect such topological worms.

Passive: Just as the name means, a passive worm does not positively search for victim machines. Instead, they will wait for potential victims to contact the worm, or rely on user behavior to find out new targets. By sacrificing the spread speed, passive worms produce no abnormal traffics in the discovery of potential target. That makes them more stealthy than the others. A common representation of passive worms is Contagion worm that rely on normal communication to discover new victims.

There have been many passive worms, such as the Gnuman bait worm and the CRClean “anti-worm”. Gnuman just works as a Gnutella node. It will send a copy of itself to each host who make a common query to the Gnutella node it fakes. And the copy on the new victim will repeat this process. Since it needs user activation, it spreads slowly.

On the other of hand, instead require human activation. CRClean waits for a Code Red II related probe. When it detects this infection attempt, it responds by launching a counterattack. If this counterattack is successful, it will remove Code Red II and installs itself on the machine. Thus CRClean can spread over the net without any scanning.

3.2 Propagation Carriers and Distribution Mechanisms

Basically, there are two different types of worms’ propagation. A worm can either positively spread itself machine by machine, or it can be carried along with normal communication. Using different propagation mechanisms, it can also affect the speed and stealth of a worm.

Self-Carried: As talked above, a self-carried worm will actively transmit itself to the target machine. It is part of the infection process. This mechanism is commonly used in self-activating scanning or topological worms. Some passive worms, such as CRClean, also use self-carried propagation.

Second Channel: Some worms, such as Blaster, require a secondary communication channel to complete the infection. At first, the worm communicates with the victim machine using RPC, and then the victim machine connects back to the infecting machine using TFTP to download the worm body. The infection process is completed after that two steps.

Embedded: Either appending to or replacing normal messages, An embedded worm sends itself along as part of a normal communication. Since it is always viewed as a common communication, there is not abnormal traffic, it is very difficult to detect the exist of such propagation.
The embedded strategy would be stealthy only when the target discovery strategy is also stealthy. Thus a scanning worm is unlikely to use this embedded distribution strategy. But it is very suitable for passive worms that also use stealthy target discovery strategy.

3.3 Action

Action is the means by which a worm is activated on a host. Some worms are designed to be activated immediately after it transmit onto the target machines, while others may wait days or weeks to be activated.

Human Activation: This is the slowest worm activation method that requires a local user to execute the local copy of the worm. Since most people do not want to execute a worm code on their machine, these worms try to convince them by using a variety of social engineering techniques. Some worms such as the Melissa email-worm indicate urgency (“Attached is an important message for you”); others, such as the ILove You attack, utilize people’s vanity (“Open this message to see who loves you”).

Instead of trying to convince a user to start running the code, some worms such as Klez make use of bugs in the software that brought data onto the local system, so that simply viewing the data would start running the program.

Human Activity-Based Activation: Similarly as the first one, this activation also needs some user operations. The difference is that the activity user performs is not directly related to the worm. These activities include resetting the machine, logging in and therefore executing login scripts, or opening a remotely infected file. For example, some open shares windows worms will begin execution on the target machine either when the machine is reset or the user logs in.

Scheduled Process Activation: Many desktop operating systems and applications include auto-updater programs that periodically download, install and run software updates. Other systems periodically run backup and other network software that includes vulnerabilities. Scheduled Process Activation just use the vulnerabilities of these scheduled system processes to infect the machine and activate the worm.

Self Activation: This is the fastest worm activation. The worms using this mechanism must be able to create their own execution by utilizing vulnerabilities in services that are always on(e.g., Code Red exploiting IIS Web servers) or in the libraries that the services use (e.g., XDR). Such worms either attach themselves to running services or execute other commands using the permissions associated with the attacked service. Currently, defense on these attacks focus on reduce the vulnerabilities of the running services. Limiting the access of services that are always on is also a method to reduce the effect of an attack.

3.4 Payloads

Different from the propagation part of the worm, the payload is the part code trying to fulfill the goals of the attackers. There have been a number of payloads, different types of attackers will prefer different sorts of payloads
None/nonfunctional: The most common one is a nonexistent or nonfunctional payload. The only goal of the worms with none payload is just spread as far as possible. As a result of this, it would consume the Internet resources somehow.
Internet Remote Control: Code Red II is a famous example carrying such payload. By opening a privileged backdoor on victim machines, Code Red II gives anyone with a web browser the ability to execute arbitrary code on the target machine.

Spam-Relays: By creating numerous relay machines across the Internet, spammers can hide their really IP addresses from some blackhole-based mechanisms that block known-spamming IP addresses.

HTML-Proxies: By redirecting web requests to randomly selected proxy machines, it makes responders more difficult to shut down compromised websites which are used for various illegal activities.

Internet DOS: Internet Denial of Service (DOS) attack is another common payload of worms. Worms such as Code Red, Yaha, and others with DOS payload, either targeted at specific sites or retargetable under the attacker’s control. We have yet to see an attacker take advantage of Internet scale DOS opportunities. With 100,000 or 1,000,000 controllable machines, the attacker could target the DNS system, update sites, and response channels all at the same time.
Data Collection: A worm with data collection payload will target on the sensitive data store on and manipulate by computers. Such as document with various keywords, credit card numbers, or similar information. After discovery, the worms will encrypted and transmitted the results to the attackers through various channels.

Access for Sale: It is an extension on remote control and data-collection payloads. The worm with this payload will allow remote access to paying customers.

Data Damage: A lot of viruses and email worms, such as Chernobyl or Klez, which contained time-delayed data erasers. After infecting a system, this worm will begin to erase data on the victim machine.
Physical-world Damage: Besides changing the attacked computer and network, worms can also affect some non-Internet objects and services. The infected computer is the most direct object to be damaged. Even though the large number of BIOSs types prevents a general reflashing, A worm with reflashing commands for several common BIOSs will still cause a small scope of BIOSs reflashing. Since the FLASH ROMs are often soldered to the motherboard, the most serious result of such an attack is destroying particular motherboards.

Worm Maintenance: The last type of payload is to maintain the worm itself. Some out of date worms such as W32/sonic have included a crude update mechanism: querying web sites for new code. A controllable and updateable worm could enable sophisticated additions to the worm’s functionality and fix bugs after release.
Chapter 4. Detection

After the detailed analyzing of the nature and composition of worms, we introduce a powerful host-based technique, which is named DOME, to detect the actions of worms. The working theory of DOME is very simple: at the first, DOME uses static analysis to find the locations of system calls within the software executables, and then monitors the executables at runtime to verify that every observed system call is made from a location identified using static analysis. Actually, DOME is a very powerful technique. It is not only designed for worms detecting, but could also detect several types of malicious code.
Such as injected MC, Dynamically generated MC and Obfuscated MC.

Since it is the most widely deployed operating system and is frequently targeted by MC, we will focus our study of DOME on Microsoft Windows 2000 and above. In fact, this technique can be applied to different operating systems.

Basically, it is a two steps mechanism that DOME uses to protect software executables against MC:
1. Preprocess each software executable; identify the instructions that call into Win32 APIs; and then save their virtual addresses and the API names as a pair of the Win32 API calls.
2. 2. Monitor Win32 API calls made by software executables at runtime; identify the instruction that produced the call and its address within the executable; and then compare the instruction address and the API name with the pair generated during the preprocessing step. If a mismatch occurs, that means the executable maybe attack by some MC. By responding, a system can block the API Call to protect the host.

As you can see, by using this technique, any modifications of software executables due to a viral infection that occurs after the preprocessing step can be easily detected. This technique is built on the assuming that the software executables will not change after the preprocessing step. If software is updated, the preprocessing step must be repeated.

We now describe the two steps in detail.

4.1 Preprocessing

In the preprocessing course, software executables are disassembled and analyzed. As soon as the instructions that call into Win32 APIs are found, pairs of the virtual addresses of these instructions and the API names is then recorded. Besides that, the addresses of the instructions immediately after the identified Win32 API calls are also recorded. These are the return addresses for the Win32 API calls, and should appear on the top of the runtime stack when the calls are made.

This identification mechanism is very important in DOME technique. It draws a line between normal Win32 API calls and malicious calls at runtime. The identification mechanism should detect all the Win32 API calls made by normal compiler-generated code, but none of the Win32 API calls made by MC. Since the normal way of Win32 API calls is significantly different from the way these calls appear in MC, it is not very confused to implement such an identification mechanism.

Normally, Win32 APIs calls in compiler-generated code always point to the appropriate entries in the import address table (IAT). The calls are either direct references to the IAT, as in “call [IAT Entry 4],” or they are indirect references that can be identified with simple static analysis. For example, an optimized code commonly load the address of the API’s IAT entry into a CPU register, when it wants to make a Win32 API call, it issue a call instruction referencing the register.
Static analysis can also be used to identify calls to late-bound Win32 APIs, which are APIs whose addresses are determined at runtime using GetProcAddress. When such a call occurs, the bind of the Win32 API name associated with the registers or memory locations and the Win32 API addresses should be recorded.

4.2 Monitoring and detection
In this step, DOME monitors the Win32 API calls made by software processes and verifies if there is a record of the pair of the instruction addresses and the names of the corresponding Win32 APIs during the preprocessing step. We can this step in two parts: monitoring Win32 API calls, and validating the information of the calls against the preprocessing record.

Monitoring Win32 API calls: There have been a number of methods to monitor the Win32 API calls. We chose the Detours package, which instruments the DLLs containing the Win32 APIs at load time, as an example tool to illustrate the procedure. Detours implement direct patching method to monitor the Win32 API calls. By directly patching the entry point of each Win32 API, all Win32 API calls can be monitored.
Figure 1 depicts how a call to a Win32 API occurs from a software process when the API is patched with Detours. The process makes a call into the API function (1), the first instruction of which is an unconditional jump to the Detours wrapper (2). The wrapper may execute pre-stub code before returning control to the Win32 API body (3 and 4). After the Win32 API body finishes executing, control is returned back to Detours (5), which may execute post-stub code before returning control to the caller (6). The pre-stub code is where DOME validates the Win32 API call against the information identified during the preprocessing step.
[image: image1.png]API Trampoline
[APT2_TRAMPOLINE:

¥ pus pp

Mov EBD, ESD
JMP API2 4+ Offset — |

3 Detours DLL

API2 Wirapper:

rasstub code

alidate the calls

CALL API2_TRAMPOLINE
ost-stub cods:

RET

2 Win32 DLL

P

JUP APIZ_STUR
unction Body> M=t
RET

G

EXE

1 [t
|aP11_ADDRESS
APT2_ADDRESS

Text:

CALL [IAT_APT2_ENTRY]

Figure 1: Detoured API Call

Validation of Win32 API calls: As was mentioned above, the pre-stub code of the API’s wrapper will handle the verification of Win32 API calls. As soon as the pre-stub code gets control, DOME will check whether the return address and the API name were recorded during the preprocessing step. The return address for the call is supposed on the top of the runtime stack. If there is a record of this pair, the wrapper transfers control to the Win32 API body. Otherwise, it will signal the detection of the none equivalence.

To handle DLL relocation, which may occur when two or more DLLs want to be loaded into conflicting address ranges, DOME should use instruction addresses relative to the DLLs’ base addresses.
Chapter 5. Conclusion

Firstly, we make an detailed analyzing on motivations of attackers. Since worms are ultimately written by humans, understanding the motivations of attackers will help us understand theory and implement of worms more clearly, and develop effective defense strategy.
Secondly, we made a classification of worms, based on serveral factors: target discovery, carrier, activation and payload. Among these four factors, the last three: carrier, activation, and payload are independent of each other, and describe the worm in its own way.
Finally, we presented DOME as a sample technique for detecting worms. Actually, DOME is a very powerful technique. It could detect all injected, dynamically generated, and obfuscated MC in software executables. The main idea of DOME is composed of two parts: using static analysis to identify the locations of Win32 API calls within software executables and verifying Win32 API calls occur at runtime with preprocessing records.
Reference:

Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham: A taxonomy of computer worms;

Jesse C. Rabek, Roger I. Khazan, Scott M. Lewandowski, Robert K. Cunningham: Detection of injected, dynamically generated, and obfuscated malicious code;

PAGE
1

