Fragmentation Attack on Wireless Network
Amar B. Patel, Mohammed F. Mokbel and Shushan Zhao
School of Computer Science, University of Windsor, Canada
{mokbel, patel11v, shushanz}@uwindsor.ca

Abstract

This paper presents a detailed implementation for wireless fragmentation attack in general with a thorough description of the internal functionality of the attack taking into consideration the detailed inspection of the environment settings. It’s closely related to the DoS attack in a sense keeping the attacked computer waiting for an absolutely nothing to be received As more and more computers are shifting towards wireless connection usage, a need for security assessment at the application and the hardware level is a must. A major threat for Wireless devices connection is the inherit weakness in the protocol itself and the transparency of the medium which carry the data from one place to another. All in all, wireless connection is vulnerable to many echelons of attacks. This case study supported with numerical and experimental data to prove the theory in question.
Keywords— Fragmentation Attack, Packet Capturing, Wireless
1 Introduction

Fragmentation is the term given to the process of breaking down an IP datagram into smaller packets to be transmitted over different types of network media and then reassembling them at the other end [1]. While this obvious in general and it doesn’t hold any malicious intended meaning, the fact is completely different and it could be used nefariously to cause a lot of damage to the attacked system. Fragmentation is an essential part of the IP protocol and without it the internet cannot operate as it’s in the current state.
Fragmentation happens when an IP datagram has to travel through a network with a maximum transmission unit (MTU) that is smaller than the size of the IP datagram. Thus, sending an IP datagram that is bigger than 1500 bytes to any type of network, the datagram needs to be fragmented. The packets are then assembled at the receiving host. Fragmentation can either at the originating sending host or at an intermediate router.
The packets are not reassembled until they reach the final destination. It is reassembled at the IP layer at the receiving end. This is make fragmentation and reassembly transparent to the protocol layer (TCP and UDP). If one of the packets is lost, the whole packets need to be transmitted again.

Packets are reassembled at the receiving host by associating each fragment with an identical fragment identification number, or frag id for short. The frag ID is actually a copy of the ID field (IP identification number) in the IP header. Besides that, each fragment must carry its "position" or "offset" in the original unfragmented packet. Thus the first fragment will have an offset of 0, since its seat is at the front row and counting starts from 0. Each fragment must also tell the length of data that it carries. And finally, each fragment must flag the MF (more fragments) bit if it is not the last fragment [2].
This mechanism of fragmentation could be used in a different ways to break the network by causing a continuous denial of service attack or Distributed DoS attack. And this already done by lots of people with different flavors of the same attack by using special software which sends a specially crafted packets to the attacked machine on the network so that the service of connection is no longer available.
One of the most recognized attack is the Rose Attack by William K. Hollis which combine the SYN attack and the unknown ICMP attack. And the other one is NT Fragmentation Attack by Thomas Lopatic in which a flaw in the NT fragment reassembly algorithm allows you to smuggle packets to NT boxes through packet-filtering firewalls. You "hide" the TCP header in an offset IP fragment and just neglect to send the first (zero offset) packet. NT (Pre-SP3) will still happily reassemble your packet, placing the fragment with the lowest-offset at the front [3].
This paper will give a brief description of fragmentation, describe some common fragmentation attacks, the tools used for generating the packets of the attack and the method adopted for testing the attack.

2 IP Fragmentation

Fragmentation is necessary in order for traffic, which is being sent across different types of network media to arrive successfully at its intended destination. The reason for this is that different types of network media and protocols have different rules involving the maximum size allowed for datagrams on its network segment. This is known as the maximum transmission unit or MTU [1].
So in order to transmit a datagram across a network segment which has a MTU smaller than that of the packet to be transmitted fragmentation is required.

In order for a fragmented packet to be successfully reassembled at the destination each fragment must obey the following rules:
· Must share a common fragment identification number. Also known as fragment Id.

· Each fragment must say what its place or offset is in the original unfragmented packet.

· Each fragment must tell the length of the data carried in the fragment.

· Finally the fragment must know whether more fragments follow this one.

All of this information will be contained in the IP header. The header will be placed in an IP datagram followed by an encapsulated fragment
Figure 1. Shows the breakdown of an IP fragment, which displays the elements as stated above.

 20 80 4000 Bytes of ICMP data
	
	
	
	
	

Figure 1. Breakdown of the IP fragment
Ethernet MTU = 1500
Original 4028 byte fragment broken into 3 fragments of 1500 bytes or less.

Diagram: (TCP/IP for Firewalls and Intrusion Detection Course notes SANS Darling Harbour P4-8).

3 Types of Fragmentation Attacks
There are numerous ways in which attackers have used fragmentation to infiltrate and cause a denial of service to networks; some of these are discussed below.

3.1 Ping O’ Death Fragmentation Attack

The Ping O’ Death fragmentation attack is a denial of service attack, which utilises a ping system utility to create an IP packet, which exceeds the maximum allowable size for an IP datagram of 65535 bytes.

This attack uses many small fragmented ICMP packets which when reassembled at the destination exceed the maximum allowable size for an IP datagram. This can cause the victim host to crash, hang or even reboot.
This attack has however been around for quite sometime and all operating system vendors should have fixes in place to rectify this problem. It is however essential to ensure that you have the latest patches installed for your operating system.

3.2 The Tiny Fragment Attack

This attack uses small fragments to force some of the TCP header information into the next fragment. This may produce a case whereby the TCP flags field is forced into the second fragment and filters that attempt to drop connection requests will be unable to test these flags in the first octet thereby ignoring them in subsequent fragments.

This attack can be used to circumvent user-defined filtering rules. The attacker hopes that a filtering router will examine only the first fragment and allow all other fragments to pass.

This attack can be prevented at the router by enforcing rules, which govern the minimum size of the first fragment. This first fragment should be made large enough to ensure it contains all the necessary header information.

3.3 The Teardrop Attack

This is also a denial of service attack that can cause the victim host to hang crash or reboot, as was the Ping O’ Death attack.

The teardrop attack utilises the weakness of the IP protocol reassembly process. The teardrop attack is a UDP attack, which uses overlapping offset fields in an attempt to bring down the victim host.

This type of attack has also been around for some time and most operating system vendors have patches available to guard against this sort of malicious activity.

3.4 The Overlapping Fragment Attack

Another variation on the teardrop attack that also uses overlapping fragments is the Overlapping Fragment Attack. This attack however is not a denial of service attack but it is used in an attempt to bypass firewalls to gain access to the victim host.

This attack can be used to overwrite part of the TCP header information of the first fragment, which contained data that was allowed to pass through the firewall, with malicious data in subsequent fragments. A common example of this is to overwrite the destination port number to change the type of service i.e. change from port 80 (HTTP) to port 23 (Telnet) which would not be allowed to pass the router in normal circumstances.

Ensuring a minimum fragment offset is specified in the router’s IP filtering code can prevent this attack.

3.5 The Unnamed Attack

This attack is yet another variation on the teardrop attack that attempts to cause a denial of service to the victim host. This time however the fragments are not overlapping but are created in such a way that there is a gap created in the fragments.
This is done by manipulating the offset values to ensure there are parts of the fragment, which have been skipped. Some operating systems may behave unreliably when this exploit is used upon them [1].
4 Our Attack “Rose Frag. Attack N. 0”

We followed Rose Attack in our scenario but with slightly different setup. We tested it under Linux OS (Ubuntu) instead of Windows 2000 and the attacked machine is running Windows XP SP1 also instead of Win 2000. We tried several scenarios to get the most out of this attack in which we wrote a script to send the packets automatically around 35000 packets and then we retested it with a batch file given by the author.
4.1 How it Works

Send the first few bytes of a fragmented packet at offset 0 (More Fragments Bit = 1) and then send a few bytes at the end of a 64k sized packet (More Fragments Bit = 0). The placement of the last fragment does not have to be at 64k, this is just an attempt to use more memory.

We can also set the Source address to random address so that tracing the source must go through each hop, one by one.
Source port does not matter because the packet has not "moved up the stack" yet, so the stack does not validate that the destination port is even valid. In some cases all legitimate fragmented packets are denied or impacted (UDP, TCP and ICMP) if you attack a machine in this manner.

When you send enough of these tiny fragments the buffer in the receiving machine fills waiting for the rest of the fragments to arrive. Legitimate fragmented packets cannot enter the queue because it is already filled, waiting for the fragments that will never arrive.

Some implementations of the IP stack drop "old" fragmented packets that have not completed thus thwarting (to a greater or lesser degree) this attack.

4.2 Network Setup

Two computers have been used to setup the network using wireless connection. One of them running Toshiba (Attacker) and the other one IBM P4 6222331U (Attacked) machine as shown in Figure 2. And another computer used for testing the validity of the attack while the attack is running (middle_computer). We also used a Wireless Router (Linksys) to setup our network.
[image: image1.png]—7— @ — 77—

@

Wireless Router
LinkSys Wireless-G 2.4GHz Router WRT54GL g 5
Toshiba Satellite 2410

Ubuntu Linux 7.10

IBM P4 622331U Nemesis (libdnet/libpcap)
LinkSys Wireless-G PCI Adapter WMP54GS
Windows XP Professional SP1
Snort 2.1
Ethereal 0.99

Figure 2. Network Architecture
4.3 Tools Used for Making the Packets

As for packet generator we used nemesis v1.4beta3 (Build 22) [5] [http://nemesis.sourceforge.net/#unix] UNIX version under Ubuntu v7.10 Desktop version OS. So, Nemesis is a command-line network packet crafting and injection utility for UNIX-like and Windows systems. Nemesis is well suited for testing Network Intrusion Detection Systems, firewalls, IP stacks and a variety of other tasks. As a command-line driven utility, Nemesis is perfect for automation and scripting. Also nemesis UNIX system require libnet-1.0.2a library.
[image: image2.png]Fle Edit View Terminal Tabs Help
mohanmedgnohanned - 1aptop:~$ nemesis

NEMESIS -=- The NEMESIS Project Version 1.4beta3 (Build 22)

NEMESIS Usage:
nemesis [mode] [options]

NEMESIS modes :
arp
dns
ethernet
icmp
ignp
ip
ospf (currently non-functional
rip
tcp
udp

NEMESIS options:
To display options, specify a mode with the option "help”

mohanned@nohanmed-1aptop:~$

Figure 3. Nemesis Interface (under Ubuntu OS)
Nemesis can natively craft and inject ARP, DNS, ETHERNET, ICMP, IGMP, IP, OSPF, RIP, TCP and UDP packets. Using the IP and the Ethernet injection modes, almost any custom packet can be crafted and injected.

The Nemesis Project is designed to be a command line-based, portable human IP stack for UNIX-like and Windows systems. The suite is broken down by protocol, and should allow for useful scripting of injected packets from simple shell scripts.

Nemesis provides an interface to craft and inject a variety of arbitrary packet types. Nemesis Supports the following protocols: arp, dns, Ethernet, icmp, igmp, ip, ospf, rip, tcp, udp.
We also used three files sized correctly to make ‘legal’ fragmented packets (Ptcpdata.txt, Pudpdata.txt, Picmpdata.txt) for each protocol. (used with nemesis command line). And a batch file (nemITUrnd) which consists of 35000 nemesis commands.
4.4 Tools Used for Detecting the Attack

For packet sniffer in machine B, I used Wireshark v0.99.6.a [6] to detect the fragmented packets (Wireshark is a network packet analyzer. A network packet analyzer will try to capture network packets and tries to display that packet data as detailed as possible.)and Snort v2.8.0 as Intrusion Detection System IDS [7] (Snort is an open source network intrusion Detection system (IDS) capable of performing real-time traffic analysis and packet-logging on IP networks. It can perform protocol analysis, content searching & matching and can be used to detect a variety of attacks and probes, such as buffer overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts and more.

[image: image3.png]=1Bx|

o b e e e

o e sare E|
10.000000000 D-Link_10:4e:d
2 0.000011000 MS-NLB-PhysSer
3 16.542234000_152.168.1.101
4 N
5

SRR

Frame 11 (58 bytes on wire, 58 bytes
Ethernet TI, src: p-Link_10:4e:d0 (00
Internet protocol, Src: 102.168.1.101
Transmission Contral protocol, src Po

Figure 4. Wireshark Interface
Snort uses a flexible rules language to describe traffic that it should collect or pass, as well as a detection engine that uses a modular plug-in architecture. Snort has a real-time alerting capability as well, incorporating alerting mechanisms for syslog, a user-specified file, a UNIX socket, or WinPopup messages to Windows clients using Samba's smbclient. Snort has three primary uses. It can be used as a straight packet sniffer like tcpdump, a packet logger (useful for network traffic debugging and so), or as a full-blown network intrusion detection system). We also installed all the required libraries for Wireshark, Snort and Nemesis Such as WinPacp v4.1.0 [8] (WinPcap is the industry-standard tool for link-layer network access in Windows environments: it allows applications to capture and transmit network packets bypassing the protocol stack, and has additional useful features, including kernel-level packet filtering, a network statistics engine and support for remote packet capture.

WinPcap consists of a driver, which extends the operating system to provide low-level network access, and a library that is used to easily access the low-level network layers. This library also contains the Windows version of the well known libpcap Unix API.)
5 What are the Problems we Faced

This type of attack is very old and lots of countermeasures have been taken to fix it. As mentioned in many security and vendors websites that this attack is being patched for their earlier vulnerable OS [9], CISCO [10] and many other Linux distributions. And not only though, it was also a night mare for IDS packages like Snort [7]. But, with the recent versions this type of attack is easily detected (as of Nov 5, 07). This is a list of the vulnerable Windows OS’s:
•
Microsoft Windows NT Server 4.0, Terminal Server Edition

•
Microsoft Windows 2000 Server

•
Microsoft Windows 2000 Advanced Server

•
Microsoft Windows 2000 Professional Edition

•
Microsoft Windows NT Server 4.0 Standard Edition

•
Microsoft Windows NT Server 4.0 Enterprise Edition

•
Microsoft Windows NT Workstation 4.0 Developer Edition

•
Microsoft Windows 95

•
Microsoft Windows 98 Standard Edition

Regarding Wireless card drivers, it’s very hard to find drivers for Linux OS or for old windows OS such as 98. And not all wireless cards are working properly for all kind of wireless attacks.
6 Level of the Attack

This attack is very dangerous from different perspectives whether it’s targeting one computer, a router or a set of computers. What if clusters of computers grouped together to launch a denial of service, this attack could spawn a whole network and cause lots of damage, financially, time management and many other things.
6.1 IP Fragmentation Prevention

IP fragmentation can be used to disguise TCP packets from IP filters used in routers and hosts [11].

6.1.1 Filtering IP Fragments

 IP packet filters on routers are designed with a user interface that hides packet fragmentation from the administrator; conceptually, an IP filter is applied to each IP packet as a complete entity.

 One approach to fragment filtering, described by Mogul [12], involves keeping track of the results of applying filter rules to the first fragment (FO==0) and applying them to subsequent fragments of the same packet. The filtering module would maintain a list of packets indexed by the source address, destination address, protocol, and IP ID. When the initial (FO==0) fragment is seen, if the MF bit is set, a list item would be allocated to hold the result of filter access checks. When packets with a non-zero FO come in, look up the list element with a matching SA/DA/PROT/ID and apply the stored result (pass or block). When a fragment with a zero MF bit is seen, free the list element [11].

 Although this method (or some refinement of it) might successfully remove any trace of the offending whole packet, it has some difficulties. Fragments that arrive out of order, possibly because they travelled over different paths, violate one of the design assumptions, and undesired fragments can leak through as a result. Furthermore, if the filtering router lies on one of several parallel paths, the filtering module will not see every fragment and cannot guarantee complete fragment filtering in the case of packets that should be dropped [11].

 Fortunately, we do not need to remove all fragments of an offending packet. Since "interesting" packet information is contained in the headers at the beginning, filters are generally applied only to the first fragment. Non-first fragments are passed without filtering, because it will be impossible for the destination host to complete reassembly of the packet if the first fragment is missing, and therefore the entire packet will be discarded [11].

 The Internet Protocol allows fragmentation of packets into pieces so small as to be impractical because of data and computational overhead. Attackers can sometimes exploit typical filter behaviour and the ability to create peculiar fragment sequences in order to sneak otherwise disallowed packets past the filter. In normal practice, such pathological fragmentation is never used, so it is safe to drop these fragments without danger of preventing normal operation [11].
6.1.2 Prevention of the Tiny Fragment Attack

In a router, one can prevent this sort of attack by enforcing certain limits on fragments passing through, namely, that the first fragment be large enough to contain all the necessary header information

There are two ways to guarantee that the first fragment of a "passed" packet includes all the required fields, one direct, the other indirect.

· Direct Method:
There is some number TMIN which is the minimum length of a transport header required to contain "interesting" fields (i.e., fields whose values are significant to packet filters). This length is measured from the beginning of the transport header in the original unfragmented IP packet. Note that TMIN is a function of the transport protocol involved and also of the particular filters currently configured. The direct method involves computing the length of the transport header in each zero-offset fragment and comparing it against TMIN. If the transport header length is less than TMIN, the fragment is discarded. Non-zero-offset fragments need not be checked because if the zero-offset fragment is discarded, the destination host will be unable to complete reassembly. So far we have:

 if FO=0 and TRANSPORTLEN < tmin then

 DROP PACKET

However, the "interesting" fields of the common transport protocols, except TCP, lie in the first eight octets of the transport header, so it isn't possible to push them into a non-zero-offset fragment. Therefore, as of this writing, only TCP packets are vulnerable to tiny-fragment attacks and the test need not be applied to IP packets carrying other transport protocols. A better version of the tiny fragment test might therefore be:

 if FO=0 and PROTOCOL=TCP
 and TRANSPORTLEN < tmin then

 DROP PACKET

As discussed in the section on overlapping fragments below, however, this test does not block all fragmentation attacks, and is in fact unnecessary when a more general technique is used.
· Indirect Method
The indirect method relies on the observation that when a TCP packet is fragmented so as to force "interesting" header fields out of the zero-offset fragment, there must exist a fragment with FO equal to 1.

If a packet with FO==1 is seen, conversely, it could indicate the presence, in the fragment set, of a zero-offset fragment with a transport header length of eight octets Discarding this one-offset fragment will block reassembly at the receiving host and be as effective as the direct method described above.
7 Conclusion

Fragmentation attacks with its variants are at the same level of threat for network administrators and the local computers. A detailed inspection of the Fragmentation attack has been shown with an example of one of its variant showing how to prevent it.
8 References

[1] Jason Anderson, An Analysis of Fragmentation Attacks, http://www.ouah.org/fragma.html; March 15, 2001 (as of Nov 04, 07)
[2] spoonfork, Understanding IP Fragmentation, http://www.hackinthebox.org/modules.php?op=modload&name=News&file=article&sid=4005; October 16, 2001 (as of Nov 04, 07)
[3] Thomas Lopatic, NT Fragmentation Attack http://insecure.org/sploits/NT.no_first_fragment.IP_frag.attack.html; 10 July 1997 (as of Nov 04, 07)
[4] William K. Hollis , http://digital.net/~gandalf/Rose_Frag_Attack_Explained.htm (as of Nov 04, 07)
[5] http://nemesis.sourceforge.net/#unix (as of Nov 04, 07)
[6] http://www.wireshark.org (as of Nov 04, 07)
[7] http://www.snort.org (as of Nov 04, 07)
[8] http://www.winpacp.org (as of Nov 04, 07)
[9] MS00-029: Windows Hangs with Fragmented IP Datagrams, http://support.microsoft.com/default.aspx?scid=kb;en-us;259728&sd=tech, Article ID: 259728, Revision: 8.3, May 12, 2007 (as of Nov 04, 07)
[10] http://www.cisco.com/warp/public/707/cisco-sa-19980910-pix-cbac-nifrag.shtml (as of Nov 04, 07)
[11] G. Ziemba Alantec D. Reed Cybersource P. Traina cisco Systems, Category: Informational http://community.roxen.com/developers/idocs/rfc/rfc1858.html; October 1995 (as of Nov 04, 07)
[12] Mogul, J., "Simple and Flexible Datagram Access Controls for Unix-based Gateways", Digital Equipment Corporation, March 1989.

IP Header

ICMP Header

4028 total bytes in IP datagram

1500 Bytes

1068 Bytes

