PAGE
Snort & Barnyard
60-564 Winter 2006

Project: Snort & Barnyard

(March 2006)
	Course:
	60-564: Security and Privacy on the Internet

	Instructor:
	Dr. A.K. Aggarwal

	Student Name:
	Vic Ho & Kashif Saeed

School of Computer Science

University of Windsor

Table of Content

1. Introduction
2. System Architecture

3. System’s Flow

4. Installation, Configuration, Problems and Solution
4.1. Windows Platform
4.1.1. System specification

4.1.2. Software Requirements

4.1.2.1. WinPcap

4.1.2.1.1. Installation

4.1.2.1.2. Configuration

4.1.2.1.3. Problems and Solutions

4.1.2.2. Snort

4.1.2.2.1. Installation

4.1.2.2.2. Configuration

4.1.2.2.3. Problems and Solutions

4.1.2.3. MySql Database

4.1.2.3.1. Installation

4.1.2.3.2. Configuration

4.1.2.3.3. Problems and Solutions

4.1.2.4. Barnyard

4.1.2.4.1. Installation

4.1.2.4.2. Configuration

4.1.2.4.3. Problems and Solutions
4.1.2.5. Packet Excalibur
4.1.2.5.1. Installation

4.1.2.5.2. Configuration

4.1.2.5.3. Problems and Solutions
5.
Acknowledgement

6.
Conclusion

Appendix A
Appendix B
Appendix C
Appendix D
1.
Introduction
In computer information security, intrusion is a series of unauthorized actions that attempt to obtain the confidentiality, integrity or availability of the resources [1]. Intrusion detection system is used to detect this kind of actions in order to warn the administrator so that the further prevention can be done.
In this report, we present a step-by-step guide for building an intrusion detection system and intrusion detection simulation in the Windows environment.
2.
System Architecture
In our intrusion detection simulation, our system used Snort with an add-on Barnyard to log alerts to a database. The database we used in the system is MySQL Server. In this section, we are going to introduce each of the required components in our intrusion detection simulation, and how they work together.

Snort is a lightweight intrusion detection system. “It is capable to perform real-time traffic analysis and packet logging on IP networks [3]”. We use Snort to capture the bad packets which are generated by the signature generator.
Barnyard is an add-on tool for Snort. This program decouples output overhead from the Snort which allows Snort to run at full speed [3]. It takes Snort unified binary output as input and put them into a database. We use Barnyard to increase the speed of dumping logs and alerts to the database when there are a lot of network traffics.
WinPcap is an application programming interface for packet capturing in the Windows environment. It is capable to capture and send network packet from a network card [3].
MySQL Server is a SQL based database server. We used it to store all of the IDS alerts and logs.
Packet Excalibur is a multi-platform graphical and scriptable network packet engine which has extensible text based protocol descriptions [2]. We used it to built and customize packets in order to match the signatures that we choose.
The following figure illustrates the system architecture.

[image: image1]
Fig. a: Intrusion Detection Simulation Architecture

3.
System’s Flow

In this section of the report, we are going to briefly explain system’s flow. First, we used Packet Excalibur to generate the signature packets and send to the Intrusion Detection System. All the packets will be captured and logged into unified binary files by Snort. If the packets match to the Snort rules, alerts will be logged, too. Barnyard will read those files and dump that information to MySQL server. In the Fig. a, it also illustrates the system’s flow in solid lines.
[image: image2.png]

 Installation, configuration and other related material is based on the specifications of our machines and constraints.

4.
Installation
For our project we used Windows platform and Microsoft Windows XP operating system for all of the softwares.
4.1. Windows Platform
4.1.1. System Specification

For our project we used two laptops with the following configuration

Intrusion Detection Enabled Machine

	OS Name
	Microsoft Windows XP Professional

	Version
	5.1.2600 Service Pack 2 Build 2600

	OS Manufacturer
	Microsoft Corporation

	System Name
	NOTE

	System Manufacturer
	Dell Inc.

	System Model
	Inspiron 6000

	System Type
	X86-based PC

	Processor
	x86 Family 6 Model 13 Stepping 8 GenuineIntel ~1695 Mhz

	BIOS Version/Date
	Dell Inc. A09, 9/28/2005

	SMBIOS Version
	2.3

	Total Physical Memory
	1,024.00 MB

	Available Physical Memory
	592.13 MB

	Total Virtual Memory
	2.00 GB

	Available Virtual Memory
	1.96 GB

	Page File Space
	2.39 GB

Attacking Machine
	OS Name
	Microsoft Windows XP Professional

	Version
	5.1.2600 Service Pack 2 Build 2600

	OS Manufacturer
	Microsoft Corporation

	System Name
	V2L

	System Manufacturer
	BenQ

	System Model
	Joybook S52

	System Type
	X86-based PC

	Processor
	x86 Family 6 Model 13 Stepping 8 GenuineIntel ~1695 Mhz

	Total Physical Memory
	1,536.00 MB

	Available Physical Memory
	983.29 MB

	Total Virtual Memory
	2.00 GB

	Available Virtual Memory
	1.96 GB

	Page File Space
	3.34 GB

4.1.2. Software Requirements

For this project we used the following softwares on windows platform

	Software
	Usage
	Version

	WinPcap
	Link Layer Network Access to packets
	3.1

	Snort
	Intrusion Detection
	2.4.3

	MySQL
	Storing Alerts and logs generated by snort
	5.0.18-nt

	Barnyard
	Add-On for snort
	0.2.0

	Packet Excalibur
	Creating and sending packets
	1.0.2

4.1.2.1. WinPcap

For our project we downloaded WinPcap v 3.1 from (www dot winpcap dot org).

4.1.2.1.1. Installation

Following are the guidelines we followed during winpcap’s installation

· Download and run the executable

· Follow the instructions on the screen. The installation applet will automatically detect the operating system and install the correct drivers. If you see a dialog like shown in Fig [1], simply ignore it and click on "Continue anyway".

· The WinPcap-based applications are now ready to work

· To remove winpcap from the system, go to the control-panel, click on "add/remove programs" and then select "WinPcap".

[image: image3.png]Hardware Installation

‘ The sofwate you ae instling o this hrcuare

Determiristic Network Enhancer Minipart

s ot passed Windows Logo testingto veiy s compatibiy

WihWindaws <P. (Tell me why this tesing i impartant

\
|
Continuing your installation of this software may impair
or destabilize the correct operation of your system
either immediately or in the future. Microsoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has |
passed Windows Logo testing. ‘
\
]

Continue Anyway | [STOP Installation

Fig [1]

For our project we did not need to do any special configuration of WinPcap.

4.1.2.1.2. Configuration
No extra configuration was required to use winpcap other then the steps followed in installation phase.

4.1.2.1.3. Problems and Solutions

We did not face any problems during installation of WinPcap
4.1.2.2. Snort
We downloaded the snort v 2.4.3 from (www dot snort dot org) for windows platform.

4.1.2.2.1. Installation
Following are the guidelines we followed during snort’s installation

· Download and run the installer.

· Follow the instruction until you reach to Fig [2].

[image: image4.png]8 Snort

ntalation Optons P
N &

Al windows versions of Srort alveady contain support for logging to MySQL and ODBC
databases. Please select any addtional Functionaity that you desie.

Ldonot lan o ot dtabase, or L am planring o o to ane o the databases sted
Osbove

0y need support o ogaing t Mrosoft SQL Sever. fokethat th SQL Server cent
software must aleady be installed o this computer.

Lneed support orlogaing to Orac, ote that the Oracls et software must ey
be instaled on this computer

Fig [2]
· Select appropriate database logging configuration as per your needs. We picked the first option as we wanted to generate unified binary output (to be used by barnyard—discussed later).

· Click “Next” and you will see Fig [3]

[image: image5.png] Snort 2.4.3 Setup

Choso Conponents =
Chao uhich Fatures o Snot 24,3 you wantt ntal, (%)

Check the companents you want t install and ncheck Ehe companents you don't wank ta
install,Clck Next to continue,

Description

Select components to nstal: Snort

Documentation

Space required: 6.3M

Fig [3]
· Check the Schemas (third option) if you want to generate database schemas scripts.

· Click “Next” and give the Installation destination folder.

· Click “Next” and you will be done with the snort installation.

· At the end you will be prompted with an alert as shown in Fig [4]

· If you have not installed WinPcap yet, go to section 4.1.2.1 of this document for more details.
[image: image6.png] Snort 2.4.3 Setup

Snort has successfully been instaled.

Snort also requires WinPcap 3.1 to be nstalle on this machine.
WinPcap can be dowrloaded from:
Fetpifjomn. winpcsp.or)

It would also be wise totighten the security on the Srort installation
drectory to prevent any maliious modfication of the Snort executable

Next, you must manusly edit the ‘ot conf il to
speciy proper paths to allow Snort to find the rues files
and dassiicaton s,

Fig [4]

4.1.2.2.2. Configuration
We modified the snort.conf file to

1) Set the variables for our network

2) Configure output plugins
1)
We need to modify only two variables to reflect the networks we are concerned
with, HOME_NET and EXTERNAL_NET.

HOME_NET in snort.conf file specifies network that we want to protect.

Change it to

var HOME_NET <your_network_address>

EXTERNAL_NET is the network(s) that we think attacks might come from. You
can leave it to any or can specify particular network address to watch for.
2)
For Unified Binary output
Since we used barnyard add-on, we needed to generate unified binary alert
and log files so that barnyard could read it and log the information into mysql
database. To enable unified binary output un-comment the following lines

output alert_unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128

For Alert.ids (Human readable log files)

If you need to have an alert.ids file for your add-on, un-comment the following
line in your snort.conf file

output alert_fast: alert.ids

For database logging

In case you want to log the alerts and logs into the database you need to un-
comment the appropriate plug-in in snort.conf file. We tested it using MySQL v
5.0.18-nt with the plug-in

#output database: log, mysql, dbname=snort user=snortusr host=localhost password=admin
#output database: alert, mysql, dbname=snort user=snortusr
host=localhost password=admin

[image: image7.png]

Here our database name is snort, username is snortusr and password is admin. If you have not created the database yet, refer section 4.1.2.3 for further details. These values should be consisted with your MySQL database as well. Also read $snort_home\doc\README.database for detail description.
4.1.2.2.3. Problems and Solutions

Snort’s installation is pretty straight forward. We did not experience any problems during installation but when we run snort we did come across with some problems, which are listed below

[image: image8.png]

To run snort go to your snort bin directory. In our case it was C:\Snort\bin. Once there you can run snort by combining appropriate options with snort

USAGE:
snort [-options] <filter options>

e.g.

Running in SNIFFER MODE

Snort –v
-i<interface>
or

Snort –vd

Running in PACKET LOGGER MODE

Snort –dev –l C:\snort\log -i<interface> (C:\snort\log is the log directory location in our experiment)

Running in NETWORK INTRUSTION DETECTION MODE
Snort –dev –l C:\snort\log –c C:\snort\etc\snort.conf -i<interface> (C:\snort\etc\snort.conf is the location for snort.conf file in our experiment)

COMMAND we used for running snort in our project was

Snort –dev –l C:\snort\log –c C:\snort\etc\snort.conf -i<interface>
Problem 1:
When you type in snort with any appropriate option and hit return, you get the message as shown in Fig [5],

Solution:
You need to install WinPcap (Refer to section 4.1.2.1 of this document for more details) before you can further use snort.

[image: image9.png]snos To Locate Component

€)1 ocoton s ot st v st v el st s s et

Fig [5]

Problem 2
You run snort with verbose option but don’t see any output dumped on the DOS Screen.

Solution
If you are running snort with the following command

C:\Snort\bin > snort –v
Snort will try to use the first available network interface to capture the packets. In most cases the first available network interface is “Generic Dialup Adapter” which is not useful in this case. To see a complete list of network interface adapters, Fig [6], available on your system type the following command

C:\Snort\bin > snort –W

[image: image10.png]icrosoft Windows KP [Usrsion 5.1.26001
<G> Copyright 1985-2001 Microseft Corp.

\Docunents and Settings\saeed4ded \
:\>cd snort\hin
:\Snort\bin>snort 4

x> Snortt <

Uersion 2.4.3-0DBC-MySQL-F1exRESP-UIN32 (Build 26

By Martin Roesch & The Snort Team: http://uww.snort.org/tean.htnl

CC> Copyright 1998-2085 Sourcefire Inc

NOTE: Snort”s default output has changed in vers.
The default logging mode is now PCAP, use
the old default logging mode-

to activate

Interface Device Description
\DeuiceNNPF_GenericDialupfidapter (Generic dialup adapter

2 \Dewico\NPF_ CFiBEA613-BDBY-4ACE- BIBA-3IDL8SEDITAE) <Broadoon NetRtreme Gigahit
Ethernot Driver (Microsoft’s Packet Scheduler> >

Fig [6]

and pick the interface that you will be later using for transmitting the packets.

Problem 3
No unified binary format (alert and log) file or alert.ids produced

Solution
When running snort make sure you are using –l (it’s the lower case alphabet L and not the number one) option to let snort know where to dump the alert and log files (It is valid for both alert.ids and unified binary outputs), e.g.

C:\Snort\bin > snort – dev – l C:\Snort\log –C:\snort\etc\snort.conf –i2

Also make sure that in snort.conf file you have the following lines not commented.

output alert_unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128

and also if you want to generate alert.ids, un-comment the following line

output alert_fast: alert.ids

Problem 4
Unable to update MySQL database with alert and log information.

Solution
Although logging information into the MySQL database was not required in our scenario, we still tested the connection with mysql database. We also faced this problem and solved it by following the steps as described below

· First make sure MySQL database is installed (see section 4.1.2.3 for further details)

· Modify your snort.conf file to enable database logging (see section 4.1.2.2 for further details)

4.1.2.3. MySQL Database
We used the mysql Server v 5.0 for logging alerts and logs generated by snort. These alerts and logs are first stored in a unified binary file generated by snort. Barnyard, an add-on to snort, uses this unified file and logs the information into the database. We got a copy of MySQL server from www dot mysql dot com.

4.1.2.3.1. Installation
After downloading the zip file, unzip it and run the installer and follow these steps

· On first screen click next and you will be show the following Fig [7]

[image: image11.png]1% MySQL Server 5.0 - Setup Wizard

Setup Type
Choose the setup typs that best suts your needs.

Ploase select a setup type,

©Typical
& Commen program Features il b istald. Recommende for
D) general e,
i) @
O Complete
1 Allrogram features wilbe nstalled. (Requies the most sk
o e
Ly
O custom
1 Choose which program features you wart instald and where they

N5} e sl Recommendedor advenced srs

Fig [7]

· Select Typical, this option is sufficient in general and particularly for our project, you might need to select complete or custom depending on your needs. Click “Next”.

· Click Install to start the installation which will lead you to another page, Fig [8], for server configuration.

· Check “Configure the MySQL Server now” option and click “Finish”.

· On next screen click next until you reach Fig [9].

· On Fig [9] select “Detailed Configuration” and click “Next”.

· On next screen pick the appropriate Server type according to your needs. We picked Developer Machine. After selection, click “Next”.

· On next screen choose database usage type and click “Next”. We selected Non-Transactional Database Only option.

· Click next until you reach Fig [10]. Here check “Include Bin Directory in Windows PATH” option and click “Next”. Leave the other settings on this page as it.

· Next page will ask you to provide password for the root user, Fig [11]. Supply the password and leave the other setting as it and click “Next”.

· On next page click “Execute”.

· If everything goes right, you will see Fig [12]. In case of error on this step refer to section 4.1.2.3.3 for its solution.
[image: image12.png]& MySQL Server 5.0 - Setup Wizard

wizard Completed

Setup has iished instaling MySQL Server 5.0. Cick Firish to
extt the wizard,

onfigure the MySQL Server now
Use this option to generate an optirized MySQL config
i, setup a Windows service running on a dedicated port
and to set the password for the root account,

Zoak el

Fig [8]

[image: image13.png]MySQL Server Instance Configuration Wizard X
MySQL Server Instance Configuration
Configure the MySQL Server 5.0 server nstance.
Please select a configuraion type,

@ Detailed Configuration

"1 Choose this configuration typs to create the optimal server setup for
! this machine,

(O standard Configuration

", Lse this anly on machines that do nok akeady have a MySQL. server
installaton. This il se & general purpose configuration Fo the.
Server that can be tuned manualy

Fig [9]

[image: image14.png]MySQL Server Instance Configuration Wizard

MySQL Server Instance Configuration
Configure the MySQL Server 5.0 server nstance,
Please set the Windows options.

Install As Windows Service

This i the recommended way to runthe MySQL server
on Windows.

Service Name:[MySQL ~

surich the MySQL Server automatically

[include Bin Directory in Windows PATH

Check this option ta include the directory contairing the
server] client executables in the Windows PATH variable
50they can be called From the command line,

Fig [10]

[image: image15.png]MySQL Server Instance Configuration Wizard

MySQL Server Instance Configuration
Configure the MySQL Server 5.0 server nstance,

Please set the securiy options,

Modify security Sttings
1 New rockpesswerd: [Enter the rok password
Lrocx] Confirm: — Retype the password,

[lEnabe root access from remots machines

[creste an Anonymous Account.

This option il create an anonymous account on tis server. Please
ot that this can lead to an nsecre system

Fig [11]

[image: image16.png]MySQL Server Instance Configuration Wizard

MySQL Server Instance Configuration

Configure the MySQL Server 5.0 server nstance,

Processing configuration

& Prepare configuration
& i configuration e (C/Program FilsiySQUPYSGL Server 50lmy)
& start service

& Apply securty settings

Configuration file created.
Windows service MySQL installed.
Service started successfully.
Security settings applied.

Press [Finish] to close the Wizard.

.

Fig [12]

4.1.2.3.2. Configuration

To use MySQL with snort and snort’s Add-ons, we need to create the database using the scrip file that we generated during snort’s installation (refer to section 4.1.2.2.1 for more information). Also refer to $SNORT_HOME\schemas\README.database for further information.

To run the scrip file open up a DOS Window and type in the following

C:\ > mysql –u root –p

Enter password:

When you hit enter, it will ask you to enter the password. This password is the same as you picked in section 4.1.2.3.1 Fig [11]. After entering the password hit return and you will be taken to the mysql prompt. See Fig[13].

[image: image17.png]icrosoft Windows KP [Uersion 5.1.26001
<C> Copyright 1985-2081 Microsoft Corp.

:\Docunents and Settings\saeed4>mysql —u root —p

nter password: xeooc

jelcone to the MySQL monitor. Commands end with 3 or \g.
our MySQL connection id is 3 to server version: 5.0.18-nt

ype ’helpi’ or \h’ for help. Type *\c¢’ to clear the buffer.

wsql> -

Fig [13]

Once logged in you need to follow these steps.

i)
mysql > create user snortusr;

ii)
mysql > create database snort;

iii)
mysql > use snort;

iv)
mysql > SOURCE C:\snort\schemas\create_mysql

Effect of issues the above 4 commands is shows in Fig [14].

[image: image18.png]ysql> create user snortusr;
uery OK, © rous affected <8.82 sec)

wsql> create database snorti
uery OK, 1 rou affected (8.0 sec)

ysql> use snort;
atabase changed

wsql> SOURCE C:\enort\schemas\create nysql
uery OK, 8 rous affected <8.89 sec>

uery OK, 1 rou affected B.86 sec)
uery OK, 8 rous affected B.86 sec)
uery OK. 8 rous affected B.89 sec)
uery OK. 8 rous affected B.11 sec)
uery OK. 8 rous affected B.89 sec)
uery OK. 8 rous affected B.11 sec)
uery OK. 8 rous affected B.88 sec)
uery OK, 8 rous affected B.86 sec)
uery OK. 8 rous affected B.88 sec)
uery OK. 8 rous affected B.88 sec)
uery OK. 8 rous affected <B.11 sec)
uery OK, 8 rous affected B.89 sec)
uery OK. 8 rous affected B.88 sec)
uery OK, 8 rous affected B.68 sec)
uery OK. 8 rous affected B.89 sec)
uery OK, 1 rou affected B.68 sec)
uery OK, 1 rou affected B.85 sec)
uery OK, 1 rou affected B.63 sec)
uery OK. 8 rous affected B.89 sec)
uery OK, 1 rou affected B.86 sec)
uery OK, 1 rou affected B.85 sec)

Fig [14]

After we are done creating user and the database we need to grant appropriate privileges on “snort” database to “snortusr” user. Enter following commands on mysql prompt.

mysql > grant INSERT,SELECT on snort.* to snortusr;

mysql > grant INSERT,SELECT,UPDATE on snort.sensor to snortusr;

Now your database and user are ready to be used with barnyard (or snort). Make sure not to assign any password to “snortusr” user.

4.1.2.3.3. Problems and Solutions

The installation is pretty straight forward for MySQL server. During its installation we got only one problem in the last step, Fig [12]. If you have any antivirus or firewall enabled, shut it off before you click “Execute”. Otherwise it might give you some error and won’t finish the job.

4.1.2.4. Barnyard
We downloaded barnyard from www dot snort dot org. Download the installer and follow the steps as described below
4.1.2.4.1
Installation

· Run the installer and follow the on screen options.
· If you want to use MSSQL server for logging the check the option and click “Next”.
· On next screen leave all of the options as it is and click “Next”.
· On next screen click “Install”.
· And you are done with the installation.
4.1.2.4.2
Configuration
In the $Barnyard_HOME\etc\barnyad.conf configure the following.

· config hostname: <put_your_host_name_here>

· config interface: <put_your_interface_here>
Un-comment the following lines

· processor dp_alert

· processor dp_log

· output alert_fast

· output alert_acid_db: mysql, sensor_id 1, database snort, server localhost, user snortusr
· output log_acid_db: mysql, database snort, server localhost, user snortusr, detail full

[image: image19.png]

Database name and the username are the one you created in section 4.1.2.3.1.
4.1.2.4.3
Problems and Solutions

Barnyard installation is pretty easy and if you have followed the steps in configuration section 4.1.2.4.2 you will not come across any problems running barnyard and reading unified files and logging information into the database. Make sure the user account you are using in your barnyard.conf file for logging information into the MySQL database has no password assigned. Otherwise it will start giving you the following error.

Failed to connect to database root:admin@localhost/snort: Client does not support

authentication protocol requested by server; consider upgrading MySQL client

Fatal Error, Quitting..

Exiting

4.1.2.5
Packet Excalibur
4.1.2.5.1
Installation

1. Download the installation file from http://www.securitybugware.org/excalibur/PacketExcalibur_1.0.2_win32.exe
2. Double click on the installation file.

3. Follow the screen instruction and use the default values to finish the installation.

4.1.2.5.2
Configuration
1. Start the program, and a window same as the following screen shot will be popped-up.
[image: image20.png][isoLayers Layers Dala Link Type | 1: ethernet [iso] !

{Add isofiso ootiyDelete last Iave Select packet action type: © Send packet © Match packef
Packet details Hexadecimal / ASCIl

aE———p

Packet data length : 000000 bytes, Adding new iso will call : iso-2 Ethernet

Fig. [15]
2. Click on Add iso/iso option button. The software will add Ethernet layer. Change the values of Src vender and Src Address according to the following screenshot.
[image: image21.png]ISO Layers KJDS(vendor | 0x000000: XEROX CORPORATION |0x000000
iso-1 Dst Address |3 bytes ¥ [ox000000
lsrc vendor [@my-hdw-vendor: this adapter vendor |@my-hdw-ven
ISrc Address | @my-hdw-addr: this adapter addr g @my-hdw-add

Protocol type (0x0800: IP [iso] 0x0800

)
'Add isofiso ontiyDelete last lave) Select packet action type: © Send packet © Match packet
Packet details Hexadecimal / ASCIl

a0 00 00 00 00 00 6D 0300 88 00 60,05 00 I

Packet data length : 000014 bytes, Adding new iso will call : iso-3 Internet Protocol (IP)

Fig. [16]

3. Click on Add iso/iso option button again. The software will add IP layer. Change the values of Protocol, Source IP and Dest IP according to the following screenshot.
[image: image22.png]ISO Layers

0x0000

iso-1

0x80

iso-2 Ethernet

IProtocol (6: TCP [iso]

0x06

IP header checksum | @ip-checksum: IP checksum

@ip-checksu

iSource IP | @my-ip-addr: this adapter ip

@my-ip-addr

al
Fragment offset [0: no fragment
[Time to Live (TTL) [128: half max hopes
)

Dest. IP | @query: query user

cEEme

(Add isofiso ovtiyDelete last lave) Select packet action type: @ Send packet © Match packet
Packet details Hexadecimal / ASCIl

@query

[00 00 00 00 00 00 08 00
45 00 00 00 40 00 80 06 u 2

|

K ——C]

Packet data length : 000034 bytes, Adding new iso will call : iso-4 Trans Ctrl Proto (TCP)

Fig. [17]

4. Click on Add iso/iso option button again. The software will add TCP layer. Change the values of Sequence nbr and Acknwldg nbr according to the following screenshot. Change the values of Dst port according to the signature rules provided by Snort.

[image: image23.png]ISO Layers (0: Reserved joxo000
iso-1 [139:NETBIOS Session Service [0x008B
iso-2 Ethemet
o temat Protocol am | Seauence nor [@random: random value T [@random
cknwidg nbr [@random: random value % [@random
Header len [5: No option (5x32bits) 7% Joxos
Reserved (4 vits 7% Joxo0
i = ©

'Add isofiso onti/Delete last lave éelecl packet action lyi)e: @ Send packet © Match packet
Packet details Hexadecimal / ASCIl
RSt — o
a5 00 a0 00 40 00 50 05 5 o

00 00 00 26 50 00 40 00 L

[#aneaoo oo [

K ——C]

Packet data length : 000054 bytes, Adding new iso will call : (free input)

5. Click on Add iso/iso option button again. Enter the number of bytes to add (i.e. 32). The software will add free input layer. Change the contents of free input according to the signature rules provided by Snort.

6. Click Edit on the menu and select Append to script. Give a value for name and click on OK button.
7. Go to the other window (Packet Excalibur). Click on Action on the menu and select Run script. Give a value for Dest IP (Target Host’s IP Address) and click on OK button.

4.1.2.5.3
Problems and Solution

Problem

Since the reason for generating the packets by this software package is to create signature packets, it is very important to test if these packets are generated correctly. The major problem in this stage is that we do not really know how to generate packets according to the signatures.
Solution

Basically there is no problem on the installation and configuration. Therefore, we have to study Snort rules in detail to have the knowledge on the signature packets. We found out that we have to include the value of content in each rule in the packets and set the value of the port number. The value of contents in each rule is comprised by ASCII codes and hex values. So we use ASCII and Hex converter to convert the ASCII code, and put them with other Hex values all together in the packets. At the end, Snort can catch these bad packets.
5.
Acknowledgement

We would like to thank Dr. A.K. Aggarwal for helping us through out the development phase of our intrusion detection system project. For his keen interest in listening to our problems and encourage us on each step. This project has surely developed great interest in us regarding intrusion detection and network security.

6.
Conclusion

In this report we have discussed how to build a Intrusion Detection System step-by-step. In order to keep the system safe and secure, we should periodically update our Snort rules to reflect latest threats. In addition to Barnyard, an add-on, we can also use ACID or some other similar add-ons to enhance the usage of data gather by Snort.
Reference
[1]
“Intrusion Detection.” Wikipedia, the free encyclopedia. 7 Mar. 2006 <http://en.wikipedia.org/wiki/Intrusion_Detection>.
[2]
“Packet Excalibur.” Security Bugware. 7 Mar. 2006 <http://www.securitybugware.org/excalibur/>.
[3]
“WinIDS Installation Guide.” WinSnort.com. 7 Mar. 2006 <http://www.winsnort.com/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=5&page=1>.
[4]
“WinPcap: The Windows Packet Capture Library.” Winpcap.org. <http://www.winpcap.org/>.
[5]
MySQL. < http://www.mysql.com/>.
[6] Snort.org. <http://www.snort.org/>.

Appendix A: Configuration File

snort.conf
#--

http://www.snort.org Snort 2.4.3 config file

Contact: snort-sigs@lists.sourceforge.net

#--

$Id: snort.conf,v 1.144.2.9.2.17 2005/10/16 22:21:08 mnorton Exp $

#

###

This file contains a sample snort configuration.

You can take the following steps to create your own custom configuration:

#

1) Set the variables for your network

2) Configure preprocessors

3) Configure output plugins

4) Add any runtime config directives

5) Customize your rule set

#

###

Step #1: Set the network variables:

#

You must change the following variables to reflect your local network. The

variable is currently setup for an RFC 1918 address space.

#

You can specify it explicitly as:

#

var HOME_NET 10.1.1.0/24

#

or use global variable $<interfacename>_ADDRESS which will be always

initialized to IP address and netmask of the network interface which you run

snort at. Under Windows, this must be specified as

$(<interfacename>_ADDRESS), such as:

$(\Device\Packet_{12345678-90AB-CDEF-1234567890AB}_ADDRESS)

#

var HOME_NET $eth0_ADDRESS

#

You can specify lists of IP addresses for HOME_NET

by separating the IPs with commas like this:

#

var HOME_NET [10.1.1.0/24,192.168.1.0/24]

#

MAKE SURE YOU DON'T PLACE ANY SPACES IN YOUR LIST!

#

or you can specify the variable to be any IP address

like this:

 var HOME_NET any

#var HOME_NET 137.207.234.70

#var HOME_NET 192.168.137.213

Set up the external network addresses as well. A good start may be "any"

var EXTERNAL_NET any

Configure your server lists. This allows snort to only look for attacks to

systems that have a service up. Why look for HTTP attacks if you are not

running a web server? This allows quick filtering based on IP addresses

These configurations MUST follow the same configuration scheme as defined

above for $HOME_NET.

List of DNS servers on your network

var DNS_SERVERS $HOME_NET

List of SMTP servers on your network

var SMTP_SERVERS $HOME_NET

List of web servers on your network

var HTTP_SERVERS $HOME_NET

List of sql servers on your network

var SQL_SERVERS $HOME_NET

List of telnet servers on your network

var TELNET_SERVERS $HOME_NET

List of snmp servers on your network

var SNMP_SERVERS $HOME_NET

Configure your service ports. This allows snort to look for attacks destined

to a specific application only on the ports that application runs on. For

example, if you run a web server on port 8081, set your HTTP_PORTS variable

like this:

#

var HTTP_PORTS 8081

#

Port lists must either be continuous [eg 80:8080], or a single port [eg 80].

We will adding support for a real list of ports in the future.

Ports you run web servers on

#

Please note: [80,8080] does not work.

If you wish to define multiple HTTP ports,

var HTTP_PORTS 80

include somefile.rules

var HTTP_PORTS 8080

include somefile.rules

var HTTP_PORTS 80

Ports you want to look for SHELLCODE on.

var SHELLCODE_PORTS !80

Ports you do oracle attacks on

var ORACLE_PORTS 1521

other variables

AIM servers. AOL has a habit of adding new AIM servers, so instead of

modifying the signatures when they do, we add them to this list of servers.

var AIM_SERVERS [64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,205.188.248.0/24]

Path to your rules files (this can be a relative path)

Note for Windows users: You are advised to make this an absolute path,

such as: c:\snort\rules

var RULE_PATH ../rules

var RULE_PATH c:\Snort\rules

Configure the snort decoder

============================

#

Snort's decoder will alert on lots of things such as header

truncation or options of unusual length or infrequently used tcp options

#

#

Stop generic decode events:

#

config disable_decode_alerts

#

Stop Alerts on experimental TCP options

#

config disable_tcpopt_experimental_alerts

#

Stop Alerts on obsolete TCP options

#

config disable_tcpopt_obsolete_alerts

#

Stop Alerts on T/TCP alerts

#

In snort 2.0.1 and above, this only alerts when a TCP option is detected

that shows T/TCP being actively used on the network. If this is normal

behavior for your network, disable the next option.

#

config disable_tcpopt_ttcp_alerts

#

Stop Alerts on all other TCPOption type events:

#

config disable_tcpopt_alerts

#

Stop Alerts on invalid ip options

#

config disable_ipopt_alerts

Configure the detection engine

===============================

#

Use a different pattern matcher in case you have a machine with very limited

resources:

#

config detection: search-method lowmem

Configure Inline Resets

========================

If running an iptables firewall with snort in InlineMode() we can now

perform resets via a physical device. We grab the indev from iptables

and use this for the interface on which to send resets. This config

option takes an argument for the src mac address you want to use in the

reset packet. This way the bridge can remain stealthy. If the src mac

option is not set we use the mac address of the indev device. If we

don't set this option we will default to sending resets via raw socket,

which needs an ipaddress to be assigned to the int.

#

config layer2resets: 00:06:76:DD:5F:E3

###

Step #2: Configure preprocessors

#

General configuration for preprocessors is of

the form

preprocessor <name_of_processor>: <configuration_options>

Configure Flow tracking module

#

The Flow tracking module is meant to start unifying the state keeping

mechanisms of snort into a single place. Right now, only a portscan detector

is implemented but in the long term, many of the stateful subsystems of

snort will be migrated over to becoming flow plugins. This must be enabled

for flow-portscan to work correctly.

#

See README.flow for additional information

#

preprocessor flow: stats_interval 0 hash 2

frag2: IP defragmentation support

This preprocessor performs IP defragmentation. This plugin will also detect

people launching fragmentation attacks (usually DoS) against hosts. No

arguments loads the default configuration of the preprocessor, which is a 60

second timeout and a 4MB fragment buffer.

The following (comma delimited) options are available for frag2

timeout [seconds] - sets the number of [seconds] that an unfinished

fragment will be kept around waiting for completion,

if this time expires the fragment will be flushed

memcap [bytes] - limit frag2 memory usage to [number] bytes

(default: 4194304)

#

min_ttl [number] - minimum ttl to accept

ttl_limit [number] - difference of ttl to accept without alerting

will cause false positves with router flap

Frag2 uses Generator ID 113 and uses the following SIDS

for that GID:

SID Event description

----- -------------------

1 Oversized fragment (reassembled frag > 64k bytes)

2 Teardrop-type attack

#preprocessor frag2

frag3: Target-based IP defragmentation

#

Frag3 is a brand new IP defragmentation preprocessor that is capable of

performing "target-based" processing of IP fragments. Check out the

README.frag3 file in the doc directory for more background and configuration

information.

Frag3 configuration is a two step process, a global initialization phase

followed by the definition of a set of defragmentation engines.

Global configuration defines the number of fragmented packets that Snort can

track at the same time and gives you options regarding the memory cap for the

subsystem or, optionally, allows you to preallocate all the memory for the

entire frag3 system.

#

frag3_global options:

max_frags: Maximum number of frag trackers that may be active at once.

Default value is 8192.

memcap: Maximum amount of memory that frag3 may access at any given time.

Default value is 4MB.

prealloc_frags: Maximum number of individual fragments that may be processed

at once. This is instead of the memcap system, uses static

allocation to increase performance. No default value. Each

preallocated fragment eats ~1550 bytes.

#

Target-based behavior is attached to an engine as a "policy" for handling

overlaps and retransmissions as enumerated in the Paxson paper. There are

currently five policy types available: "BSD", "BSD-right", "First", "Linux"

and "Last". Engines can be bound to bound to standard Snort CIDR blocks or

IP lists.

#

frag3_engine options:

timeout: Amount of time a fragmented packet may be active before expiring.

Default value is 60 seconds.

ttl_limit: Limit of delta allowable for TTLs of packets in the fragments.

Based on the initial received fragment TTL.

min_ttl: Minimum acceptable TTL for a fragment, frags with TTLs below this

value will be discarded. Default value is 0.

detect_anomalies: Activates frag3's anomaly detection mechanisms.

policy: Target-based policy to assign to this engine. Default is BSD.

bind_to: IP address set to bind this engine to. Default is all hosts.

#

Frag3 configuration example:

#preprocessor frag3_global: max_frags 65536 prealloc_frags 262144

#preprocessor frag3_engine: policy linux \

bind_to [10.1.1.12/32,10.1.1.13/32] \

detect_anomalies

#preprocessor frag3_engine: policy first \

bind_to 10.2.1.0/24 \

detect_anomalies

#preprocessor frag3_engine: policy last \

bind_to 10.3.1.0/24

#preprocessor frag3_engine: policy bsd

preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy first detect_anomalies

stream4: stateful inspection/stream reassembly for Snort

#--

Use in concert with the -z [all|est] command line switch to defeat stick/snot

against TCP rules. Also performs full TCP stream reassembly, stateful

inspection of TCP streams, etc. Can statefully detect various portscan

types, fingerprinting, ECN, etc.

stateful inspection directive

no arguments loads the defaults (timeout 30, memcap 8388608)

options (options are comma delimited):

detect_scans - stream4 will detect stealth portscans and generate alerts

when it sees them when this option is set

detect_state_problems - detect TCP state problems, this tends to be very

noisy because there are a lot of crappy ip stack

implementations out there

#

disable_evasion_alerts - turn off the possibly noisy mitigation of

overlapping sequences.

#

#

min_ttl [number] - set a minium ttl that snort will accept to

stream reassembly

#

ttl_limit [number] - differential of the initial ttl on a session versus

the normal that someone may be playing games.

Routing flap may cause lots of false positives.

keepstats [machine|binary] - keep session statistics, add "machine" to

get them in a flat format for machine reading, add

"binary" to get them in a unified binary output

format

noinspect - turn off stateful inspection only

timeout [number] - set the session timeout counter to [number] seconds,

default is 30 seconds

max_sessions [number] - limit the number of sessions stream4 keeps

track of

memcap [number] - limit stream4 memory usage to [number] bytes

log_flushed_streams - if an event is detected on a stream this option will

cause all packets that are stored in the stream4

packet buffers to be flushed to disk. This only

works when logging in pcap mode!

server_inspect_limit [bytes] - Byte limit on server side inspection.

#

Stream4 uses Generator ID 111 and uses the following SIDS

for that GID:

SID Event description

----- -------------------

1 Stealth activity

2 Evasive RST packet

3 Evasive TCP packet retransmission

4 TCP Window violation

5 Data on SYN packet

6 Stealth scan: full XMAS

7 Stealth scan: SYN-ACK-PSH-URG

8 Stealth scan: FIN scan

9 Stealth scan: NULL scan

10 Stealth scan: NMAP XMAS scan

11 Stealth scan: Vecna scan

12 Stealth scan: NMAP fingerprint scan stateful detect

13 Stealth scan: SYN-FIN scan

14 TCP forward overlap

preprocessor stream4: disable_evasion_alerts

tcp stream reassembly directive

no arguments loads the default configuration

Only reassemble the client,

Only reassemble the default list of ports (See below),

Give alerts for "bad" streams

#

Available options (comma delimited):

clientonly - reassemble traffic for the client side of a connection only

serveronly - reassemble traffic for the server side of a connection only

both - reassemble both sides of a session

noalerts - turn off alerts from the stream reassembly stage of stream4

ports [list] - use the space separated list of ports in [list], "all"

will turn on reassembly for all ports, "default" will turn

on reassembly for ports 21, 23, 25, 42, 53, 80, 110,

111, 135, 136, 137, 139, 143, 445, 513, 1433, 1521,

and 3306

favor_old - favor an old segment (based on sequence number) over a new one.

This is the default.

favor_new - favor an new segment (based on sequence number) over an old one.

flush_behavior [mode] -

default - use old static flushpoints (default)

large_window - use new larger static flushpoints

random - use random flushpoints defined by flush_base,

flush_seed and flush_range

flush_base [number] - lowest allowed random flushpoint (512 by default)

flush_range [number] - number is the space within which random flushpoints

are generated (default 1213)

flush_seed [number] - seed for the random number generator, defaults to

Snort PID + time

#

Using the default random flushpoints, the smallest flushpoint is 512,

and the largest is 1725 bytes.

preprocessor stream4_reassemble: both

Performance Statistics

Documentation for this is provided in the Snort Manual. You should read it.

It is included in the release distribution as doc/snort_manual.pdf

preprocessor perfmonitor: time 300 file /var/snort/snort.stats pktcnt 10000

http_inspect: normalize and detect HTTP traffic and protocol anomalies

#

lots of options available here. See doc/README.http_inspect.

unicode.map should be wherever your snort.conf lives, or given

a full path to where snort can find it.

preprocessor http_inspect: global \

 iis_unicode_map unicode.map 1252

preprocessor http_inspect_server: server default \

 profile all ports { 80 8080 8180 } oversize_dir_length 500

#

Example unique server configuration

#

#preprocessor http_inspect_server: server 1.1.1.1 \

ports { 80 3128 8080 } \

flow_depth 0 \

ascii no \

double_decode yes \

non_rfc_char { 0x00 } \

chunk_length 500000 \

non_strict \

oversize_dir_length 300 \

no_alerts

rpc_decode: normalize RPC traffic

RPC may be sent in alternate encodings besides the usual 4-byte encoding

that is used by default. This plugin takes the port numbers that RPC

services are running on as arguments - it is assumed that the given ports

are actually running this type of service. If not, change the ports or turn

it off.

The RPC decode preprocessor uses generator ID 106

#

arguments: space separated list

alert_fragments - alert on any rpc fragmented TCP data

no_alert_multiple_requests - don't alert when >1 rpc query is in a packet

no_alert_large_fragments - don't alert when the fragmented

sizes exceed the current packet size

no_alert_incomplete - don't alert when a single segment

exceeds the current packet size

preprocessor rpc_decode: 111 32771

bo: Back Orifice detector

Detects Back Orifice traffic on the network.

#

arguments:

syntax:

preprocessor bo: noalert { client | server | general | snort_attack } \

drop { client | server | general | snort_attack }

example:

preprocessor bo: noalert { general server } drop { snort_attack }

The Back Orifice detector uses Generator ID 105 and uses the

following SIDS for that GID:

SID Event description

----- -------------------

1 Back Orifice traffic detected

2 Back Orifice Client Traffic Detected

3 Back Orifice Server Traffic Detected

4 Back Orifice Snort Buffer Attack

preprocessor bo

telnet_decode: Telnet negotiation string normalizer

This preprocessor "normalizes" telnet negotiation strings from telnet and ftp

traffic. It works in much the same way as the http_decode preprocessor,

searching for traffic that breaks up the normal data stream of a protocol and

replacing it with a normalized representation of that traffic so that the

"content" pattern matching keyword can work without requiring modifications.

This preprocessor requires no arguments.

Portscan uses Generator ID 109 and does not generate any SID currently.

preprocessor telnet_decode

sfPortscan

Portscan detection module. Detects various types of portscans and

portsweeps. For more information on detection philosophy, alert types,

and detailed portscan information, please refer to the README.sfportscan.

#

-configuration options-

proto { tcp udp icmp ip all }

The arguments to the proto option are the types of protocol scans that

the user wants to detect. Arguments should be separated by spaces and

not commas.

scan_type { portscan portsweep decoy_portscan distributed_portscan all }

The arguments to the scan_type option are the scan types that the

user wants to detect. Arguments should be separated by spaces and not

commas.

sense_level { low|medium|high }

There is only one argument to this option and it is the level of

sensitivity in which to detect portscans. The 'low' sensitivity

detects scans by the common method of looking for response errors, such

as TCP RSTs or ICMP unreachables. This level requires the least

tuning. The 'medium' sensitivity level detects portscans and

filtered portscans (portscans that receive no response). This

sensitivity level usually requires tuning out scan events from NATed

IPs, DNS cache servers, etc. The 'high' sensitivity level has

lower thresholds for portscan detection and a longer time window than

the 'medium' sensitivity level. Requires more tuning and may be noisy

on very active networks. However, this sensitivity levels catches the

most scans.

memcap { positive integer }

The maximum number of bytes to allocate for portscan detection. The

higher this number the more nodes that can be tracked.

logfile { filename }

This option specifies the file to log portscan and detailed portscan

values to. If there is not a leading /, then snort logs to the

configured log directory. Refer to README.sfportscan for details on

the logged values in the logfile.

watch_ip { Snort IP List }

ignore_scanners { Snort IP List }

ignore_scanned { Snort IP List }

These options take a snort IP list as the argument. The 'watch_ip'

option specifies the IP(s) to watch for portscan. The

'ignore_scanners' option specifies the IP(s) to ignore as scanners.

Note that these hosts are still watched as scanned hosts. The

'ignore_scanners' option is used to tune alerts from very active

hosts such as NAT, nessus hosts, etc. The 'ignore_scanned' option

specifies the IP(s) to ignore as scanned hosts. Note that these hosts

are still watched as scanner hosts. The 'ignore_scanned' option is

used to tune alerts from very active hosts such as syslog servers, etc.

#

preprocessor sfportscan: proto { all } \

 memcap { 10000000 } \

 sense_level { low }

#logfile { portscan.log }

arpspoof

#--

Experimental ARP detection code from Jeff Nathan, detects ARP attacks,

unicast ARP requests, and specific ARP mapping monitoring. To make use of

this preprocessor you must specify the IP and hardware address of hosts on

the same layer 2 segment as you. Specify one host IP MAC combo per line.

Also takes a "-unicast" option to turn on unicast ARP request detection.

Arpspoof uses Generator ID 112 and uses the following SIDS for that GID:

SID Event description

----- -------------------

1 Unicast ARP request

2 Etherframe ARP mismatch (src)

3 Etherframe ARP mismatch (dst)

4 ARP cache overwrite attack

#preprocessor arpspoof

#preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

X-Link2State mini-preprocessor

This preprocessor will catch the X-Link2State vulnerability

(www.microsoft.com/technet/security/bulletin/MS05-021.mspx).

#

Format:

preprocessor xlink2state: ports { <port> [<port> <...>] } [drop]

#

"drop" will drop the attack if in Inline-mode.

SID Event description

----- -------------------

1 X-Link2State length greater than 1024

preprocessor xlink2state: ports { 25 691 }

##

Step #3: Configure output plugins

#

Uncomment and configure the output plugins you decide to use. General

configuration for output plugins is of the form:

#

output <name_of_plugin>: <configuration_options>

#

alert_syslog: log alerts to syslog

Use one or more syslog facilities as arguments. Win32 can also optionally

specify a particular hostname/port. Under Win32, the default hostname is

'127.0.0.1', and the default port is 514.

#

[Unix flavours should use this format...]

output alert_syslog: LOG_AUTH LOG_ALERT

#

[Win32 can use any of these formats...]

output alert_syslog: LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname, LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname:port, LOG_AUTH LOG_ALERT

log_tcpdump: log packets in binary tcpdump format

The only argument is the output file name.

#

output log_tcpdump: tcpdump.log

#output : log, mysql, dbname=snort user=snortusr host=localhost

#output database : alert , mysql , dbname=snort user=snortusr host=localhost password=admin

#output database: log, mysql, dbname=snort user=snortusr host=localhost password=admin

#output database: alert, mysql, dbname=snort user=snortusr host=localhost password=admin

output alert_fast: alert.ids

database: log to a variety of databases

See the README.database file for more information about configuring

and using this plugin.

#

output database: log, mysql, user=root password=test dbname=db host=localhost

#output database: alert, postgresql, user=snort dbname=snort

output database: log, odbc, user=snort dbname=snort

output database: log, mssql, dbname=snort user=snort password=test

output database: log, oracle, dbname=snort user=snort password=test

unified: Snort unified binary format alerting and logging

The unified output plugin provides two new formats for logging and generating

alerts from Snort, the "unified" format. The unified format is a straight

binary format for logging data out of Snort that is designed to be fast and

efficient. Used with barnyard (the new alert/log processor), most of the

overhead for logging and alerting to various slow storage mechanisms such as

databases or the network can now be avoided.

#

Check out the spo_unified.h file for the data formats.

#

Two arguments are supported.

filename - base filename to write to (current time_t is appended)

limit - maximum size of spool file in MB (default: 128)

#

output alert_unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128

 output alert_unified: snort.alert, limit 128

 output log_unified: snort.log , limit 128

prelude: log to the Prelude Hybrid IDS system

#

profile = Name of the Prelude profile to use (default is snort).

#

Snort priority to IDMEF severity mappings:

high < medium < low < info

#

These are the default mapped from classification.config:

info = 4

low = 3

medium = 2

high = anything below medium

#

output alert_prelude

output alert_prelude: profile=snort-profile-name

You can optionally define new rule types and associate one or more output

plugins specifically to that type.

#

This example will create a type that will log to just tcpdump.

ruletype suspicious

{

type log

output log_tcpdump: suspicious.log

}

#

EXAMPLE RULE FOR SUSPICIOUS RULETYPE:

suspicious tcp $HOME_NET any -> $HOME_NET 6667 (msg:"Internal IRC Server";)

#

This example will create a rule type that will log to syslog and a mysql

database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysql, user=snort dbname=snort host=localhost

}

#

EXAMPLE RULE FOR REDALERT RULETYPE:

redalert tcp $HOME_NET any -> $EXTERNAL_NET 31337 \

(msg:"Someone is being LEET"; flags:A+;)

#

Include classification & priority settings

Note for Windows users: You are advised to make this an absolute path,

such as: c:\snort\etc\classification.config

#

include classification.config

include C:\Snort\etc\classification.config

#

Include reference systems

Note for Windows users: You are advised to make this an absolute path,

such as: c:\snort\etc\reference.config

#

include reference.config

##

Step #4: Configure snort with config statements

#

See the snort manual for a full set of configuration references

#

config flowbits_size: 64

#

New global ignore_ports config option from Andy Mullican

#

config ignore_ports: <tcp|udp> <list of ports separated by whitespace>

config ignore_ports: tcp 21 6667:6671 1356

config ignore_ports: udp 1:17 53

##

Step #5: Customize your rule set

#

Up to date snort rules are available at http://www.snort.org

#

The snort web site has documentation about how to write your own custom snort

rules.

#===

Include all relevant rulesets here

The following rulesets are disabled by default:

#

web-attacks, backdoor, shellcode, policy, porn, info, icmp-info, virus,

chat, multimedia, and p2p

These rules are either site policy specific or require tuning in order to not

generate false positive alerts in most enviornments.

Please read the specific include file for more information and

README.alert_order for how rule ordering affects how alerts are triggered.

#===

include $RULE_PATH/snortrules.rules

Include any thresholding or suppression commands. See threshold.conf in the

<snort src>/etc directory for details. Commands don't necessarily need to be

contained in this conf, but a separate conf makes it easier to maintain them.

Note for Windows users: You are advised to make this an absolute path,

such as: c:\snort\etc\threshold.conf

Uncomment if needed.

include threshold.conf

#include c:\snort\etc\threshold.conf
barnyard.conf
#---

http://www.snort.org Barnyard 0.1.0 configuration file

Contact: snort-barnyard@lists.sourceforge.net

#---

$Id: barnyard.conf,v 1.6 2003/05/03 02:44:12 andrewbaker Exp $

##

Currently you want to do two things in here: turn on

available data processors and turn on output plugins.

The data processors (dp's) and output plugin's (op's)

automatically associate with each other by type and

are automatically selected at run time depending on

the type of file you try to load.

##

Step 0: configuration declarations

To keep from having a commandline that uses every letter in the alphabet

most configuration options are set here

enable daemon mode

 #config daemon

use localtime instead of UTC (*not* recommended because of timewarps)

config localtime

set the hostname (currently only used for the acid db output plugin)

config hostname: NOTE

set the interface name (currently only used for the acid db output plugin)

config interface: 3

set the filter (currently only used for the acid db output plugin)

config filter: not port 22

Step 1: setup the data processors

dp_alert

The dp_alert data processor is capable of reading the alert (event) format

generated by Snort's spo_unified plug-in. It is used with output plug-ins

that support the "alert" input type. This plug-in takes no arguments.

processor dp_alert

dp_log

The dp_log data processor is capable of reading the log format generated

by Snort's spo_unified plug-in. It is used with output plug-ins

that support the "log" input type. This plug-in takes no arguments.

processor dp_log

dp_stream_stat

The dp_stream_stat data processor is capable of reading the binary output

generated by Snort's spp_stream4 plug-in. It is used with output plug-ins

that support the "stream_stat" input type. This plug-in takes no arguments.

processor dp_stream_stat

Step 2: setup the output plugins

alert_fast

#-----------------------------

Converts data from the dp_alert plugin into an approximation of Snort's

"fast alert" mode. Argument: <filename>

#output alert_fast

log_dump

#-----------------------------

Converts data from the dp_log plugin into an approximation of Snort's

"ASCII packet dump" mode. Argument: <filename>

#output log_dump

alert_html (experimental)

#---------------------------

Creates a series of html pages about recent alerts

Arguments:

[webroot] - base directory for storing the html pages

#

Example:

output alert_html: /var/www/htdocs/op_alert_html

output alert_html: /var/www/htdocs/op_alert_html

alert_csv (experimental)

#---------------------------

Creates a CSV output file of alerts (optionally using a user specified format)

Arguments: filepath [format]

#

The format is a comma-seperated list of fields to output (no spaces allowed)

The available fields are:

sig_gen - signature generator

sig_id - signature id

sig_rev - signatrue revision

sid - SID triplet

class - class id

classname - textual name of class

priority - priority id

event_id - event id

event_reference - event reference

ref_tv_sec - reference seconds

ref_tv_usec - reference microseconds

tv_sec - event seconds

tv_usec - event microseconds

timestamp - prettified timestamp (2001-01-01 01:02:03) in UTC

src - src address as a u_int32_t

srcip - src address as a dotted quad

dst - dst address as a u_int32_t

dstip - dst address as a dotted quad

sport_itype - source port or ICMP type (or 0)

sport - source port (if UDP or TCP)

itype - ICMP type (if ICMP)

dport_icode - dest port or ICMP code (or 0)

dport - dest port

icode - ICMP code (if ICMP)

proto - protocol number

protoname - protocol name

flags - flags from UnifiedAlertRecord

msg - message text

hostname - hostname (from barnyard.conf)

interface - interface (from barnyard.conf)

#

Examples:

output alert_csv: /var/log/snort/csv.out

output alert_csv: /var/log/snort/csv.out timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode

output alert_csv: csv.out timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode

alert_syslog

#-----------------------------

Converts data from the alert stream into an approximation of Snort's

syslog alert output plugin. Same arguments as the output plugin in snort.

#

Win32 can also optionally specify a particular hostname/port. Under

Win32, the default hostname is '127.0.0.1', and the default port is 514.

#

[Unix flavours should use these formats...]

output alert_syslog

output alert_syslog: LOG_AUTH LOG_ALERT

#

[Win32 can use any of these formats...]

output alert_syslog

output alert_syslog: LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname, LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname:port, LOG_AUTH LOG_ALERT

#output alert_syslog

log_pcap

#-----------------------------

Converts data from the dp_log plugin into standard pcap format

Argument: <filename>

#output log_pcap

acid_db

#-------------------------------

Available as both a log and alert output plugin. Used to output data into

the db schema used by ACID

Arguments:

$db_flavor - what flavor of database (ie, mysql)

sensor_id $sensor_id - integer sensor id to insert data as

database $database - name of the database

server $server - server the database is located on

user $user - username to connect to the database as

password $password - password for database authentication

output alert_acid_db: mysql, sensor_id 1, database snort, server localhost, user root

output log_acid_db: mysql, database snort, server localhost, user root, detail full

output alert_acid_db: mssql, database snort, server localhost, user snort, password test, detail full

output log_acid_db: mssql, database snort, server localhost, user snort, password test, detail full

 #output alert_acid_db: mysql, sensor_id 1, database snort, server localhost, user snortusr ,password admin

 output alert_acid_db: mysql, sensor_id 1, database snort, server localhost, user snortusr

 output log_acid_db: mysql, sensor_id 1, database snort, server localhost, user snortusr , detail full

Appendix B: create_mysql file

Copyright (C) 2000-2002 Carnegie Mellon University

#

Maintainer: Roman Danyliw <rdd@cert.org>, <roman@danyliw.com>

#

Original Author(s): Jed Pickel <jed@pickel.net> (2000-2001)

Roman Danyliw <rdd@cert.org>

Todd Schrubb <tls@cert.org>

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

CREATE TABLE `schema` (vseq INT UNSIGNED NOT NULL,

 ctime DATETIME NOT NULL,

 PRIMARY KEY (vseq));

INSERT INTO `schema` (vseq, ctime) VALUES ('106', now());

CREATE TABLE event (sid
 INT
 UNSIGNED NOT NULL,

 cid
 INT
 UNSIGNED NOT NULL,

 signature INT UNSIGNED NOT NULL,

 timestamp
 DATETIME NOT NULL,

 PRIMARY KEY (sid,cid),

 INDEX sig (signature),

 INDEX time (timestamp));

CREATE TABLE signature (sig_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 sig_name VARCHAR(255) NOT NULL,

 sig_class_id INT UNSIGNED NOT NULL,

 sig_priority INT UNSIGNED,

 sig_rev INT UNSIGNED,

 sig_sid INT UNSIGNED,

 PRIMARY KEY (sig_id),

 INDEX sign_idx (sig_name(20)),

 INDEX sig_class_id_idx (sig_class_id));

CREATE TABLE sig_reference (sig_id INT UNSIGNED NOT NULL,

 ref_seq INT UNSIGNED NOT NULL,

 ref_id INT UNSIGNED NOT NULL,

 PRIMARY KEY(sig_id, ref_seq));

CREATE TABLE reference (ref_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 ref_system_id INT UNSIGNED NOT NULL,

 ref_tag TEXT NOT NULL,

 PRIMARY KEY (ref_id));

CREATE TABLE reference_system (ref_system_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 ref_system_name VARCHAR(20),

 PRIMARY KEY (ref_system_id));

CREATE TABLE sig_class (sig_class_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

 sig_class_name VARCHAR(60) NOT NULL,

 PRIMARY KEY (sig_class_id),

 INDEX (sig_class_id),

 INDEX (sig_class_name));

store info about the sensor supplying data

CREATE TABLE sensor (sid
 INT
 UNSIGNED NOT NULL AUTO_INCREMENT,

 hostname TEXT,

 interface TEXT,

 filter
 TEXT,

 detail
 TINYINT,

 encoding
 TINYINT,

 last_cid INT UNSIGNED NOT NULL,

 PRIMARY KEY (sid));

All of the fields of an ip header

CREATE TABLE iphdr (sid
 INT
 UNSIGNED NOT NULL,

 cid
 INT
 UNSIGNED NOT NULL,

 ip_src INT UNSIGNED NOT NULL,

 ip_dst INT UNSIGNED NOT NULL,

 ip_ver TINYINT UNSIGNED,

 ip_hlen TINYINT UNSIGNED,

 ip_tos
 TINYINT UNSIGNED,

 ip_len
 SMALLINT UNSIGNED,

 ip_id
 SMALLINT UNSIGNED,

 ip_flags TINYINT UNSIGNED,

 ip_off SMALLINT UNSIGNED,

 ip_ttl
 TINYINT UNSIGNED,

 ip_proto
 TINYINT UNSIGNED NOT NULL,

 ip_csum
 SMALLINT UNSIGNED,

 PRIMARY KEY (sid,cid),

 INDEX ip_src (ip_src),

 INDEX ip_dst (ip_dst));

All of the fields of a tcp header

CREATE TABLE tcphdr(sid
 INT
 UNSIGNED NOT NULL,

 cid
 INT
 UNSIGNED NOT NULL,

 tcp_sport SMALLINT UNSIGNED NOT NULL,

 tcp_dport SMALLINT UNSIGNED NOT NULL,

 tcp_seq INT UNSIGNED,

 tcp_ack INT UNSIGNED,

 tcp_off TINYINT UNSIGNED,

 tcp_res TINYINT UNSIGNED,

 tcp_flags TINYINT UNSIGNED NOT NULL,

 tcp_win SMALLINT UNSIGNED,

 tcp_csum SMALLINT UNSIGNED,

 tcp_urp SMALLINT UNSIGNED,

 PRIMARY KEY (sid,cid),

 INDEX tcp_sport (tcp_sport),

 INDEX tcp_dport (tcp_dport),

 INDEX tcp_flags (tcp_flags));

All of the fields of a udp header

CREATE TABLE udphdr(sid
 INT
 UNSIGNED NOT NULL,

 cid
 INT
 UNSIGNED NOT NULL,

 udp_sport SMALLINT UNSIGNED NOT NULL,

 udp_dport SMALLINT UNSIGNED NOT NULL,

 udp_len SMALLINT UNSIGNED,

 udp_csum SMALLINT UNSIGNED,

 PRIMARY KEY (sid,cid),

 INDEX udp_sport (udp_sport),

 INDEX udp_dport (udp_dport));

All of the fields of an icmp header

CREATE TABLE icmphdr(sid
 INT
 UNSIGNED NOT NULL,

 cid
 INT
 UNSIGNED NOT NULL,

 icmp_type TINYINT UNSIGNED NOT NULL,

 icmp_code TINYINT UNSIGNED NOT NULL,

 icmp_csum SMALLINT UNSIGNED,

 icmp_id SMALLINT UNSIGNED,

 icmp_seq SMALLINT UNSIGNED,

 PRIMARY KEY (sid,cid),

 INDEX icmp_type (icmp_type));

Protocol options

CREATE TABLE opt (sid INT UNSIGNED NOT NULL,

 cid INT UNSIGNED NOT NULL,

 optid INT UNSIGNED NOT NULL,

 opt_proto TINYINT UNSIGNED NOT NULL,

 opt_code TINYINT UNSIGNED NOT NULL,

 opt_len SMALLINT,

 opt_data TEXT,

 PRIMARY KEY (sid,cid,optid));

Packet payload

CREATE TABLE data (sid INT UNSIGNED NOT NULL,

 cid INT UNSIGNED NOT NULL,

 data_payload TEXT,

 PRIMARY KEY (sid,cid));

encoding is a lookup table for storing encoding types

CREATE TABLE encoding(encoding_type TINYINT UNSIGNED NOT NULL,

 encoding_text TEXT NOT NULL,

 PRIMARY KEY (encoding_type));

INSERT INTO encoding (encoding_type, encoding_text) VALUES (0, 'hex');

INSERT INTO encoding (encoding_type, encoding_text) VALUES (1, 'base64');

INSERT INTO encoding (encoding_type, encoding_text) VALUES (2, 'ascii');

detail is a lookup table for storing different detail levels

CREATE TABLE detail (detail_type TINYINT UNSIGNED NOT NULL,

 detail_text TEXT NOT NULL,

 PRIMARY KEY (detail_type));

INSERT INTO detail (detail_type, detail_text) VALUES (0, 'fast');

INSERT INTO detail (detail_type, detail_text) VALUES (1, 'full');

be sure to also use the snortdb-extra tables if you want

mappings for tcp flags, protocols, and ports
Appendix C: Rules for the Signatures

#530

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS NT NULL session"; content:"|00 00 00 00|W|00|i|00|n|00|d|00|o|00|w|00|s|00| |00|N|00|T|00| |00|1|00|3|00|8|00|1"; reference:arachnids,204; reference:bugtraq,1163; reference:cve,2000-0347; classtype:attempted-recon; sid:530; rev:10;)

#545

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"POLICY FTP 'CWD / ' possible warez site"; content:"CWD"; nocase; content:"/ "; distance:1; classtype:misc-activity; sid:545; rev:5;)

#718

alert tcp $TELNET_SERVERS 23 -> $EXTERNAL_NET any (msg:"INFO TELNET login incorrect"; content:"Login incorrect"; reference:arachnids,127; classtype:bad-unknown; sid:718; rev:9;)

#995

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS ism.dll access"; uricontent:"/scripts/iisadmin/ism.dll?http/dir"; nocase; reference:bugtraq,189; reference:cve,1999-1538; reference:cve,2000-0630; classtype:web-application-attack; sid:995; rev:10;)

#1700

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI imagemap.exe access"; uricontent:"/imagemap.exe"; nocase; reference:arachnids,412; reference:bugtraq,739; reference:cve,1999-0951; reference:nessus,10122; classtype:web-application-activity; sid:1700; rev:8;)

#2616

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS $ORACLE_PORTS (msg:"ORACLE grant_surrogate_repcat ordered userid buffer overflow attempt"; content:"dbms_repcat_auth.grant_surrogate_repcat"; nocase; reference:url,www.appsecinc.com/Policy/PolicyCheck97.html; classtype:attempted-user; sid:2616; rev:1;)

#3057

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB-DS NT Trans NT CREATE unicode andx invalid SACL ace size dos attempt"; content:"|00|"; offset:0; depth:1; content:"|FF|SMB"; distance:3; within:4; pcre:"/^(\x75|\x2d|\x2f|\x73|\xa2|\x2e|\x24|\x74)/sR"; byte_test:1,&,128,6,relative; content:"|A0|"; offset:39; depth:1; byte_jump:2,0,little,relative; content:"|01 00|"; distance:37; within:2; byte_jump:4,-7,little,relative,from_beginning; pcre:"/^.{4}/R"; content:!"|00 00 00 00|"; distance:16; within:4; byte_jump:4,16,relative,little; content:"|00 00|"; distance:-10; within:2; classtype:protocol-command-decode; sid:3057; rev:1;)

#4413

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB v4 spoolss AddPrinterEx WriteAndX little endian andx overflow attempt"; content:"|00|"; depth:1; content:"|FF|SMB"; within:4; distance:3; pcre:"/^(\x75|\x2d|\x2f|\x73|\xa2|\x2e|\x24|\x74)/sR"; byte_test:1,!&,128,6,relative; content:"/"; depth:1; offset:39; byte_jump:2,0,little,relative; byte_jump:2,23,relative,from_beginning,little; pcre:"/^.{4}/sR"; content:"|04 00|"; byte_test:1,&,16,2,relative; content:"xV4|12|4|12 CD AB EF 00 01 23|Eg|89 AB|"; within:16; distance:22; content:"F|00|"; within:2; distance:28; content:"|00 00|"; within:2; distance:6; pcre:"/^.{2}/sR"; pcre:"/^.{4}(\x00\x00\x00\x00|.{8})/sR"; byte_jump:4,-4,little,multiplier 2,relative,align; byte_test:4,>,256,96,little,relative; reference:cve,2005-1984; reference:url,www.microsoft.com/technet/security/bulletin/MS05-043.mspx; classtype:attempted-admin; sid:4413; rev:2;)

#4990

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Heap-Based Overflow Attempt"; content:"|04|"; depth:1; content:!"|3A|"; within:50; reference:bugtraq,5310; reference:cve,2002-0649; reference:nessus,11214; reference:url,www.microsoft.com/technet/security/bulletin/MS02-039.mspx; classtype:attempted-admin; sid:4990; rev:1;)

#5661

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NETBIOS SMB v4 winreg InitiateSystemShutdown WriteAndX unicode andx attempt"; flow:established,to_server; content:"|00|"; depth:1; content:"|FF|SMB"; within:4; distance:3; pcre:"/^(\x75|\x2d|\x2f|\x73|\xa2|\x2e|\x24|\x74)/sR"; byte_test:1,&,128,6,relative; content:"/"; depth:1; offset:39; byte_jump:2,0,little,relative; byte_jump:2,23,relative,from_beginning,little; pcre:"/^.{4}/sR"; content:"|04 00|"; byte_test:1,!&,16,2,relative; content:"|01 D0 8C|3D|22 F1|1|AA AA 90 00|8|00 10 03|"; within:16; distance:22; content:"|00 18|"; within:2; distance:28; pcre:"/^.{10}/sR"; reference:url,msdn.microsoft.com/library/default.asp?url=/library/en-us/shutdown/base/initiatesystemshutdown.asp; classtype:protocol-command-decode; sid:5661; rev:2;)
Appendix D: Script File for Generating and Sending the Signature Packets
SID 530:
[[]]

$repeat_times=1

[SID530]

$failure=0 $repeat_times=1 $effective_length=118 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x008B

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=512 $type=byte

$value=0x00000000570069006E0064006F007700 \

 0x730020004E0054002000310033003800 \

 0x31000000000000000000000000000000 \

 0x00000000000000000000000000000000
SID 545:

[[]]

$repeat_times=1

[sid545]

$failure=0 $repeat_times=1 $effective_length=86 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x0015

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=256 $type=byte

$value=0x435744202F2000000000000000000000 \

 0x00000000000000000000000000000000
SID 718:

[[]]

$repeat_times=1

[sid718]

$failure=0 $repeat_times=1 $effective_length=86 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0017

$bit_length=16 $type=byte

$value=0x0000

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=256 $type=byte

$value=0x4C6F67696E20696E636F727265637400 \

 0x00000000000000000000000000000000
SID 995:

[[]]

$repeat_times=1

[sid995]

$failure=0 $repeat_times=1 $effective_length=118 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x0050

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=512 $type=byte

$value=0x2F736372697074732F69697361646D69 \

 0x6E2F69736D2E646C6C3F687474702F64 \

 0x69720000000000000000000000000000 \

 0x00000000000000000000000000000000
SID 1700:
[[]]

$repeat_times=1

[sid1700]

$failure=0 $repeat_times=1 $effective_length=86 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x0050

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=256 $type=byte

$value=0x2F696D6167656D61702E657865000000 \

 0x00000000000000000000000000000000
SID 2616:

[[]]

$repeat_times=1

[sid2616]

$failure=0 $repeat_times=1 $effective_length=118 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x05F1

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=512 $type=byte

$value=0x64626D735F7265706361745F61757468 \

 0x2E6772616E745F737572726F67617465 \

 0x5F726570636174000000000000000000 \

 0x00000000000000000000000000000000

SID 3057:

[[]]

$repeat_times=1

[sid3057]

$failure=0 $repeat_times=1 $effective_length=86 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x01BD

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=256 $type=byte

$value=0x00FF534D42A001000000000000000000 \

 0x00000000000000000000000000000000

SID 4413:
[[]]

$repeat_times=1

[sid4413]

$failure=0 $repeat_times=1 $effective_length=118 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x008B

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=512 $type=byte

$value=0x00FF534D422F0400785634123412CDAB \

 0xEF000123456789AB4600000000000000 \

 0x00000000000000000000000000000000 \

 0x00000000000000000000000000000000

SID 4990:

[[]]

$repeat_times=1

[sid4413]

$failure=0 $repeat_times=1 $effective_length=118 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x008B

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=512 $type=byte

$value=0x00FF534D422F0400785634123412CDAB \

 0xEF000123456789AB4600000000000000 \

 0x00000000000000000000000000000000 \

 0x00000000000000000000000000000000

SID 5661:
[[]]

$repeat_times=1

[sid5661]

$failure=0 $repeat_times=1 $effective_length=118 $delay=0 $packet_type=1 $linktype=1

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$value=0x000000

$bit_length=24 $type=byte

$function=@my-hdw-vendor

$bit_length=24 $type=byte

$function=@my-hdw-addr

$bit_length=16 $type=byte

$value=0x0800

$bit_length=4 $type=bit

$value=0x04

$bit_length=4 $type=bit

$value=0x05

$bit_length=8 $type=byte

$value=0x00

$bit_length=16 $type=byte

$function=@ip-data-len

$bit_length=16 $type=byte

$value=0x0000

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x01

$bit_length=1 $type=bit

$value=0x00

$bit_length=13 $type=bit

$value=0x0000

$bit_length=8 $type=byte

$value=0x80

$bit_length=8 $type=byte

$value=0x06

$bit_length=16 $type=byte

$function=@ip-checksum

$bit_length=32 $type=dotted

$function=@my-ip-addr

$bit_length=32 $type=dotted

$function=@query

$bit_length=16 $type=byte

$value=0x0000

$bit_length=16 $type=byte

$value=0x008B

$bit_length=32 $type=byte

$function=@random

$bit_length=32 $type=byte

$function=@random

$bit_length=4 $type=bit

$value=0x05

$bit_length=4 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=1 $type=bit

$value=0x00

$bit_length=16 $type=byte

$value=0x4000

$bit_length=16 $type=byte

$function=@tcp-checksum

$bit_length=16 $type=byte

$value=0x0000

$bit_length=512 $type=byte

$value=0x00FF534D422F040001D08C336422F131 \

 0xAAAA9000380010030018000000000000 \

 0x00000000000000000000000000000000 \

 0x00000000000000000000000000000000
Snort

WinPcap

Barnyard

MySQL

Unified

Files

WinPcap

Packet Excalibur

Intrusion Detection System

(192.168.0.1)

Signature Generator

(192.168.0.2)

Hub

USAGE:

PAGE

Page 1/84
Vic Ho & Kashif Saeed

