60-564

Survey for two selected papers:

“Intrusion Detection: Systems and Models” and

“A Stateful Intrusion Detection System for World-Wide Web Servers”

Hailun Yan

Table of Content

41. Introduction

52. Computer Attacks

52.1 Worm

62.1.1 Backdoor Attacks

72.1.2 Buffer Overflow Attacks

72.1.3 Password Attacks

82.2 Viruses

82.3 Server Attacks

92.4 Client Attacks

92.5 Network Attacks

102.6 Root Attacks

103. The STAT Framework

123.1 The STATL Language

133.1.1 Scenario

143.1.2 State

153.1.3 Transition

173.1.4 EventSpec

183.1.5 NamedSigAction

193.2 Evolution of STAT-based Application

224. Intrusion Detection Systems

224.1 Aspects of Intrusion

224.2 Classification of Intrusions

234.2.1 Anomaly Intrusion Detection

244.2.2 Misuse Intrusion Detection

264.3 Intrusion Results

274.4 Models and Methods

285. WebSTAT Intrusion Detection System

295.1 WebSTAT Attack Scenarios

305.11 Malicious Web Crawler Scenario

315.12 Pattern Matching Scenario

315.13 Repeated Failed Access Scenario

325.14 Cookie Stealing Scenario

325.1.5 Buffer Overflow Scenario

335.1.6 Combining Network and Application-Level Buffer Overflow Detection

345.1.7 Document Root Escape Attack

346. Performance Evaluation

357. Conclusion

37Reference

Table of Figures

6Figure 1: Internet worm - backdoor attack

7Figure 2: Internet worm – buffer overflow attack

12Figure 3: STAT Framework

13Figure 4: STATL Scenario Syntax

14Figure 5: STATL ScenarioParameters Syntax

14Figure 6: STATL Scenario Example

14Figure 7: STATL State Syntax

15Figure 8: STATL State Example

15Figure 9: STATL Transition Syntax

17Figure 10: STATL Transition Example

17Figure 11: STATL EventSpec Syntax

18Figure 12: STATL EventSpec Example

18Figure 13: STATL NamedSigAction Syntax

18Figure 14: STATL NamedSigAction Example 1

19Figure 15: STATL NamedSigAction Example 2

19Figure 16: Evolution of STAT-based Application step 1 - Bare Application

20Figure 17: Evolution of STAT-based Application step 2 – Application With Event Provider

21Figure 18: Evolution of STAT-based Application step 3 – Application With Scenario Plugin

21Figure 19: Evolution of STAT-based Application step 4 – Scenario Plugin With Responses

23Figure 20: A typical anomaly intrusion detection system

24Figure 21: A typical misuse intrusion detection system

28Figure 22: The WebSTAT Architecture

30Figure 23: State-transition diagram for the “counting scenario” attack pattern

30Figure 24: robots.txt file

31Figure 25: Pattern Matching Scenario

32Figure 26: State-transition diagram for the Cookie Stealing Scenario

33Figure 27: State-transition diagram to detect buffer overflow attacks

34Figure 28: State-transition diagram for multi-domain detection of buffer overflows

34Figure 29: State-transition diagram for the document root escapes scenario

35Figure 30: Minimum, average and maximum throughput

35Figure 31: Minimum, average, and maximum response time

1. Introduction

Computer security is concerned with the protection of computer resources, for example, read and write access to a data file, processing time, or communication over a network link. The fundamental problem is to identify the person requesting the resource and either granting or denying access according to the wishes of the owner.

An intrusion is somebody attempting to break into or misuse your system. The word "misuse" is broad, and can reflect something severe as stealing confidential data to something minor such as misusing your email system for spam. In the paper “Intrusion Detection: Systems and Models”, author presents a classification of computer attacks and intrusion detection techniques. In addition, this paper also did a thorough survey of the state of the art intrusion detection systems.

An IDS (Intrusion Detection System) is a network security system designed to identify intrusive or malicious behavior via monitoring of network activity. The IDS identifies suspicious patterns that may indicate an attempt to attack, break in to, or otherwise compromise a system. An IDS can be network-based or host-based, passive or reactive, and can rely on either misuse detection or anomaly detection.

Traditionally, most IDS detect attacks either by applying simple pattern-matching techniques to the contents of HTTP requests or identifying trends in a large set of web-related events. In addition, most IDS focus on a single event stream, such as network traffic directed to a server host and the access logs produced by a server application. They don’t have a stateful detection model and cannot analyze different event streams in an integrated way. All of these limitations make current intrusion detection approaches generate a large number of false positive and severely limit their effectiveness.

In the paper “A Stateful Intrusion Detection System for World-Wide Web Servers”, author presents an IDS system, WebSTAT, which uses State-Transition Analysis Technique (STAT) as framework, and operates on multiple event streams including both network-level and operating system-level events.

2. Computer Attacks

Based on the survey of Mahoney, there are six types of computer attacks.

· Worms - self replicating programs that spread across a network.
· Viruses - programs that replicate when a user performs some action such as running a program.

· Server attacks - a client exploits a bug in the server to cause it to perform some unintended action.

· Client attacks - a server exploits a bug in a client to cause it to perform some unintended action.

· Network attacks (denial of service) - a remote attacker exploits a bug in the network software or weakness in the protocol to cause a server, router, or network to fail.

· Root attacks - a user on a multiuser operating system obtains the priveliges of another user (usually root) by either

· Obtaining the other user's password, or

· Bypassing controls that restrict access.

2.1 Worm

A worm is an independent program that replicates from machine to machine across network connections. The three security flaws the worm exploited were

· Backdoor

· Buffer overflow vulnerability

· Weak passwords

In order to infect another host, it takes advantage of either backdoor or buffer overflow vulnerability of a remote host to run a vector program on that machine. The vector then opened a network connection to the infected machine to copy the worm over and run it. Once it did this it collected names of other hosts to infect and attempted to break into user accounts.

2.1.1 Backdoor Attacks

A backdoor is a software feature that bypasses the normal security mechanisms. It is usually installed for maintenance purposes. The sendmail program in use on most UNIX systems at the time supported a DEBUG command that allowed mail messages to be sent to a process on the remote machine instead of to a user. The worm propagated by sending the following SMTP message to the remote mail server:

[image: image1.png]debug
mail from: </dev/mull/>

rept to: <7lsed -e '1,/°§/'d | /bin/sh ; exit 07>
data

cd Jusr/tp

cat > x14451910.c <<'EOF' (filename may vary)

(C source code for the vector program)

o -0 x14481910 x14481910.¢;%14481910 128.32.134.16 32341 8712440;rm —f ¥14481910 ¥14481910.c

quit

Figure 1: Internet worm - backdoor attack

The result was that the receiving host created, compiled, executed, and deleted a program mailed from the infected attacker. In this example, the attacker is from 128.32.134.16 and ran a server listening at port 32341 which accepted a password that is 8712440. The vector program then connected to the server, copied the VAX and Sun3 executable versions of the rest of the worm and executed the appropriate version.

Originally, the worm did not harm the host that it infected, but due to a bug, a host could become infected by hundreds or thousands of copies, exhausting memory or slowing it to the point that the machine became unusable. On the other hand, since it is a process, you can remove the infection by rebooting your machine.

2.1.2 Buffer Overflow Attacks

Applications routinely allocate memory buffers to store different types of data. Applications consist of one or more operating system processes. Each process holds a memory block that is divided into three segments: Code, data, and stack. Stack is used to store information associated with function calls and is also the key for buffer overflow attacks. By overriding part of the stack, the attacker can both inject a malicious execution code and set the return address to point to the malicious code. When the function returns, the attacker's code is executed.

fingerd used a call to gets() from main() to read the input into a fixed sized array. The worm sent a specially constructed 536 bytes string that overwrote the return address and replaced it with a pointer to the following VAX assembly language program:

[image: image2.png]pushl
pushl
movl
pushl
pushl
pushl
pushl
movl
Chkc

§68732¢
§6e696228
sp, rio
50

50

rio

§3

sp,ap

$3b

/smi0t
*/bin

Figure 2: Internet worm – buffer overflow attack

When main() attempted to return, it executed the above code, which is equivalent to execve("/bin/sh", 0, 0); This opened a shell to the attacking computer, which then infected the victim as in the sendmail attack. On the Sun3, which has a different instruction set, the code did not work and the fingerd server simply dumped core.

2.1.3 Password Attacks

The worm takes advantage of the fact that people choose passwords that are easy to remember, and therefore easy to guess. It first tries to derive the password from the user name. An earlier study showed that this works 30% of the time when users are naive about security. Then it tries a built in dictionary of 432 words. It is not known where this list came from, but it could be a list of actual passwords obtained by a sniffer, trojan, or password cracker on another system. Finally it tries all of the words in the online dictionary /usr/dict/words, including lowercase versions of capitalized words.

The crypt() system call sometimes adds a delay to slow down password guessing attacks. However, the worm included its own optimized version of crypt() that was 9 times faster. Newer UNIX systems store password hashes in a file readable only by root (such as /etc/shadow) forcing password attacks to use the system call. Newer UNIX systems also force users to choose better passwords by disallowing short passwords, passwords containing only lowercase letters, and variations of the user name.

2.2 Viruses

A computer virus is a software program capable of reproducing itself and usually capable of causing great harm to files or other programs on the same computer.

Unlike a worm, a virus requires some action from a user to spread, usually running a program. In essence, a true virus cannot spread to another computer without human assistance. File infectors and boot sector infectors have mostly been a problem in single-user systems. There days, with the declining of program sharing, these are becoming less common. The newest threat is from email viruses, which spread when the recipient runs an attached program.

2.3 Server Attacks

A server is a computer on a network that is dedicated to a particular purpose and which stores all information and performs the critical functions for that purpose. For example, a Web server would store all files related to a Web site and perform all work necessary for hosting the Web site. Every server has it own service that is a program listening over the network. Nearly every type of service has been attacked. The Community Emergency Response Team (CERT) has identified vulnerabilities in some versions of POP2, POP3, IMAP, FTP, and DNS.

For example, the early version Microsoft IIS web server has been identified a number of vulnerabilities in the example script pages that are installed by default with IIS. Many web server administrators believe these example scripts are not harmful. However these are not the case. The Webmaster should remove them from a web site if they are not used, or fix the holes existing in them if he really wants to use them.

2.4 Client Attacks

Unlike a server attack, which is aimed at a specific target, a client attack works by waiting for victims to connect to a rogue server.

Recently, a buffer overflow vulnerability has been found in Outlook and Outlook Express in Internet Explorer 5.0, which is installed on millions of computers. The exploit allows arbitrary code to be executed by overflowing the time zone field in the date field of the mail header. The exploit is activated when the user opens the mail, or previews it under Outlook Express. The fix is to upgrade to Internet Explorer 5.01.

2.5 Network Attacks

Network attacks are usually Denial of Service (DoS) attacks. DoS attacks are commonly used to disturb the normal operation of applications. DoS attacks take advantage of a weakness in the system or application and cause it to crash or stop responding. Although this attack does not provide the attacker with any meaningful system access, it disturbs the operation of the site.

For example, ping to death is a DoS attack that is based on the following theory: ICMP packets are rarely fragmented because the message is typically short. Some systems will crash if they received a fragmented ICMP packet. An attack is to send a packet larger than 65,535 bytes, the maximum allowed by IP protocol. This causes many TCP/IP implementations to crash. A simple way to do this is: ping -l 65508 targethost. Since IP header is 20 bytes, ICMP header is 8 bytes, if a ICMP message of 65508 is sent to the Internet, the actual size of the IP packet is 65,536 byte which is greater than the maximum data size of IP packet. The packet is then fragmented by the sender, but when the receiver tries to reassemble the fragments, it overflows a buffer and crashes the kernel.

2.6 Root Attacks

In a root attack, a user on a multi-user system like UNIX or Windows NT obtains root or administrative privileges. This allows the attacker to read or write any file, execute or stop any program, add or remove accounts, and so on. Normally, users are not allowed to access resources owned by others.

In UNIX, each file, directory, or device has an owner and associated privileges, i.e. read, write, and execute, for the owner, group, and others. Only the owner or root can set these. When a user starts a process, only that user or root can stop it. The process has the same access rights as the user that started it. Certain programs are suid root, meaning that they have the same access rights as root even though someone else started it. These programs are necessary for operating system support, and are a major source of attacks.

3. The STAT Framework

STAT is a technique for representing high-level descriptions of computer attacks. Attack scenarios are abstracted into states, which describe the security status of a system, and transitions, which model the evolution between states. By abstracting from the details of particular exploits and by modeling only the key events involved in an attack scenario STAT is able to model entire classes of attacks with a single scenario, overcoming some of the limitations of plain signature-based misuse detection systems.

The STAT Framework distribution contains all the components that are needed to develop a STAT-based application. It supports both the development of STAT-based intrusion detection systems and the description of attack scenarios. And, it contains six elements:

· STATL: STATL is a language that is used to represent attack scenarios using states and transitions. The language defines the domain-independent features of attack scenarios. The STATL language is extended by the intrusion detection system developer to express the characteristics of a particular domain and environment.

· Language Extension Modules: Language Extension Modules are shared libraries that define events, types, and predicates that describe a particular application domain. In a STATL scenario, every type of event corresponds to a Language Extension Module. The Language Extension Module must be loaded into the STAT core before either Scenario Plugin or Event Provider can use it.

· Event Providers: Event Providers collect events during the running of the application and integrate them into STAT events. Every event must have a clearly definition in the corresponding Language Extension Module. For example, an Event Provider collects events from the external environment (e.g., by parsing the Apache server logs, or by obtaining packets from the network driver), creates events as defined in one or more Language Extension Modules (e.g., the Apache Language Extension Module), encapsulates these events into generic STAT events, and inserts these events into the event queue of the STAT Core.
· Scenario Plugins: Scenario Plugins are shared library that describes an attack scenario. The Scenario Plugin is usually generated from a STATL description. However, it could also be developed by the scenario developer manually.

· Response Modules: Response Modules are shared library that contains Response Functions. The Response Functions can be associated with states in a scenario. If the state is reached the Response Function is invoked. For example, a Response Function can log the fact that a state is reached, send an alert to someone, or take steps to stop an ongoing attack.
· STAT Core: The STAT Core represents the runtime of the STATL language and implements the domain-independent semantics of scenario execution. The STAT Core is responsible for matching the event streams supplied by Event Providers against event subscriptions associated with active Scenario Plugins. When a matching is found the STAT Core executes the corresponding transitions and, possibly, triggers responses defined in Response Modules.

[image: image3.png]r]

Info Quee

Controlling application

O

Core
Langoage Scenario Blugins
Entensions
Control Queve

e

faananai

"
Response Bvent Quene
Modules

Event Providers

Figure 3: STAT Framework

3.1 The STATL Language

An important feature of misuse detection systems is the description of attack signatures. Currently, there are several attack languages existing in the research community. However, most of the existing languages have been developed to support intrusion detection in particular domains and environments. Since these languages mainly focus on some specific problem domain, they are usually difficult to extend to new environments. In addition, the signature developer finds the semantic model and the abstractions provided in these attack languages are either too low-level or not clearly defined.

STATL is a domain-independent attack description language that could be extended in a well-defined way to match different operating environments. STATL defines the domain-independent features of attack scenarios and also provides constructs for extending the language to describe attacks in particular domains and environments. The STATL language has been successfully used in describing both network-based and host-based attacks to support misuse detection and it has been tailored to very different environments, e.g., Sun Microsystems’ Solaris and Microsoft’s Windows NT.

Although the language was originally developed to support the development of intrusion detection systems based on the State Transition Analysis Technique (STAT), STATL is general and flexible enough to be used as a common language for different misuse detection systems.

3.1.1 Scenario

A scenario uses zero or more libraries of application-specific types, events, functions, and predicates. A scenario has a name, may have parameters, may contain annotations and constant and variable declarations, and most importantly, contains the states and transitions that define the “attack signature” – what to match and what to do with matches. A scenario may also define supporting functions to be used in state and transition assertions and code blocks:

[image: image20.png]{ wse LibraryID {", LibrarylD} *;
oo i)
[ScenarioParameters]

[FrondMatter]
{State | Transiton | NamedAction),

}

{ FunctionDefnition }

Figure 4: STATL Scenario Syntax
A scenario must have at least one transition and two states – the initial state and a final state. The initial state must have no incoming transitions, and final states have no outgoing transitions. Scenario parameters are specified as a list of comma-separated typed identifiers.

[image: image21.png]ScenarioParameters
C Parameter (' Parameter)
Parameer = Type Parameterld

Figure 5: STATL ScenarioParameters Syntax
Example:

[image: image22.png]{esnarye sxamle (tring host, int cunt]

Figure 6: STATL Scenario Example
The example scenario has two parameters, host and count. Parameters are accessible by the scenario instances as global constants.

3.1.2 State

“State” is one of the two fundamental concepts in STATL. States have names so they can be referred to in transitions and in the graphical representation of the scenario. Each state may have annotations, an assertion, and a code block, but these elements are optional:

[image: image23.png]State :=
[initial]
state Stareld {Annotation)

[Statedssertion]
[CodeBlock]
}

Figure 7: STATL State Syntax
Exactly one state must be designated as the initial state. When a scenario plugin is loaded into an IDS a first instance is created in the initial state.

The state assertion, if present, is tested before entry to the state, after testing the assertion of the transition that leads to the state. A state’s assertion is implicitly True if none is specified. A state’s code block is executed after the incoming transition’s assertion and the state’s assertion have been evaluated and found to be True, and after the incoming transition’s code block (if it exists) is executed.

Example:

[image: image24.png]cenaric example

const int threshold - 64

initial
etate e ()

state o2

countar > threshold
[Mog(reounter over threshold limit");)

Figure 8: STATL State Example
In this example state s1 is designated as the initial state. It has neither an assertion nor a code block. State s3 has an assertion and a code block. The assertion specifies that the value of local variable counter is greater than the value of constant threshold. The code block calls the built-in procedure log to write a message to the IDS’s log file.

3.1.3 Transition

“Transition” is the second of the two fundamental concepts in STATL. Each transition has a name and must indicate the pair of states that it connects. Transitions may have the same source and destination state; that is, loops are allowed. In addition, a transition may have annotations, must specify a type, must specify an event type to match, and may have a code block:

[image: image25.png]txansition TransirionID *(Stateld > Stateld ")
(consuming | nonconsuming | unwinding)

{Annotation)
{
(T EventSpec T | detionld)
{Amnotaion)
[dssertion]
[CodeBlock]

}

Figure 9: STATL Transition Syntax
A transition can be any one of the following three types

· Nonconsuming

· Consuming

· Unwinding

A nonconsuming transition is used to represent a step of an occurring attack that does not prevent further occurrences of attacks from spawning from the transition’s source state.

For example, if an attack has two steps that are the uploading of a file to a web server though FTP followed by an HTTP request for that file, then the second step does not invalidate the previous state. That is, another HTTP request for the same file can occur.

In contrast, the firing of a consuming transition makes the source state of a particular attack occurrence invalid.

Unwinding transitions represent a form of “rollback”, and they are used to describe events and conditions that can invalid the progress of one or more scenario instances and require the return to an earlier state. For example, the deletion of a file can invalidate a condition needed for an attack to complete, and therefore, a corresponding scenario instance can be brought back to a previous state, such as before the file was created.

A transition’s event is specified either directly or by reference to a named signature action. In the former case the transition’s assertion is just the assertion in the transition. In the latter case, if the named signature action includes an assertion and the transition also includes an assertion, then the resulting assertion is the conjunction of the two assertions.

A transition’s code block is executed after evaluating the transition’s assertion and the destination state’s assertion, and before executing the destination state’s code block. More precisely, the order of evaluation of assertions and the execution of code blocks, after matching an event type is as follows:

1. Evaluate the transition assertion. If True

2. Evaluate the state assertion. If True

3. Execute the transition code block, possibly modifying local and global environments

4. Execute the state code block, possibly modifying local and global environments.

Transitions are deterministic, which means that every enabled transition fires if its assertion and the destination state’s assertion are satisfied. A transition’s code block may perform any computation supported by STATL and the IDS extension in use, but is typically used to copy event field values into the global or local environment for later reference.

[image: image26.png]use bam, unix;
Seinaris Sxample

Jrr—

Eidnsition €2 (sl -> 82)
‘onconsuning

(i DRy e

Example:

Figure 10: STATL Transition Example
In this example, t2 is a nonconsuming transition that leads from state s1 to state s2. The event spec indicates that the transition should match events of type READ, with a filter condition specifying that the euid and ruid fields of the event must differ for the transition to fire. The transition’s code block copies the euid field of event r into the local variable

userid for later reference.

3.1.4 EventSpec

“Event specs” are the essential elements of transitions. They specify what events (signature actions) to match and under what conditions.

[image: image27.png]EventSpec
(BasicEventSpec [SubEventSpec]) | TimerEvent

BasicEventSpec = Eventlype Eventld
pe

SubEveniSpec := ‘[EventSpec { * EventSpec } T
EsentType = ANY | AppiEventTipe C ApplEventTipe (' ApplEventTipe }

Figure 11: STATL EventSpec Syntax
An event spec is either a basic event spec optionally followed by a subevent spec, or it is a timer event.

Example:

[image: image4.png](1P d1 [TCP £11]

(d1.src == 192.168.0.1) && (t1.dst == 23)

Figure 12: STATL EventSpec Example
3.1.5 NamedSigAction

A named signature action has a name and specifies an event spec, and may have annotations:

[image: image28.png]NamedSigAction
action Actionld {Annotation)

(T EventSpec T | detionld)
{Amnotation)
[dssertion]

}

Figure 13: STATL NamedSigAction Syntax
Named signature actions may be used to improve clarity and maintainability when multiple transitions have identical or similar actions, for example, having the same action type but slightly different assertions. In such cases the common part can be factored out, put into a named signature action, and then used in the similar transitions.

Example:

[image: image29.png]use bam, unix
Soinario sxample

3étion a1

WRIT ¢ ¢ roeuwtd

transition t1 (sl -> 82)

Sl r.ewid 1= rouid

1

transition €2 (sl > 83)

L r.euid -

1

zruta

Figure 14: STATL NamedSigAction Example 1
In this example transitions t1 and t2 both use named signature action a1 as their event spec, but with different assertions.

This is equivalent to:

[image: image30.png]use bsm, unix,
Soinario sxample

frdnsition t1 (s -> 82)

WRITE ¥1 : (r.euid 1= 0) 66 (r.ewid 1= r.ruid)

transition €2 (sl > 83)

».ruta)

WRITE x1 : (r.euid 1= 0) 66 (r.euid

Figure 15: STATL NamedSigAction Example 2

3.2 Evolution of STAT-based Application

In a STAT-based application environment, an event stream can be operating system audit record, network traffic, application log, and system call etc.

(a) When an application is started with no modules, it contains only an instance of the STAT Core waiting for events or control messages to be processed. This initial “bare” configuration does not provide any event-processing functionality.

[image: image5.png]Host

Figure 16: Evolution of STAT-based Application step 1 - Bare Application

(b) An Event Provider is activated by sending specific control directives to the STAT Core control queue requesting to load and then activate the component. An Event Provider relies on the event definitions contained in one or more Language Extension Modules. The Event Provider collects events from the external source, filters out those that are not of interest, transforms the remaining events into event objects, encapsulates them into generic STAT events, and then inserts them into the STAT Core event queue. The STAT Core, in turn, consumes the events and checks if there are any STAT scenarios interested in the specific event types. For example, an Event Provider collects events by parsing the Apache server logs, or by obtaining packets from the network driver, creates events as defined in the Apache Language Extension Module, encapsulates these events into generic STAT events, and inserts these events into the event queue of the STAT Core.

[image: image6.png]Event Provider]

_Language Extension
i library
Eveint Provider ibtary

=

Figure 17: Evolution of STAT-based Application step 2 – Application With Event Provider

(c) When a Scenario Plugin is loaded into the STAT Core an initial prototype for the scenario is created. The scenario prototype contains the data structures representing the scenario's definition in terms of states and transitions, a global environment, and a set of activation parameters. The prototype creates a first instance of the scenario. This instance is in the initial state of the corresponding attack scenario. The STAT Core analyzes the scenario definition and subscribes the instance for the events associated with the transitions that start from the scenario's initial state. If an event matches a subscription, then the corresponding transition assertion is evaluated. Each scenario instance represents an attack in progress. As a scenario evolves from state to state, it may produce some output. A typical case is the generation of an alert when a scenario completes.

[image: image7.png]Scenatio

Trowiybe

[

& Trgarees
©0o

[J
=

Figure 18: Evolution of STAT-based Application step 3 – Application With Scenario Plugin

(d) Response Modules are collections of functions that can be used to perform any type of response (e.g., page the administrator, reconfigure a firewall, or shutdown a connection). To activate a Response Function it is necessary to load the shared library into the STAT Core, and then request the association of a Response Function with a specific state in a scenario definition. This allows one to specify responses for any state in a scenario. Each time the specified state is reached by any of the instances of the scenario, the corresponding Response Function is executed.

[image: image8.png]- Response library
o @

Seoenatio

Trowiybe

g

Response Fanctions

Figure 19: Evolution of STAT-based Application step 4 – Scenario Plugin With Responses

4. Intrusion Detection Systems

It is very important that the security mechanisms of a system are designed so as to prevent unauthorized access to system resources and data. However, completely preventing breaches of security is unrealistic. However, we can try to detect these intrusion attempts so that action may be taken to repair the damage later. This field of research is called Intrusion Detection.

4.1 Aspects of Intrusion

Intrusion threat is the potential possibility of a deliberate unauthorized attempt to access information, manipulate information, or render a system unreliable or unusable. According to the research from Sundaram, there are different aspects to an intrusion, each of which is significant to a full analysis and response. These aspects include:

· Risk: Accidental or unpredictable exposure of information, or violation of operations integrity due to the malfunction of hardware or incomplete or incorrect software design.
· Vulnerability: A known or suspected flaw in the hardware or software or operation of a system that exposes the system to penetration or its information to accidental disclosure.

· Attack: A specific formulation or execution of a plan to carry out a threat.

· Penetration: A successful attack -- the ability to obtain unauthorized (undetected) access to files and programs or the control state of a computer system.

4.2 Classification of Intrusions

Intrusions can be divided into 6 main types:
1. Attempted break-ins, which are detected by atypical behavior profiles or violations of security constraints.

2. Masquerade attacks, which are detected by atypical behavior profiles or violations of security constraints.

3. Penetration of the security control system, which are detected by monitoring for specific patterns of activity.

4. Leakage, which is detected by atypical use of system resources.

5. Denial of service, which is detected by atypical use of system resources.

6. Malicious use, which is detected by atypical behavior profiles, violations of security constraints, or use of special privileges.

However, according to the above classification, we can divide intrusion detection techniques into two main classes: anomaly intrusions detection and misuse intrusions detection.

4.2.1 Anomaly Intrusion Detection

Anomaly intrusions are based on activities that are deviations from normal system usage patterns. These kinds of intrusions are detected by building a profile of the system or users being monitored, and detecting significant deviations from this profile.

[image: image9.png]update profle

/AR

Audt Dota

System profile

\A

deviont 7

‘genercte new profiles dynamicaly

otk
state

Figure 20: A typical anomaly intrusion detection system

There have been a few major approaches to anomaly intrusion detection systems, some of which are described below.

· Statistical approaches: In this method, initially, behavior profiles for subjects are generated. As the system continues running, the anomaly detector constantly generates the variance of the present profile from the original one.

· Predictive pattern generation: This method of intrusion detection tries to predict future events based on the events that have already occurred.

4.2.2 Misuse Intrusion Detection

Misuse intrusions are well –defined attacks against known system vulnerabilities. Similar as virus intrusion systems, they can detect many or all known attack patterns, but they are of little use for as yet unknown attack methods. The main issues in misuse detection systems are how to write a signature that encompasses all possible variations of the pertinent attack, and how to write signatures that do not also match non-intrusive activity.

[image: image10.png]modify existing rues

[N e

Audit Data (] System profile

—
- \N

Information’ A now ules

Figure 21: A typical misuse intrusion detection system

There has been significant research in misuse detection systems in the recent past. Some of these systems are described in the below.

· Expert systems are modeled in such a way as to separate the rule-matching phase from the action phase. The matching is done according to audit trail events. The Next Generation Intrusion Detection Expert System (NIDES) developed by SRI is an interesting case study for the expert system approach. NIDES follows a hybrid intrusion detection technique consisting of a misuse detection component as well as an anomaly detection component.

· Keystroke monitoring is a very simple technique that monitors keystrokes for attack patterns. However, the method does not analyze the running of a program, only the keystrokes. This means that a malicious program cannot be flagged for intrusive activities. Operating systems do not offer much support for keystroke capturing, so the keystroke monitor should have a hook that analyses keystrokes before sending them on to their intended receiver. An improvement to this would be to monitor system calls by application programs as well, so that an analysis of the program's execution is possible.

· Model Based Intrusion Detection states that certain scenarios are inferred by certain other observable activities. If these activities are monitored, it is possible to find intrusion attempts by looking at activities that infer a certain intrusion scenario.

Neumann and Parker categorized computer misuse techniques into nine classes on the basis of data from about 3,000 computer abuse cases collected by the two authors over a period of 20 years. The authors emphasize that their classes are not mutually exclusive in the sense that actual computer abuse cases often involve techniques from several classes. The classes are listed in the below.

· External misuse: this is generally non-technological and unobserved, physically separate from computer and communication facilities, for example visual spying.

· Hardware misuse: this kind of misuse includes two types:
· Passive, with no immediate side effects.

· Active, with side effects.

· Masquerading: this includes impersonation, playback and spoofing attacks etc.

· Setting up subsequent misuse: this is implemented by planting and arming malicious software.

· Bypassing intended controls: this is implemented by circumvention of existing controls or improper acquisition of otherwise denied authority. It can be further divided into three types:

· Password attacks

· Spoofing privileged programs

· Utilizing weak authentication

· Active misuse of resources: Misuse of apparently conferred authority that alters the system or its data. This can be further divided into two types:

· Exploiting inadvertent write permissions
· Resource exhaustion

· Passive misuse of resources: Misuse of apparently conferred reading authority. This can be further divided into two types:

· Manual browsing

· Automated searching either using a personal tool or a publicly available tool
· Misuse resulting from inaction: Failure to avert a potential problem in a timely fashion, or an error of omission, for example.

· Use as an indirect aid in committing other misuse: this is further divided into

· As a tool in planning computer misuse etc.

· As a tool in planning criminal/unethical activity.

4.3 Intrusion Results

What are the consequences of an intrusion? Usually, it is meaningful to consider only the immediate result that characterizes a breach, because the total outcome of an intrusion depends on how the attackers move on from the initial breach. However, it is not obvious what should be considered the immediate result. According to the three traditional aspects of computer security, the intrusion results can be divided into three major classes:

· Exposure: The exposure category is naturally divided into the sub-classes disclosure of confidential information and service to unauthorized entities.

· Disclosure of confidential information: The resulting disclosure can be either only user information or both system and user information. Examples include the following:

· Reading backup tapes

· Spoofing ARP

· Service to unauthorized entities: This kind of unauthorized access can be either as an ordinary user or as a system user. Examples include the following:

· Automated password-guessing
· Manipulating the boot process

· Denial of service: Denial of Service (DoS) is divided into three sub-classes: selective, unselective, and transmitted. DoS intrusion activities can affect either single user or a group of users, and the users are either belong to the currently system or other systems. Examples include the following:

· Ping to death

· Causing a crash by remote copy to audio device

· Erroneous output: The Erroneous output has the same subcategories of DoS. Examples include the following:

· Spoofing Xterm
· Faking e-mail
4.4 Models and Methods

According to the research efforts in the area of intrusion detection systems (IDS), IDS including the following models:

· Generic Intrusion Detection Model

· NSM (Network Security Monitor) Model

· Autonomous Agents Model

· Behavior-based Intrusion Detection Model

· Predictive Pattern Generation Model

· Knowledge-based Intrusion Detection Model

On the other hand, based on the implementation and integration, IDSs are divided into two classes:

· Host-based Intrusion Detection System: is a software that uses log files and system’s auditing agents as sources of data. It monitors the communications traffic in and out of a single computer and checks the integrity of system files and process.
· Particularly effective in detecting trusted-insider attacks

· Software must be installed on each computer on the network

· Network-based Intrusion Detection System: is an ID system that monitors the traffic on its network segment as a data source. Three signatures are particularly important to capturing:
· String signatures: that look for a text string that indicates a possible attack
· Port signatures: simply watch for connection attempts to well known, frequently attacked ports.
· Header signatures: that watch for dangerous or illogical combinations in packet headers.

5. WebSTAT Intrusion Detection System

The WebSTAT intrusion detection system was developed based on the STAT framework. WebSTAT was built by composing the domain-indepent STAT core with a number of web language extensions modules, event providers, attack scenarios plugins, and response modules.

[image: image11.png]Web Server

Response.
D Module
Extension
OS-level Atack Scemanios
Extension AT
Core.
Web
Extension Eyéht quene
Server Log. os Network.
[Event Provider || Event Provider || Event Provider
i
Server host
Auditn Network
Systen Dver

Network

Figure 22: The WebSTAT Architecture

The STAT framework includes a number of generic response modules that scenarios can use to generate alerts. By default, WebSTAT uses the Intrusion Detection Message Exchange Format (IDMEF) response module to generate alerts in IDMEF format. However, users can dynamically change to other response modules. For example, the security administrator can reset the TCP connections and reconfigure the web server in response to a detected attack.

5.1 WebSTAT Attack Scenarios

In STATL, attacks are defined by specifying state-transition modules over the stream of events generated by the event providers. A variety of attack scenarios have been included into the STATL.

As one of the common pattern, “counting scenario” pattern has been used by many of the WebSTAT scenario. The “counting scenario” pattern contains three integer parameters:

· Threshold – specifies the number of occurrences of the event that need to appear in the event stream before an alert is raised

· Alert_freq – indicates the frequency at which intermediate alerts are to be produced after the threshold has been overcome and before the attack is terminated

· Inactivity_timeout – the attack is considered terminated when the attacker is inactive for the this time

[image: image12.png]

Figure 23: State-transition diagram for the “counting scenario” attack pattern

The following sections will introduce some examples of this generic counting scenario, there are web crawler, pattern matching, repeated failed access, cookie stealing, buffer overflow, multi-domain, and root escape scenarios.

5.11 Malicious Web Crawler Scenario

Web servers use a system file, robots.txt, to indicate what the acceptable behavior for robots (spiders/crawlers) visiting the site is. For each request, the malicious web crawler attack scenario compares the request’s URL and Use-Agent header field with the robots.txt file to check the eligibility of the request. If not, a compromised state is reached and a response function is invoked.

[image: image13.png]User-agent: *
Disallow: /cyberworld/map/
User-agent: cybermapper
Disallow

Figure 24: robots.txt file

5.12 Pattern Matching Scenario

Pattern matching scenarios take a list of regular expressions as a parameter; each item in the list can match one or more attacks. Currently, WebSTAT uses 66 regular expressions that represent attacks. New attacks can be detected by simply adding a new regular expression. A new regular expression can be added dynamically, and you can even load a regular expression without restart WebSTAT. Regular expressions are compiled during the initialization of the scenario in order to enhance the performance of the system.

[image: image31.png]<REGEX>
<expression name="CodsRed">
-*default\.ida
</exprassion>
<expression name-"phf’>
_4phE.\30a
</exprassion>

[

< /REGEX>

The pattern matching scenario use a string regex as parameter to specifies a list of regular expressions in an XML-based format.

Figure 25: Pattern Matching Scenario

5.13 Repeated Failed Access Scenario

During an intrusion procedure, the intruder will more or less leave some footprint which is very useful for the security administrator to detect and analysis. The repeated failed access scenario checks if there are multiple client errors, including failed authentication attempts, from a remote host. This kind of activities usually means that a malicious intrusion to the website to gain user information for further attacks happened or is happening.

5.14 Cookie Stealing Scenario

Web application developers use cookies as a state management mechanism for HTTP to implement session tracking. The cookie stealing scenario detects if a valid cookie is improperly used by unauthorized user to steal protected web resources.

Firstly, the scenario records the mapping of a cookie and the relevant IP address. At the same time, an inactivity timer is set. A cookie expiration or session timeout results in the removal of the mapping for that cookie. However, if the scenario detects an incorrect mapping of a session cookie and an IP address, then, it will generate an alarm to the system.

[image: image14.png]Cookie used by

New cockie issued ockie used b

sion tineost
kie expiration

uasd by
Sana 17

Figure 26: State-transition diagram for the Cookie Stealing Scenario

5.1.5 Buffer Overflow Scenario

Applications routinely allocate memory buffers to store different types of data. Applications consist of one or more operating system processes. Each process holds a memory block that is divided into three segments: Code, data, and stack. Stack is used to store information associated with function calls and is also the key for buffer overflow attacks. By overriding part of the stack, the attacker can both inject a malicious execution code and set the return address to point to the malicious code. When the function returns, the attacker's code is executed.

Buffer overflow attacks are prevented by enforcing boundary checking on input received from users. Each input should be carefully checked by the server to match the size expected. Inputs that exceed the allocated buffer size should be either truncated or blocked. WebSTAT includes a scenario to detect these conditions. The buffer overflow scenario uses one parameter, length, which defines a request length threshold that must be exceeded for an alert to be raised.

[image: image15.png]Aot Lumgen

Figure 27: State-transition diagram to detect buffer overflow attacks

5.1.6 Combining Network and Application-Level Buffer Overflow Detection

By providing language extension modules and event provider modules, it is possible for WebSTAT to make intrusion detection in different domain. For example, the WebSTAT buffer overflow scenario detects not only web server access logs, but also actual client requests from the network. This is implemented by using a network-based event provider.

 [image: image16.png]

Figure 28: State-transition diagram for multi-domain detection of buffer overflows

5.1.7 Document Root Escape Attack

Web server logs and network traffic are not the only source for cross-domain analysis. In the root escape scenario, the WebSTAT can detect events from the web server log and associate them with operating system logs to examine the unauthorized file system access. Also, the scenario exams if a user has accessed to a file outside a web server’s document root.

[image: image17.png]Ry it sac by
copmtad vy alisns Pryreert i

Figure 29: State-transition diagram for the document root escapes scenario

6. Performance Evaluation

The performance evaluation conducted in this paper measured average throughput and response times under a typical real-world workload for both a host running standalone Apache and a host running Apache monitored by WebSTAT.

[image: image18.png]

Figure 30: Minimum, average and maximum throughput

[image: image19.png]

Figure 31: Minimum, average, and maximum response time

From the throughput and response time we can see that WebSTAT incurs a small performance overhead in web server throughput. However, this small overhead may be acceptable given the powerful detection capabilities WebSTAT provides. In addition, a sophisticated web server performance tuning would also reduce WebSTAT’s impact on the server performance.

7. Conclusion

In the paper “Intrusion Detection: Systems and Models”, author presented a classification scheme for computer intrusions, in which the classification is made with respect to the intrusion technique and the intrusion result, with the needs of system owners and administrators in mind.

In the paper “A Stateful Intrusion Detection System for World-Wide Web Servers”, author presented a novel approach for intrusion detection, called WebSTAT. WebSTAT is a stateful intrusion detection system which is implemented by extending the STAT framework to perform detection of web-based attacks. STAT framework provides an advanced language for describing multi-step attacks in terms of states and transitions. Extended modules can be loaded dynamically as shared libraries, which increase the flexibility and extensibility of WebSTAT. WebSTAT also are able to associate both network-level and operating system-level events with entries contained in server logs. This generates a reduced number of false positives and makes detection of web-based attacks more accurate.

From the performance evaluation result, we can see although WebSTAT brings some small performance overhead to the web server, it is acceptable considering the advanced detection capabilities.

The threat and actuality of intrusion is real, although, this has not been recognized by most of organizations. By making a customized security policy and strategy and integrate intrusion detection system into their existing security implementation, organizations will be able to protect their systems, networks and their sensitive data.

Reference

1. Sherif, J.S.; Dearmond, T.G.; “Intrusion detection: systems and models”
Enabling Technologies: Infrastructure for Collaborative Enterprises, 2002. WET ICE 2002. Proceedings. Eleventh IEEE International Workshops on, 10-12 June 2002. Pages: 115 – 133
2. Sundaram, A., “An Introduction to Intrusion Detection”. Crossroads: The ACM Student Magazine, 2, 4, 1996, Hyperlink: acm.org/Crossroads, 1996.
3. Mahoney, M., “Computer Security: A Survey of Attacks and Defenses” Hyperlink: docshow.net/ids.htm, 2000.
4. Lindquist, U., and E. Jonsson, “How to Systematically Classify Computer Security Intrusions" Proceedings IEEE Symposium Research in Security and Privacy, Oakland, CA 1997.
5. Giovanni Vigna, William Robertson, Vishal Kher, and Richard A. Kemmerer, “A Stateful Intrusion Detection System for World-Wide Web Servers”; Proceedings of the 19th Annual Computer Security Applications Conference, Page: 34; 2003
6. STAT Framework Reference Manual
7. S.T. Eckmann, G. Vigna, and R.A. Kemmerer, "STATL: An Attack Language for State-based Intrusion Detection," Journal of Computer Security, vol. 10, no. 1/2, pp. 71-104, 2002
8. G. Vigna, S.T. Eckmann, and R.A. Kemmerer, "The STAT Tool Suite," in Proceedings of DISCEX 2000, Hilton Head, South Carolina, January 2000, IEEE Press
9. G. Vigna, R.A. Kemmerer, and P. Blix, "Designing a Web of Highly-Configurable Intrusion Detection Sensors," in Proceedings of the Workshop on Recent Advances in Intrusion Detection (RAID 2001), Davis, CA, October 2001
PAGE
2
Hailun Yan course 564 survey 101438018

_1160674054

_1160723061

_1160724106

_1160674981

_1160424403

