Efficient and Effective Architecture for Intrusion Detection System

Ashif Adnan, Muhammad Omair Alam and A.K.M. Aktaruzzaman
Department of Computer Science

University of Windsor

{adnan, alam1s, abul}@uwindsor.ca

Abstract

 Primary aspects of network intrusion detection systems include the collection, management, and analysis of intrusion data. Intrusion detection systems in particular now days have increasingly valuable role to play as network grows and more information becomes available and administrators need better ways to monitor their systems. Most current intrusion detection systems lack the means to accurately monitor and report on wireless segment within the corporate network. In this paper we are going to present our survey on the new effective approaches of data collection and their management, and detection of intruders. For this purpose we have gone through a paper which discusses the data collection architecture using small, low cost embedded Linux devices as mobile, highly configurable, and collaborative sensors. Moreover, since at the heart of almost every modern intrusion detection system is a string matching algorithm, we have surveyed an approach that relies on a special purpose architecture that executes novel string matching algorithms specially optimized for rule based intrusion detection system. We have surveyed another approach regarding effective intrusion detection which is NeGPAIM model that will allow for the accurate detection of attacks in proactive fashion. Finally, this works have proposed a new modified architecture for overall intrusion detection system for wireless network.
1. Introduction

 Computer systems now operate in an environment of near ubiquitous connectivity, whether tethered to a Ethernet cable or connected via wireless technology [2]. While the availability of always on communication has created countless new opportunities for web based businesses, information sharing, and coordination, it has also created new opportunities for those that seek to illegally disrupt, subvert, or attack these activities [2]. Everyday the more critical data become more accessible over the network, and any publicly accessible system on the Internet is subjected to more than one break in attempt per day [2]. So, there is widespread interest in combating these attacks at every level, from end hosts and network taps to edge and core routers [2].
 Given the importance of protecting information and services, there is a great deal of work from the security community aimed at detecting and thwarting attacks in the network [2]. Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have emerged as some of the most promising ways of providing protection on the network. Network based intrusion detection systems can be categorized as either misuse based or anomaly based. Both systems require sensors that perform real time monitoring of network packets, either by comparing network traffic against a signature database or by finding out-of-the-ordinary behavior, and triggering intrusion alarms [2].
 To detect intruder the first step is to effectively collect and manage data from outside or inside the network segment. Current methods are plagued by “false positive” and “false negative” determinations about intrusions [1]. This paper talks about an implementation of an innovative approach for network intrusion detection sensor platforms using gum stick-sized devices which contain an embedded Linux operating system and both wired and wireless network connections [1]. The experiment performed in the paper we have surveyed has demonstrated the proof of concept by successfully installing a single sensor called Gumstix [4] into a network for intrusion data collection and by developing a software module for handling the wireless data transfer.
 To define suspicious activities, most modern network intrusion detection/prevention systems rely on a set of rules which are applied to matching packets. At minimum a rule consists of a type of packet to search, a string of content to match, a location where that string is to be searched for, and an associated action to take if all the conditions of the rule are met [2]. The problem is that for the detection to be accurate, we need to be able to search every byte of every packet for a potential match from a large set of strings which requires significant processing resources both in terms of the amount of time to process a packet, and the amount of memory needed. A string matching engine must have bounded performance in the worst case so that a performance based attack cannot be mounted against it [5]. A successful design must have the ability to be updated quickly and automatically all the while maintaining continuous operation. In order to address these concerns, we have surveyed a paper which describes an approach that relies on a simple yet powerful special purpose architecture for string matching to achieve both high performance and high efficiency. The result of the efforts is a device that maintains tight worst case bounds on performance, can be updated with new rules without interrupting operation, has configurations generated in seconds instead of hours, and is ten times more efficient that the existing best known solutions [2].
 We have surveyed another paper which is an extension of to the NeGPAIM model that can accurately detect attacks originating on wireless network segments. This will be done by the use of fuzzy logic and neural networks utilized in the detection of intrusion attacks. The model is known as NeGPAIM-W2 and is based on the assumption that each user has and leaves a unique footprint on a network when using it. This model is able to proactively detect intrusion attacks in both wired and wireless environments [3].
 This paper is organized as follows. Section 2 illustrates our background study about the investigation of a new approach to data collection, management and analysis for network intrusion detection system, an overview of architecture for string matching with high performance and efficiency, and finally the overview of the model NeGPAIM-W2 to detect intrusion attacks proactively. The section also illustrates the methods of testing and validating those ideas mentioned. Section 3 presents our observations regarding those papers which include weaknesses and our new idea. Finally we conclude with section 4.
2. Background study

 Here we are going to illustrate our observations on effective intrusion detection systems into three different subsections which have been derived after careful study of the corresponding literatures [1, 2, 3].
2.1 Investigating new approaches to data Collection, Management and Analysis for network intrusion detection

 The basic concept that was used in this paper was called SMASH (A Security Monitoring System for Information Assurance, Analysis, and Survivability of Network Hazards). SMASH is a concept which unites the technologies and fields of Network Security, Wireless Networking and Statistical Analysis.
2.1.1 Need for SMASH

 The most basic need for implementing SMASH was network security. And the focus of this security, which includes intrusion detection, was to prevent unauthorized access to the information, which might cause great loss and in some extreme case even render the systems unstable or unreliable.

2.2.2 Wireless Networking ideal for SMASH sensors

 The basic requirements for implementing SMASH sensors should be low cost, no extreme bandwidth requirements, flexible and scalable. These requirements can be easily fulfilled by a wireless network. The fundamental information necessary for intrusion data are IP addresses, which can be strongly encrypted along with all alert data. Therefore, the alert data will have a much smaller volume and the monitoring network need not be a high bandwidth network. And an additional advantage would be that the sensors can be moved at will without disruption of the operational network. So this last observation allows us to connect wireless-enabled sensors on an as-needed basis simply by locating them within the physical distance required. All that is needed is an 802.11 wireless hub connected to the operational network. This means that security and monitoring operations can have their own physical security over the sensors, and need not share wiring closet and rack space with operational network elements.

 The monitoring network depends on the geographic distances involved. If the monitoring network can be located within a building or campus area, then 802.11 technologies may be all that is needed. If larger distances are involved (e.g., multiple offices in different metropolitan areas, or across the world), then any other suitable cost-efficient connectivity could be used to connect multiple monitoring sub-networks together – for example fractional T1, frame relay, or satellite services – to connect multiple monitoring sub-networks together.
2.2.3 Collecting data using Gumstix

 After setting up the network, we need a separate computer, called a sniffer, to sniff and collect the data, or in other words monitor the traffic. The sniffer on sniffing an attack should inform, so that some sort of logging and/or blocking of the attack can take place.

 Communication among network sensors is essential to do the job completely. If one network sensor classifies an attack from location X and blocks all traffic, then all the other sensors should block location X before an attack occurs; thereby blocking the attacker before he or she gets ANY information about those subnets. Since it is essential for this communication to occur, such decision making could be performed by a central management station, which could then send out a message about an ongoing attack to all of its sensors. The sensors could then take any other decision regarding the attack by configuring the rules.

 In this paper, the Gumstix device was chosen as the network sensor primarily for its reliability. Gumstix devices are Linux computers that fit into the palm of your hand! This way there is no problem regarding cost and size. The Gumstix provides easy design flexibility and open source at nearly half the price of and a third the size of all other offerings. Full size workstations which are required to process large amounts of data are very expensive. Office space can be expensive and storage for full sized workstations, costly. Using an embedded system like Gumstix is more cost efficient.

 Because the Gumstix runs Linux, a great deal of open source software becomes available for use in the test environment including web servers, SSH servers, Java Virtual Machines, and network monitoring software such as tcpdump and the popular open-source NIDS application, Snort. For communicating with the sensors, a Java application using socket programming was developed to control the Gumstix device. A simple server management station application was written to allow many connections from different sensors, and set up to send messages to any subset of them. Therefore, the Gumstix sniffer with Snort installed is connected via a wired connection to its network, and is connected wirelessly to the management workstation

2.2.4 Managing data over wireless

 In case the sensor goes under a denial of service (Dos) attack, it will have problems communicating with the server. So for that it may have to communicate with a server on a separate network. But it becomes too complicated to have a second network running in parallel. So it is better to use a wireless network, as it creates less complication. The Gumstix sniffer with Snort installed is connected via a wired connection to its network, and is connected wirelessly to the management workstation, or possibly a management cluster.
2.2.5 Analyzing data with Data Fusion and Data Mining Techniques
 Data fusion is generally defined as the use of techniques that combine data from multiple sources and gather that information in order to achieve inferences, which will be more efficient than if they were achieved by means of a single source.
 Data mining is the principle of sorting through large amounts of data and picking out relevant information .
 The combination of data fusion and data mining techniques has the greatest potential to solve a major drawback of IDS: the unacceptable numbers of false positives and false negatives.

2.2 High throughput string matching architecture for intrusion detection and prevention
 This sub section begins by briefly describing the requirements that have driven the design, the main ideas behind the string matching technique, and the details of the architecture. The section ends up with the analysis of the design.

2.2.1 IDS/IPS requirements
 The followings requirements were identified for Intrusion Detection/Prevention Systems [2].
Worst case performance: IDS/IPS needs string matching algorithms that can keep up with the speed of checking incoming packets in real time which will have stringent worst case performance.
Non-interrupting rule update: The architecture should also be able to update the rules quickly and provide uninterrupted service during an update.
High through per area: The design that is small enough can fit completely on a chip which consumes fewer resources and can operate much faster than one relies on off chip memory [2].
2.2.2 String matching engine
 At a high level the set of string should be broken down into a set of small state machines where each state machine recognizes a subset of the strings from the rule set. The architecture is built hierarchically around the way that the sets of strings are broken down. It shows the highest level as a full device which holds the entire set of strings that are to be searched and reads in a character from an incoming packet and computes the set of matches [2].
 Each device consists of a set of rule modules each of which holds a subset of the rule database. The rule modules can interact each other. Each rule module is a large state machine which takes bytes as input and returns string match result. When a packet comes in the system, it is broadcast to all of the rule modules for the checking purpose. The broadcast has the limited overhead which increases the throughput [2].
 When a match is found in one or more of the rule modules, that match is reported to the IDS for appropriate action to take which gives the approach high efficiency and throughput [2].
 Each rule module consists of a set of tiles. Tiles work together and implement the actual state machine that can recognize a string in the input which is different than a naïve mannered state machine. The naïve machine may have 256 different possible transitions from each state which will make the storage of each node in kilobyte range. So, there is tradeoff for this naïve state that either we can states off the chip or we can compress the data. The first case loses the bounds on worst case performance. But the approach presented in the paper [2] splits the state machines apart from into a set of new state machines each of which matches only some of the bits of the input stream. So we can say that each new state is a filter and the given input string can pass the filter only when it matches. All of the filters have to agree to declare a match.
 Each tile can be termed as a table consists of a number of entries where each row in the able can be termed as a state. The tile has the ability to encode the state transition and also has a partial match vector – a bit vector responsible for a match for every rule. When all of the partial match vectors agree, we can do the AND operation on them to find the full match vector which indicates that a match for a particular rule has been found [2].

 The system works like this. Initially, all the tiles are set to state 0. Then when transmission starts, each input byte is partitioned into groups of bits. Each group is then sent to the corresponding tile [2]. There is an internal state in each tile which is used to point a line in the memory tile. Then the possible state transitions take place and at the same time the match vector is read out. To get the new next state the input bits are used as selection bits. Then the partial match vector is combined with others by passing through the AND unit. Finally, to find out the matched strings all the full match vectors of all modules are put together [2].
2.2.3 Support for Non-interrupting Update
 The old technique that uses FPGA reconfiguration has a major drawback is that during rule update (rule database reconfiguration) it needs the system remain off which is simply unwanted to the users [2].
 But in this approach, automated systems are used in proper locations that can detect new attacks in real time which is supported by this architecture by adding a temporary tile for the purpose of update.
 If we want to replace the contents of one rule module, the rules are first updated and copied to the temporary rule module [2]. When the next new packet comes in, the control bit for the module is set to override with the results from the replacement rule module [2]. Later without any interruption of the services the main rule module can be written. After a complete update of the rule module, the control bit is switched back and the replacement module is reset to the state machine for the next module in line [2]. According to the authors of the paper [2], the writing to the rule module needs an order of 1.6 microseconds and to finish an update needs 108 microseconds to complete which is pretty much faster than other old techniques.
2.2.4 Analysis of the design
 Here we are going to present an analysis of several important design options given by the authors in the paper [2].
Theoretical optimal partitioning
 Here the authors have given a theoretical idea of dividing up the original state machine by partitioning the strings into groups of different size e.g. 8, 16, 32, 64 or 128 strings per group [2]. For a set of strings S each with L characters per string, the total number of bits the architecture requires is
Tn,g = n floor(S/g)2floor(log2(gL))(floor(log2(gL)))28/n +g)
Where n is number of state machine per rule module and g is the group size. From the formula, it is seen that the smaller the group size g is the smaller Tn.g is [2].
Throughput analysis

 This architecture of string matching supports incremental and no interrupting update. Furthermore the design can achieve worst case throughput of over 10 Gbit/sec even if only 1 byte is read in each cycle which is better than FPGA-based techniques [2].
2.3 Utilizing fuzzy logic and neural networks for intrusion detection

2.3.1 Problem with current Intrusion detection system
 There are several commercial IDS in the market without intrusion detection capability. There are currently three kinds of IDS in the market. HIDS (Host based IDS), NIDS (Network Based IDS) and Hybrid IDS. Both the HIDS and NIDS need database of previous known attacks to detect most attacks. The problem with these two approached is that there is little to no correlation between networks based and host-based intrusion events. This mainly because intrusion information is stored in separate database.

 There are two main methodologies of detection to which most ISDS subscribe:

1. Misuse Detection and
2. Anomaly Detection.

 The problem with the Misuse Detection is that, database need to be updated and to combat the missed attack database need to collect in a long period of time and analyze.

 A problem with Anomaly Detection is that a user over time can train the system to accept anomalous behavior as normal, by slowly adding to the attack.
 Hence, with many problems associated with modern IDS, a new model for IDS has been formulated known as Next Generation Proactive Identification Model with ‘Wired and Wireless (NeGPAIM-W2) developed at NMMU.

2.3.2 The NEWGPAIM-W2 Model
 It has nine main components, three of them are directly involved in the detection of intrusion attacks, namely the fuzzy, neural and CAE engines detection engines and known as low-level and high level detection engines [3].
1. Fuzzy Engine: The fuzzy engine is responsible for implementation the Misuse Detection methodology. It will compute a template firstly and the user action graph will be mapped against it to determine whether or not an intruder has been or in performing an intrusion attack. It will give the percentage of potential attack to CAE [3].
2. Neural Engine: The neural engine uses a user’s wireless and wired network usage patterns to determine whether or not the user is acting abnormally on the system. The percentage of probability sent to CAE [3].

3. Central Analysis Engine: Since today’s trend is moving towards intrusion prevention and proactive intrusion detection both of which attempt to limit or completely stop an attack dead in its track. CAE analyze and interpret the resultant output values from the fuzzy and neural engines as well as managing the other units of the model, it includes four critical operations [3].
2.3.3 Analysis

 The three key elements of the NewPAIM-W 2 model has been fully implemented in a test bed in this paper. The results obtained from the experiment performed shows that NewPAIM-W 2 is 98% accurate in detection of intrusion attack with a false alarm rate of only 2%. Figure 1 depicts that Fuzzy Engine sending 5 or 8 or 70 percent probability of attack to CAE and Neural Engine also sending 7 or 10 or 80 percent of probability of attack to CAE. CAE then analyzes 6 or 9 or 75 percent, it is calculated by (Fuzzy + Neural)/2 [3].
 In another paper [6] show that the experimental result in the neural approach was implemented through an initial working prototype. Although the prototype was done on a small scale, favorable results were obtained. The network was more than 97% accurate in detecting unusual activities, with less than a 5% false alarm rate.

[image: image1]
Figure 1: Risk analysis
2.3.4 Method of Testing
 Key elements of the NeGPAIM-W2 model have been implemented in a fully functional prototype named Sentinel IDS. These elements are namely the reporting, Fuzzy, Neural and Central Analysis Engines. The reason these elements were chosen is that they form the core backbone of detection and the feedback processes allowing for the proactive detection of attacks. Responses, both passive and active, have been implemented as well as remote sensors (smart agents). The Microsoft Windows environment was chosen as the test bed for the NeGPAIM-W2 Model.
 The tools used were as follows: Airodump, Aireplay, Aircrack, Super-Scan and Brutus. Some of the tools utilized are Linux-based, while others are Windows-based. As mentioned previously, the environment in which this experiment occurs is a Microsoft Windows client/server environment, with two windows-based hosts that were known as Host1 and Host2 for the experiment. Host1 was the host installed with the Sentinel IDS wireless sensors and is also the DHCP and FTP server. Host2 was the host housing the main Sentinel IDS application. AP1 was the wireless access point with which Host1 and Host2 communicate. Intruder1 was the malicious intruder running a Linux-based notebook, who wanted to steal information from Host1. Now that the background has been given, the next step is to simulate a typical simple attack through an experiment.
3. Our observations

Here we are going present our observations we have found after doing the survey on making the IDS/IPS effective.
3.1 Complications over managing various networks

 It becomes quite cumbersome and unwieldy to manage 2 or maybe more networks. The monitoring is done on one network and the data is sent for analysis to the server through a separate network. The Gumstix sensors should be managing all the networks.

3.2 String matching architecture

 Even though the architecture has been developed focusing on improving string matching performance for rule based intrusion detection, we can detach the bit-split finite state machine from string matching and can apply to general search problems on general state machines. This may improve the performance of the search.
 We can also improve the throughput by reading in more than one byte at a time.
 Currently there are only two next states for each node in bit-split FSMs. We can extend it by reading in more than one byte at a time. But in this case we need to multiply throughput with reasonable increase in storage size.
3.3 Intrusion detection with fuzzy logic and neural network

 The benefit to wireless IDS is numerous and we have seen that the accuracy of the system is seamlessly countable. But there are couples of drawback found in this implementation. The NeGPAIM-W2 technology is the research output of a NMMU and it need rigorous test before implementation. Because speed of computer and network technology growing abnormally, how this system will associate with upcoming attacker invented technology also accountable. There may be bugs and worse vulnerabilities which could potentially weaken the WLAN security. A potential turn of to a wireless IDS solution may be costly. Also the cost of the wireless IDS solution will grow in conjunction with the size of the WLAN to monitored, due to requirement for a greater number of sensors. Therefore, the larger the WLAN, the more expensive the wireless IDS deployment will be.
3.4 New modified architecture for IDS

 Observing those weaknesses, here we are going to propose a new modified architecture for overall intrusion detection system for wireless network segment that is a collaboration of Gumstix [1], high throughput string matching architecture [2] and proactive intrusion detection architecture [3]. Figure 2 shows the new architecture:
[image: image2]
Figure 2: Modified architecture for Intrusion Detection System

 Here in this architecture we have included high throughput string matching segment and Sticky GUM segment inside database module. This insertion of Sticky GUM will help the architecture to collect the data more effectively and efficiently. It can reduce false negative and false positive determinations of intrusions. The insertion of High Throughput String Matching segment helps the architecture check the string stream with rules promptly, can keep updating the rules for new attacks without any interruption of the services. The se of fuzzy engine and neural engine can implement misuse detection methodology. They can also determine the user behavior to find out whether he/she is a legitimate or illegal user of the system which leads to proactive mode of operation.
4. Conclusion

 The value of Intrusion Detection Systems has been growing tremendously to play an important role as networks grow and more information is becoming available for access from outside or inside the network segment. The primary requirement for detecting intruders in a network that the whole intrutsion detection systems should be able to collect data from the network and manage them efficiently, and analyze them in such a way so that any type of attacks can be caught promptly. But the problem with current existing intrusion detection systems is that most of them are no well enough to accurately monitor attacks and report on wireless segment. This works have studied some literatures which helped us understand effective low cost architecture for collecting, managing, and analyzing network data through highly configurable and collaborative sensors Gumstix [1, 4]. Since to detect attacks most of the intrusion detection systems use string matching algorithm, we have also studied this area that gave us idea on special purpose architecture for novel string matching architecture [2]. Moreover, we have surveyed another literature regarding effective intrusion detection model NeGPAIM [3] that allows the detection of the attacks in proactive mode. Finally, we have found some limitations of those approaches and also some extended ideas in some cases. Observing those weaknesses, this works have also proposed a new modified architecture for overall intrusion detection system for wireless network segment that is a collaboration of Gumstix [1], high throughput string matching architecture [2] and proactive intrusion detection architecture [3]. This new architecture will be able to collect network data more effectively, analyze them proactively and can detect the attacks very quickly.
5. References
[1] E. Derrick, R. Tibbs, L. Reynolds. Investigating new approaches to data collection, management and analysis for network intrusion detection. In Proc. of the 45th annual southeast regional conference ACM- SE 45, Pages: 283 - 287, Publisher: ACM Press, 2007.
[2] L. Tan, T. Sherwood. A high throughput string matching architecture for intrusion detection and prevention, In Proc. of the 32nd International Symposium on Computer Architecture, Vol. 33, Isuue 2, Pages: 112-122, Publisher: IEEE Computer Society, 2005.
[3] R. Goss, M. Botha, R. Solms. Utilizing fuzzy logic and neural networks for effective, preventative intrusion detection in a wireless environment. In Proc of the 2007 annual research conference of the South African institute of computer scientists and information technologists on IT research in developing countries SAICSIT '07, Vol. 26, Pages: 29 - 35, Publisher: ACM Press, 2007.
[4] Gumstix, Inc. Gumstix – Way small computing. Accessed at http://gumstix.com/index.html.
[5] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic complexity attacks. In Proc. of USENIX Annual Technical Conference, June 2003.

[6] http://portal.acm.org/citation.cfm?id=1292491.12924 95.
Fuzzy Engine

Neural Engine

Central Analysis Engine

6/9/75% risk

5/8/70% risk

7/10/80% risk

Database

High Throughput String Matching Rule based Architecture

Sticky GUM Architecture for Data Collection

Access Point Logs

Neural Engine

7/10/80% risk

5/8/70% risk

Central Analysis Engine

6/9/75% risk

Fuzzy Engine

