Intrusion Detection Systems with Snort

Introduction

Security is a big issue for all networks in today's enterprise environment. Many methods have been developed to secure the network infrastructure and communication over the Internet. One relatively new method is intrusion detection methods, which started appearing in the last few years. Using intrusion detection methods, you can collect and use information from known types of attacks and find out if someone is trying to attack your network or particular hosts.

A comprehensive security system consists of multiple tools, including:

· Firewalls that are used to block unwanted incoming as well as outgoing traffic of data.

· Intrusion detection systems (IDS) that are used to find out if someone have gotten into or are trying to get into your network.

· Vulnerability assessment tools that are used to find and plug security holes present in your network.

These tools can work together and exchange information with each other. Intrusion Detection System (IDS) is software, hardware or combination of both used to detect intruder activity. There are two types of IDS. One is Network Intrusion Detection System (NIDS) that capture data packets traveling on the network media and match them to a database of signatures. The other is Host-based Intrusion Detection System (HIDS) that are installed as agents on a host. This system can look into system and application log files to detect any intruder activity. Snort is an open source NIDS which is available free of cost.

In this report, I will discuss installation procedure for Snort as well as other products that work with Snort, components of Snort, most frequently used functions and testing of Snort/ACID.

In a Snort based Intrusion Detection System, first Snort captured and analyze data. Then, it stores this data in the MySQL database using the database output plug-in. Apache web server takes help from ACID, PHP, ADODB and JPGraph packages to display the data in a browser window when a user connects to Apache. A user can then make various type of operations to analyze, archive, graph and delete data.

In essence, an IDS building on a single computer is shown in Figure 1

[image: image1.png]Intruder tries to attack

hosts present on this
network

A computer with
Snort, Apache,
MySQL, Acid,
ADODB, and
JPGraph installed

A user looking at
intrusion data
callected by Snort
through wels
browser

Figure1: A network intrusion detection system in a single machine
In the enterprise environment, multiple Snort sensors are used behind every router or firewall. In that case, a single centralized database is used to collect data from all of the sensors. Figure2 shows the architecture used in such a system.

[image: image2.png]Snort Sensor

Snort Sensor

Snort Sensor

Snort Sensor

Centralized
database server
running MySQL,

= Apache, Aid,
= ADODE and
m = JPGraph ibraries
)
A user looking at
— | ininwsion data

collected by Snort
through web
browser

Figure2: Multiple Snort sensors logging to a centralized database server

1 Installation

Snort can be downloaded from it’s official website at http://www.snort.org. Snort is supported on a number of hardware platforms and operating systems. These include:

· Linux

· OpenBSD
· FreeBSD

· NetBSD

· Solaris (both Sparc and i386)

· HP-UX

· AIX

· IRIX

· MacOS

· Windows
In this report, we downloaded the source file package and compiled from scratch, however, Snort website also provide binary version for linux and windows platforms.

1.1 Softwares Installed Before Snort

Before compile and install snort, we have to first install the related software and libraries, this includes:

· Zlib1.2.1 (http://www.gzip.org/zlib/)

· LibPcap0.7.2 (http://www.tcpdump.org/release/libpcap-0.7.2.tar.gz)

· MySQL4.0.15 (http://downloads.mysql.com/archives.php?p=mysql-4.0&o=linux-)

· Apache2.0.52 (http://httpd.apache.org/download.cgi)

· PHP4.3.3 (http://www.php.net/distributions/php-4.3.3.tar.gz)

For detailed description about the installation of these softwares, please read the article: ”Snort, Apache, PHP, MySQL and Acid Install on RH9.0” (http://www.infosecwriters.com/text_resources/pdf/snort_acid_rh9.pdf).

The following is the installation procedures on RedHat9.0 linux operating system:

shell> tar –xzvf snort-2.2.0 .tar.gz

shell> cd snort-2.2.0

shell> ./configure –with-mysql=/usr/local/mysql

shell> make

shell> make install

1.2 Installing Snort Rules And Configuration File

After successfully installed Snort, we then need to install the rules and configure file used for Snort. This can be down like this:

shell> mkdir /etc/snort

shell> mkdir /var/log/snort

shell> cd rules

shell> cp * /etc/snort

shell> cd ../etc

shell> cp snort.conf /etc/snort

shell> cp *.config /etc/snort

1.3 Configure Snort System File

The Snort system file snort.conf is now located in /etc/snort, we need to make the following changes to make it works well on our system.

var HOME_NET 192.168.0.0/24 (make this whatever your internal network is)

var RULE_PATH /etc/snort/ (this is the location where the snort rules are stored)

output database: log, mysql, user=snort password=xxx dbname=snort host=localhost (this is to tell Snort to log to the mysql database)

1.4 Setting Up The Database In MySQL

Open MySQL client, type the following commands:

mysql> set password for root@localhost=password(‘xxx’);

mysql> create database snort;

mysql > grant insert, select on root,.* to snort@localhost;

mysql> set password for snort@localhost=password(‘xxx’);

mysql> grant create, insert, select, delete, update on snort.* to snort@localhost;

mysql> grant create, insert, delete, select, update on snort.* to snort;

mysql> exit

From the Snort source directory execute the following command:

shell> /usr/local/mysql/bin/mysql –u root –p < ./contrib./create_mysql snort

Enter password: xxx (which is the password set above for root account)

Finally, install the extra DB tables using the following command from the contrib directory:

shell> zcat snortdb-extra.gz | /usr/local/mysql/bin/mysql –p snort

Enter password: xxx
1.5 Softwares Installed After Snort
In order to display alert massages generated by Snort when capturing prospective intrusion actions, we need to install Analysis Console for Intrusion Detection (Acid) software package (http://acidlab.sourceforge.net/acid-0.9.6b23.tar.gz) as well as related libraries JPGraph (http://www.aditus.nu/jpgraph/downloads/jpgraph-1.1.3.ar.gz) and ADODB (http://phplens.com/lens/dl/adodb390.tgz) and copy them to the htdocs directory of Apache web server. For detailed description about the installation of these softwares, please read the article: ”Snort, Apache, PHP, MySQL and Acid Install on RH9.0” (http://www.infosecwriters.com/text_resources/pdf/snort_acid_rh9.pdf).

1.6 Check to See If Everything Is Working

To check if you have successfully installed the above softwares and build a Snort-based IDS, you can execute the following commands:

shell> /usr/local/apache/bin/apachectl start (start Apache web server)

shell> /usr/local/mysql/bin/mysqld_safe & (start MySQL database in the background)

shell> /usr/local/bin/snort –c /etc/snort/snort.conf –D (star Snort in the background)

shell> ping yahoo.com

Then, type the following address in your favorite web browser: http://192.168.0.2/acid/. If you can see the main page of Acid, and it is displaying the alerts from MySQL database generated by Snort, then congratulations, you have successfully installed a Snort-based IDS on a single machine.

[image: image3.png]Console for Intrusion Databases (ACID) - Mozilla.
Ele Edt View Go Bookmarks Tools Window Help

<« - > . a 3 & http://localhost/acid/acid_main.php || 22 Search

Back * Foward Reload Siop
hHome | ‘W Bookmarks £ Red Hat Network (4Support (4Shop (4 Products (4 Training

Analysis Console for Intrusion Databases

Added 2 alert(s) to the Alert cache

Queried on : Sat October 09, 2004 09:20:04
Database: snont@localhost _ (schema version: 106)
Time window: [2004-10-09 09:10:08] - [2004-10-09 09:19:59]

Sensors: 1 Traffic Profile by Protocol
Unique Alerts: 1 (1 categories) TCP (89%)
ol Number of aler: 769 e ————— /
* Source IP addresses: 10 UDP (10%)
+ Dest p adiesees —
© Unique IP links 18 ICMP (1%)
* Source Ports: 27 n
© TCP (20) UDP (7)
o Dest. Pone 37 onscan et (%)
© TCP (21) UDP (6)

o search
© Graph Alert data

« Snapshot B
 Most recent Alerts: any protocol, TCP, UDP, ICMP Most frequent 5 Alerts

Today's: alerts u: ing; IP stc / dst

Last 24 Hours: alerts u g; IP src / dst

Last 72 Hours: alerts u g: IP src / dst

Most recent 15 Unique Alerts

Most Frequent Source Ports: any , TCP, UDP
Most Frequent Destination Ports: any , TCP , UDP.

Most frequent 15 addresses: source, destination

 Last Source Ports: any , TCP, UDP
 Last Destination Ports: any , TCP, UDP

| % 2 | Done [E—
root@localhos @ Satoct 09
9.20AM

Analysis Console for Intrusion Databases (ACID) - Mozilla

[
&
@

5

Figure3: Acid main page displaying the alerts from MySQL database

2 Components of Snort

A Snort-based IDS contains the following components:

· Packet Decoder

· Preprocessors

· Detection Engine

· Logging and Alerting System

· Output Modules

Figure4 shows how these components work together to detect particular attacks and to generate output. Any data packet coming from the Internet enters the packet decoder. On its way towards the output modules, it is either dropped, logged or an alert is generated.

[image: image4.png]f i

{ Lnternet E:

Packet Decoder

Detection
Tingine

Preprocessons))

Packet is
dropped

Logging and,
Alerting
System

Quiput
Madules

utput Alert ar
Log toa file

=

Figure4: Components of Snort

2.1 Packet Decoder

In an organization’s network, the network interface can be Ethernet, SLIP, or PPP and so on. The packet decoder takes packets from different types of network interfaces and prepares the packets to be preprocessed or to be sent to the detection engine.

2.2 Preprocessors

Preprocessors are components that can be used to arrange or modify data packets before the detection engine does some operation to find out if the packet is being used by an intruder. Hackers use different techniques to fool an IDS in different way, these may include:

· Exact match: For examples, you may have created a rule to find a signature “httpd/conf” in HTTP packets. If you are matching this string exactly, a hacker can easily fool you by modifying the string as “httpd/./conf” or “httpd../httpd/conf”. In addition, since the web servers usually understand hexadecimal characters or Unicode characters, hackers can also inset these kinds of characters into the web URI. This also makes the exact match rule void. A preprocessor can rearrange the string so that it is detectable by the IDS.

· Packets fragmentation: When a large data chunk is transferred to a host, the packet is usually fragmented into multiple data packets so that each packet fragment satisfies the requirement of default maximum length of some particular network interface. Later, the receiving systems need to reassemble these smaller units to form the original data packets. Hackers can use fragmentation to hide a signature into several small units to fool the IDS. A Preprocessor can reassemble these small units first and send the whole packet to the detection engine for signature testing.

2.3 The Detection Engine

The detection engine is the most important part of Snort. Its responsibility is to detect if any intrusion activity exists in a packet. The detection engine employs Snort rules for this purpose. The rules are read into internal data structures or chains where they are matched against all packets. If a packet matches any rule, Snort will send alerts to system logs or output plug-ins; otherwise the packet is dropped. The detection engine is the time-critical part of Snort. The load on it depends on the following factors:

· Number of rules

· Power of the machine on which Snort is running

· Speed of internal bus used in the Snort machine

· Load on the network

Note that the detection engine can dissert a packet and apply rules on different parts of the packet. These parts may be:

· The IP header of the packet

· The Transport layer header: This header includes TCP, UDP or other transport layer headers. It may also work on the ICMP header.

· The application layer level header: Application layer headers include, but are not limited to, DNS header, FTP header, SNMP header, and SMTP header. You may have to use some indirect methods for application layer headers, like offset of data to be looked for.

· Packet payload. This means that you can create a rule that is used by the detection engine to find a string inside the data that is present inside the packet.
2.4 Logging and Alerting System

Depending on what the detection engine finds inside a packet, the packet may be used to log the activity or generate an alert. Logs are kept in simple text files, tcpdump-style files or some other form. All of the log files are stored under /var/log/snort folder by default. You can use –l command line options to modify the location of generating logs and alerts. Many command line options discussed in the next chapter can modify the type and detail of information that is logged by the logging and alerting system.

2.5 Output Modules

Output modules or plug-ins can do different operations depending on how you want to save output generated by the logging and alerting system of Snort. Basically these modules control the type of output generated by the logging and alerting system. Depending on the configuration, output modules can do things like the following:

· Simply logging to /var/log/snort/alerts file or some other file

· Sending SNMP traps

· Sending messages to syslog facility

· Logging to a database like MySQL or Oracle.

· Generating eXtensible Markup Language (XML) output

· Modifying configuration on routers and firewalls

· Sending Server Message Block (SMB) messages to Microsoft Windows-based machines

Other tools can also be used to send alerts in other formats such as e-mail messages or viewing alerts using a web interface.
3 Snort Modes

Snort operates in two basic modes:

· Sniffer mode

· NIDS mode

It can be used as a packet sniffer, like tcpdump or snoop. When sniffing packets, Snort can also log these packets to a log file. The file can be viewed later on using Snort or tcpdump. No intrusion detection activity is done by Snort in this mode of operation. Using Snort for this purpose is not very useful as there are many other tools available for packet logging. For example, all Linux distributions come with the tcpdump program which is very efficient.

When you use Snort in network intrusion detection (NIDS) mode, it uses its rules to find out if there is any network intrusion detection activity.

3.1 Network Sniffer Mode

In the network sniffer mode, Snort acts like the commonly used program tcpdump. You don’t need a configuration file to run Snort in the sniffing mode. With the capacity of parameters, you can capture and display network packets with different levels of detail.

Figure5 is a network sniffing mode test. In this test, I start Snort server that is running as a network sniffer by typing the following command:

Shell> snort –v

Shell> ping www.yahoo.com

Snort will continue to display captured packets on the screen until you break using Ctrl-C. At the time Snort terminates, it will display statistical information.

[image: image5.png]v root@localhost:~

File Edt View Teminal Go

Help

:20.890659 192.168.0.2:33318 —> 137.207.32.76:
X0 ID:24747 IpLen:20 DgnLen:40 DF
[+#sa%+++ Seq: OxCOG322FB Ack: 0x3620DSF5

0

:20.890857 192.168.0.2:33318 > 137.207.32.76:80
X0 ID:24748 IpLen:20 Dgmlen:559 DF

[+##aP*++ Seq: O0xCOG322FB Ack: 0x3620DSF5

Win: 0x16D0 TcpLen:

Win: 0x16D0 TcpLen:

20

Fle Edt View Go Bookmarks Tools Window Help
L. > sarh] S .
Back Fomward Rdoad Smp [Yzz searc Print

hHome | ‘W Bookmarks £ Red Hat Network (4 Support (4Shop (4P|

<xA**S* Seq: Ox525BCAD4 Ack: OXBFC4E617 Win: OXFFFF Tcplen: 24 ang Sign In

ITCP Options (1) => MSS: 1400

10/15-21:18:20.898313 192.168.0.2:33319 -> 137.207.32.76:80 < >

ITCP TTL:64 TOS:0x0 ID:42056 IpLen:20 Dgnlen:40 DF Con [

+xp%5% Seq: OXBFC4E617 Ack: Ox525BCADS Win: Ox16D0 TcpLe: i

10/15-21:18:20. 898503 192.168.0.2:33319 > 137.207.32.76:80

TCP TTL:64 TOS:0x0 ID:42057 IpLen:20 DgmLen:559 DF

[++<ap##+ Seq: OXBFC4E617 Ack: Ox525BCADS Win: 0x16D0 TcpLen: 20

10/15-21:18:20.901768 192.168.0.2:33316 > 137.207.32.76:80

fTCP TTL:64 TOS:0x0 ID:40699 IpLen:20 Dgnlen:40 DF &

‘A [root@localhost:~ root@localhost:] 7y G
University of Windsor - Mozilia ; 921PM

Figure5: packets captured by Snort using sniffing mode with parameter v

[image: image6.png]v

Eile Edit View Teminal Go Help

snort analyzed 474 out of 508 packets, dropping 34(6.693%) packets

Breakdown by protocol: Action Stats:
: 439 (86.417%) ALERTS: 0

1 (0.197%)
0 (0.000%)
i 0 (0.000%)
EAPOL: 0 (0.000%)
IPV6: 0 (0.000%)
IPX: 0 (0.000%)
OTHER: 0 (0.000%)
DISCARD: O (0.000%)

wireless stats:

Breakdown by type:

Management Packets: 0 (0.000%)
Control Packets: 0 (0.000%)
Data Packets: 0 (0.000%)

[Fragnentation stats:
Fragnented TP Packets:
Fragnent Trackers:
Rebuilt TP Packets:
Frag elements used:

(0.000%)

IDiscarded(incomplete)

Discarded(timeout):
Frag2 memory faults

ITCP Strean Reassembly Stats
TCP Packets Used: 0 (0.000%)

Stream Trackers:

Stream flushes:

Segments used:

Streamd Memory Faults:

root@localhost:~

root@localhost:~

aS

University of Windsor - Mozilla

I =g Fi oct15
= e 52 P

Figure6: statistical information generated when terminating Snort

To get the layer 2 information as well as the headers, you can start Snort by using parameter dv. The output is like this:

[image: image7.png]Eile

Edit

View Terminal

Help.

10/15-;
192.168.0.
«xsp*s¥5 Seq: OXESOOFO6S

10/15-:
192.168.0.
|« #ap+++ seq: oxES99F06S

10/15-:
192.168.0.2:33482
#xsp*ees Seq: OXESOOF20D Ad

10/15-:
137.207.32.76:80

10/15-:
192.168.0.2:33482
###A*F¥% Seq: OXESO9F20D Ad

21:

21:

137.207.32.76:80

2

2

2

2.428531 0:

2.428382 0:

2.461773 0:

:3:47:91:73:1F :
-> 137.207.32.76:80 TCP TTL:64 T0S:0x0 ID:
Ack: OXE76526E Win:

:3:47:91:73:1F :
-> 137.207.32.76:80 TCP TTL:64 T0S:0x0 ID:
Ack: OXE76526E Win:

> 192.168.0.2:33482 TCP TTL:
#+xAP*+* Seq: OXF76526E Ack: OXESO9F20D Win:

:47:91:73:1F
> 137.207.32.76:80 TCP TTL
OXF765411 Win:

:5B:5C:99:85 —> 0:
-> 192.168.0.2:33482 TCP TIL:
#+eA*4+F Seq: OXF765411 Ack: OXESO9F20D Win

:47:91:73:1F
-> 137.207.32.76:80 TCP TTL:
0XF765412 Win

> 0:

> 0:

: OXESOD7ASD Win:

OXFFFE TcplLen:

45 T0S:0x0 ID:

64 TOS:0x0 ID:55614 IpLen:
0x1920 TepLen: 20

0X1600 TepLen: 20

0X1600 TepLen: 20

604 IpLen:
20

OXFFFF TcpLen: 20

5 type:0x800 le:

F type:0x800 le

5 type:0x800 le:

:0x36

0 DgnLen:40 DF

605 IpLen:20 Dgmlen:

=+

X36

20 DgnLen:40 DF

=+

X3C

45 T0S:0x0 ID:2606 IpLen:20 DgmLen:40
OXFFFF TcpLen: 20

"

X36

64 T0S:0x0 ID:55615 IpLen:20 DgnLen:40 DF
0x1920 TepLen: 20

o

L)

@

root@localhost:~

root@localhost:~

University of Windsor - Mozilla

Fri Oct 15
9:28PM

Figure7: packets captured by Snort using sniffing mode with parameter dv

Note the above information is not all the packets information on the network. In order to capture all of them, showing the data link layer headers and application layer payload, you have to use parameter dev. This command displays captured data in hexadecimal as well as ASCII format.

[image: image8.png]a8
oa.
20
38
61
30
62
60
72
6D
on
73
20
68
61
67
63

10/15-2

54
43
33
20
74
31
74
63
65
D
oa
63
75
20
67
20
74

Edit

68
2
2
2
6E
60
74
60
6E
aa
62
£

54
6F
39
63
2
38
65
61
61
75
o
72
6E
62
65
£
60

61
31
20
a1
65
76
70
6E
2F
61
6F
49

50
6E
34
6C
20
32
6E
74
D
6E
oa
60
D
6F
o
20
6F

72
2
28
6C
63
65
38
64
38
a1
78
4

2F
74
o
6F
31
35
74
60
o
60
2F
70
61
78
76
22
6E

73
20
38
60
74
o
2F
73
39
a2
28
a2

31
65
oa
73
36
38
2
6F
oa
a7
2F
74
72
65
61
66
20

65
75
71
76
60
oa
2F
6F
36
a1
77
aF

28
6E
43
65
20
34
54
6E
53

61
20
20
68
73
72
61
63

View Terminal

74
74
£
65
6F
52

77
72
31
62
73
58

31
74
6F
o
aF
38
79
2F
65
74
a1
74
20
20
20
6C
68

Go

38
66
30
38
6E
65
65
28
2
54
73
o

20
2
6E
oa
63
20
70
6F
72
65
20
6F
61
6F
63
73
65

20
2
28
20
38
66
62
63
65
68
70
oa

#+#aP*+* Seq: Ox4FDS07CO Ack:

32
ac
6E
aa
74
a7
65
63
76
50

73
20
6C
6E
68
65
63

Help.

49
38
36
33
20
65
D
61
6
39
3F
o

53
38
36
30
68
72
61
2F
6
a7
D

oa

aF
71
o
30
65
65
60
53

a5
34
61

4.213884 137.207.32.76:80
[TCP TTL:45 T0S:0x0 ID:56726 IpLen:20 DgmlLen:598

E)
£
oa
o
65
72
6C
65
5A
2F
60

-> 192.168.0.

OXDB1CBBIE

30
65
65
61
20
D

38
74
65
72
60
D
6C
20
65
22
68

30
6E
63
74
32
54
20
65
72
6F
D
61
20
74
63
38
28

20
67
74
65
30
o
61
74
38
2F
70
72
63
68
68
o
66

aF
74
60
38
30
oa
70
2
20
34
6C
68
68
65
66
66
60

38
30
48
oa
70
38
31
73
6
D
6C

38
28
65
43
2
20
28
73
a8
61
62

wWin:

48
68
6F
20
34
43
70
73
43
28
65
20
65
20
6C
75
65

o
38
6E
53

20
6F
6C
74
6F
32
20
2F
63
70
61
6E
6C

—Charset: 150-88

59-1, utf-8
66, *;q=0.66..Ke
ep-Alive: 300..C

onnection: keep-
alive..Referer:

http://webmaill.
uwindsor. ca/sess
ion/8961-ejjEZjH
SPDaABABTh9GE/ma
ilbox.wssp?Hailb
0x=TNBOX.

:33432

OXFFFF Tcplen: 20
HTTP/1.1 200 OK.
.Content-Length:
394. .Connection
: close. .Date: §
at, 16 oct 2004
01:25:48 GMT..Co
ntent-Type: appl
ication/octet-st
ream..Server: Co
mmuniGatePro/4.2
<...// A simple
script to mark /
unmark all chec
k boxes on the p
age.var checkfla
g = "false”;.fun
ction check(fiel

B

L)

@

root@localhost:~

root@localhost:~

User yan9 logged in. - Mozilla

Fri Oct 15
9:27PM

Figure8: packets captured by Snort using sniffing mode with parameter dev

3.2 Logging Snort Data in Text Format

You can log Snort data in text mode by adding -l <directory name> on the command line. The following command logs all Snort data in /var/log/snort directory in addition to displaying it on the console.

snort -dev -l /var/log/snort

When you go to the /var/log/snort directory, you will find multiple directories under it. Each of these directories corresponds to one host and contains multiple files. The name of the directory is usually the same as the IP address of host. These files contain logs for different connections and different types of network data. For example, files containing TCP data will start with TCP. A typical name for a file containing TCP data is TCP:2489-23. A typical file containing ICMP data may be ICMP_ECHO. The format of data logged in these files is the same as the data displayed on the screen when you run Snort in the network sniffer mode.

[image: image9.png]R4 root@localhost:
Eile Edit View Teminal Go Help

[root@localhost root]# ls /var/log/snort
192.168.0.2 alert portscan.log
[rootelocalhost root]# 1s /var/log/snort -1

total 1432
2 root root 4096 Oct 3 18:37 19

1 root root 1456205 Oct 15 21:38 al

1 root root 0 0ct 4 12:19 po

[root@localhost rootl# ||

Figure9: log files generated inside the /var/log/snort directory

3.3 Network Intrusion Detection Mode

In intrusion detection mode, Snort does not log each captured packet as it does in the network sniffer mode. Instead, it applies rules on all captured packets. A packet is captured only if it matches a rule. If it is not match any rule, the packet is dropped silently and no log entry is created. The following command starts Snort in the NID mode:

Shell> snort –c /etc/snort/snort.conf

When you start this command, Snort will read the configuration file /etc/snort/snort.conf and all other files included in this file. Typically these files contain Snort rules and configuration data. After reading this files, all captured packets will be matched against these rules and appropriate action will be taken. These include sending alerts to database, Syslog, SNMP traps and MS Windows etc.

4 Working With Rules

Most intruder activity will leave some kind of footprint, this footprint is called signature in the Snort jargon. Snort rules are created based on these signatures. These signatures may be present in the header parts of a packet or in the payload. Snort rules can be used to check various parts of a data packet including both network layer protocols and application layer protocols.

4.1 Structure of a Rule

A Snort rule is divided into two parts: rule header and rule options. The rule header contains information about what action a rule takes. It also contains criteria for matching a rule against data packets. The general structure of a Snort rule header is shown in Figure10.

[image: image10.png]Action

Protocol

Address ‘ Port ‘ Direction

Figure10: structure of Snort rule header

The options part contains additional criteria for matching a rule against data packets. A rule may detect one type or multiple types of intrusion activity. Intelligent rules should be able to apply to multiple intrusion signatures.

Rule options are enclosed inside a pair of parentheses. There may be one or many and the options are separated with a semicolon. In general, an option may have two parts: a keyword and an argument. Arguments are separated from the option keyword by a colon.

4.2 Using ACID With Snort

Analysis Console for Intrusion Database (ACID) is a tool used to analyze and present Snort data using a web interface. It is written in PHP. It works with Snort and databases like MySQL. A user will use a web browser to interact with ACID.

The following test is to show you how user customized rules are used by Snort and how we use ACID to analysis Snort alerts from MySQL database. The first test is as follow:

First you need to delete all the build-in rules used by Snort in the snort.conf configuration file, and then add the following rule to the snort.conf file rules part:

alert ip any any -> any any (msg: “IP Packet detected”;)

This rule will generate an alert message for every captured IP packet. The ACID main page provides an overview of currently available data. It has different sections to display information in groups. You can view traffic profiles by different protocols, get a snapshot of sensors, search data and so on.

[image: image11.png]Console for Intrusion Databases (ACID) - Mozilla.
Ele Edt View Go Bookmarks Tools Window Help

<« - > . a 3 & http://localhost/acid/acid_main.php || 22 Search

Back * Foward Reload Siop
hHome | ‘W Bookmarks £ Red Hat Network (4Support (4Shop (4 Products (4 Training

Analysis Console for Intrusion Databases

Added 2 alert(s) to the Alert cache

Queried on : Sat October 09, 2004 09:20:04
Database: snont@localhost _ (schema version: 106)
Time window: [2004-10-09 09:10:08] - [2004-10-09 09:19:59]

Sensors: 1 Traffic Profile by Protocol
Unique Alerts: 1 (1 categories) TCP (89%)
ol Number of aler: 769 e ————— /
* Source IP addresses: 10 UDP (10%)
+ Dest p adiesees —
© Unique IP links 18 ICMP (1%)
* Source Ports: 27 n
© TCP (20) UDP (7)
o Dest. Pone 37 onscan et (%)
© TCP (21) UDP (6)

o search
© Graph Alert data

« Snapshot B
 Most recent Alerts: any protocol, TCP, UDP, ICMP Most frequent 5 Alerts

Today's: alerts u: ing; IP stc / dst

Last 24 Hours: alerts u g; IP src / dst

Last 72 Hours: alerts u g: IP src / dst

Most recent 15 Unique Alerts

Most Frequent Source Ports: any , TCP, UDP
Most Frequent Destination Ports: any , TCP , UDP.

Most frequent 15 addresses: source, destination

 Last Source Ports: any , TCP, UDP
 Last Destination Ports: any , TCP, UDP

| % 2 | Done [E—
root@localhos @ Satoct 09
9.20AM

Analysis Console for Intrusion Databases (ACID) - Mozilla

[
&
@

5

Figure11: ACID main page when using user customized rule

From the main page, you can click on a protocol to get information about packets logged fro that particular protocol. Figure12 shows a screen shot for TCP protocol. The bottom part of the screen shows the last fifteen individual packets that have been logged into the database.

[image: image12.png]Eile Edit View Go Bookmarks Tools Window Help

L. > a @ & http:/flocalhostyacid/acid_qry_main. php?new=18layer4=TCP&num_result_rows

18sort_ord
Back ~ Foward Reload Stop

3Home | wfBookmarks 4 Red Hat Network (4Support (§Shop (§Products (4 Training

e Time profile of alerts [
Displaying alerts 1-50 of 688 total
N #0{1-1566) 1P Packet detected 2004-10-09 09:13:44 172.16.52.203:80 192.168.0.2:1185 TP
r #141-1565) 1P Packet detected 2004-10-09 09:10:56 218.30.108.14:80 192.166.0.2:32846 TP
r #21-1564) 1P Packet detected 2004-10-09 09:10:56 192.168.0.2:32846 218.30.108.14:80 TP
r #341-1563) 1P Packet detected 2004-10-09 09:10:55 218.30.108.20:80 192.166.0.2:32854 TP
r #4(1-1562) 1P Packet detected 2004-10-09 09:10:55 218.30.108.14:80 192.168.0.2:32866 TP
r #5-1-1561) 1P Packet detected 2004-10-09 09:10:55 192.168.0.2:32854 218.30.108.20:80 TP
r #61-1560) 1P Packet detected 2004-10-09 09:10:55 192.168.0.2:32866 218.30.108.14:80 TP
r #741-1559) 1P Packet detected 2004-10-09 09:10:54 192.168.0.2:32854 218.30.108.20:80 TP
r #81-1558) 1P Packet detected 2004-10-09 09:10:54 218.30.108.20:80 192.168.0.2:32854 TP
r #941-1557) 1P Packet detected 2004-10-09 09:10:52 192.168.0.2:32871 218.30.108.20:80 TP
r #10(1-1556) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32671 TP
r #1141-1555) IP Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32671 TP
r #12{1-1559) P Packet detected 2004-10-09 09:10:52 192.168.0.2:32855 218.30.108.20:80 TP
r #1311553) IP Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.166.0.2:32855 TP
r #14(1-1552) P Packet detected 2004-10-09 09:10:52 192.168.0.2:32871 218.30.108.20:80 TP
r #151-1551) IP Packet detected 2004-10-09 09:10:52 192.168.0.2:32870 218.30.108.20:80 TP
r #16(1-1550) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32670 TP
r #171-1549) IP Packet detected 2004-10-09 09:10:52 192.168.0.2:32855 218.30.108.20:80 TP
r #18(1-1548) P Packet detected 2004-10-09 09:10:52 192.168.0.2:32870 218.30.108.20:80 TP
r #1941-1547) IP Packet detected 2004-10-09 09:10:52 192.168.0.2:32870 218.30.108.20:80 TP
r #20(1-1546) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32670 TP
r #211-1545) IP Packet detected 2004-10-09 09:10:52 192.168.0.2:32870 218.30.108.20:80 TP
r #22{11549) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32670 TP
r #23(1-1543) IP Packet detected 2004-10-09 09:10:52 192.168.0.2:32871 218.30.108.20:80 TP
I #24(1-1542) _IP Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32671 TP | [

2 | bone Co-a

k3
‘A [} 3 [root@localhost:~] o @D
ACID: Query Resuilts - Mozilla 9:15 AM

Figure12: TCP protocol data

You can click on any one of these lines at the bottom to find out more details about a particular packet. Figrue13 shows details about a particular TCP packet.

[image: image13.png]3Home | wfBookmarks 4 Red Hat Network (4Support (§Shop (§Products (4 Training

Fle Edt View Go Bookmarks Tools Window Help
B?('k ° F‘)?'Wd R;%ad %Ep & http:/flocalhost/acid/acid_qry_alert.php?submit=%230-%281-1566%29&sort_order=time_d 2 Search

1-1566][2004-10-09 09:13:44

IP Packe detected

19216802 eho

none

[172.1652.209] 192.168.02 |

s JoJ w0 JoJlo o [ase[5o |

Unable 10 resolve
address

FQDN.

Unable 10 resolve
address

TP ..IIIII
80

1185

asawraas|psasisanas] s J o] o o] 4wss |

none
| % 2 | Dore

A & [root@localhost:~]
‘ ACID: Alert - Mozilla

@ o

Ik

0|

Sat Oct 09
9:17 AM

Figure13: TCP alert detail

One important feature of ACID is that it can be used to search the captured alert data. Figure14 is the screen shot for some searching procedure. All the criteria that you specify in this screen are translated to a SQL statement that is passed to the MySQL database server. Figure15 is the result of this query.

[image: image14.png]R4 ACID: Query Results - Mozilla =]

File Edit View Go Bookmarks Tools Window Help

L. 2 A [phpnew= B
B © mii © o o & http:/flocalhost/acid/acid_ary_main.php?new=1 2#_Search

hHome | ‘WfBookmarks # Red Hat Network (4Support (4Shop (4 Products (4 Training

Sensor: | [1]192.168.0.2:eth0_~| Alert Group: | { any Alert Group } =]

Signanre: I(:(I:‘sgs’:::::nf(anvﬂ\asswhcaﬂnn) I priority:| — I | r
MlentTime: | ~|[(ume) l[tmonth) x| [tvear) o] § f [_ - | ApoTime

IP Criteria

Address: [<[Dest ~|[- ~Ifio2.168.0.2 [y ~I[— ~I|_ADDAddr

Misc: |— =l tfiedy == <[] |— =l|— || ADDIPField

Layer-4: nolayers | uop | icwe |

Port. | «|[soucepon ~||- ~ljso | =[|_ < ADDTCPPon

Flags: |[(flags) ~| [~ [Rsv1] | [Rsvo] | ([URG] | [AcK] | [PSH] | [RST] | [sYN] | [FIN]

Mise: | <||(teid) v||- <|| |_ v||_ =] _ADDTCPField

Payload criteria

Input Criteria Encoding Type: { Encoding) | Convert To (when searching) { Convert To} ~|

| — [tpayload} || [— =[— <] _aopPayload L

Sortorder: ¢ none| ¢ timestamp (ascend) | ¢ timestamp (descend) | ¢ signature

Query DB |
-]
E root@localhost:~ @ e
|# ACID: Query Results - Mozilla 7 9:27 AM

Figure14: Searching database using ACID

[image: image15.png]Eile Edit View Go Bookmarks Tools Window Help

L. > A B g v tocahosyacidiacd_ary_maimphp

Back ~ Foward Reload Stop

3Home | wfBookmarks 4 Red Hat Network (4Support (§Shop (§Products (4 Training

5 Search

Queried DB on : Sat October 09, 2004 09:29:19 ‘Summary Statistics
Sensm - [1]192.168.0.2:eth0 _..clear... + Sensors
¢ Unique Alerts (classifications)
(Dest. Address = 192.168.0.2) ...clear.. » Unique addresses: source | destination
¢ Unique IP links
source port = 80 ...clear... ¢ Source Port TCP | UDP
[+ Destination Port: TCP | UDP
any o Time profile of alerts
Displaying alerts 1-50 of 307 total
N #0{1-1566) 1P Packet detected 2004-10-09 09:13:44 172.16.52.203:80 192.168.0.2:1185 TP
r #11-1565) 1P Packet detected 2004-10-09 09:10:56 218.30.108.14:80 192.166.0.2:32846 TP
r #2(1-1563) 1P Packet detected 2004-10-09 09:10:55 218.30.108.20:80 192.168.0.2:32854 TP
r #3(1-1562) 1P Packet detected 2004-10-09 09:10:55 218.30.108.14:80 192.166.0.2:32866 TP
r #4(1-1558) 1P Packet detected 2004-10-09 09:10:54 218.30.108.20:80 192.168.0.2:32854 TP
r #51-1556) 1P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32671 TP
r #61-1555) 1P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32671 TP
r #741-1553) 1P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.166.0.2:32855 TP
r #8(1-1550) 1P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32670 TP
r #91-1546) 1P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32670 TP
r #10(1-1549) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32670 TP
r #111-1542) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32671 TP
r #12{1-1540) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:3285¢ TP
r #13(11537) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.166.0.2:32854 TP
r #14(1-15%) P Packet detected 2004-10-09 09:10:52 218.30.108.14:80 192.168.0.2:32866 TP
r #15(1153) P Packet detected 2004-10-09 09:10:52 218.30.108.20:80 192.168.0.2:32670 TP
r #16(1-15%2) P Packet detected 2004-10-09 09:10:51 218.30.108.20:80 192.168.0.2:32670 TP
[l #1741-1529) IP Packet detected 2004-10-09 09:10:51 218.30.108.20:80 192.168.0.2:32870 TCcP [
Done ==

‘ = a root@localhost:~ ® SEEaD
ACID: Query Resuilts - Mozilla 9:29 AM

Figure15: Searching result

Finally, you can go to the ACID main page where a link is provided to generate graphs. When generating graph, you can select data and type of graph. Figure13 and 14 are the line graph and bar graph generated for the IP…

[image: image16.png]R ACID: Graph Alert Data - Mozilla.
Ele Edt View Go Bookmarks

Tools Window Help

L. » .32 8

Back ~ Foward Reload Stop

& http:/flocalhost/acid/acid_graph_main.php

5 Search

hHome | ‘W Bookmarks £ Red Hat Network (4Support (4Shop (4 Products (4 Training

No AG was specified. Using all alerts.

ACID Chart
Source IP vs. Number of Alerts

E

DooEE@®

20.226.1.53
24.226.10.153
152.168.0.2
216.109.115.68
216.221.80.232
216.221.50.238

[Loaded in 0 seconds]

[— s

root@localhost:~ [BACID: Graph Alert Data - Mozil
Yahoo! - Mozilla

Sat Oct 09
9:41 AM

Figure16: ACID Pie graph

[image: image17.png]Eile Edit View Go Bookmarks Tools Window Help

L. > A B[g s tocahosyacidiacd_graph_main.php

Back ~ Foward Reload Stop

3Home | wfBookmarks 4 Red Hat Network (4Support (§Shop (§Products (4 Training

5 Search

= a root@localhost: ~
Yahoo! - Mozilla

CID: Graph Alert Data - Moz @

T~ Show X-axis grid-lines [E
Display X-axis label every [1 data points
No AG was specified. Using all alerts.
ACID Chart
Source IP vs. Number of Alerts
70
&
, 5
24
Sa
T2
10
— || -
24.226.1.53 24.226.10.193 152.165.0.2 216.109.116 66216 22150 2322168.221.80 238
Source 1P Address
[Loaded in 0 seconds]
Ik
-]
Sat Oct 09

9:37 AM

Figure17: ACID Bar graph

Conclusion

Intrusion Detection System look for attack signatures, which are specific patterns that usually include malicious or suspicious intent. Network-based Intrusion Detection Systems (IDS) use raw network packets as the data source. Snort is a light weight IDS, which uses a bunch of build-in rules and user customized rules to prevent prospective intruder from intruding in a network system. This report discussed installation procedure for Snort as well as other products that work with Snort, components of Snort, and most frequently used functions. Finally, we gave a comprehensive test in RedHat9 Linux system about how to use ACID to analyze alerts generated by Snort based on some specific rules.
References

1. Snort User Manual: http://www.snort.org/docs/snort_manual/
2. Snort, Apache, PHP, MySQL, ACID on Redhat 9.0 Installation Guide: http://www.snort.org/docs/snort_acid_rh9.pdf
3. Network Intrusion Detection Using Snort: http://www.linuxsecurity.com/feature_stories/feature_story-49.html
4. Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQL, PHP, and ACID: http://www.informit.com/title/0131407333#
PAGE
29

_1158430930

_1158695732

_1158430378

