TCP SYN Flood DoS Attack Experiments in Wireless Network
Ashif Adnan, Muhammad Omair Alam, and A.K.M. Aktaruzzaman
Department of Computer Science

University of Windsor

{adnan, alam1s, abul}@uwindsor.ca

Abstract

 This paper concerns about the TCP protocol vulnerability which gives space for a DoS (Denial of Service) attack called SYN flood which is well-known to the community for several years. This paper shows this attack in wireless environment with Windows operating systems. This paper explains the SYN flood attack, generating and sending SYN packets using a tool and methods of testing the attack.
1. Introduction

 During January of 1995, the world became aware of a new style of attack on Internet sites -- Sequence Number Guessing. Successful attacks left the system wide open for root access from anywhere on the Internet. A side effect of the attack is that a trusted system would ignore any packets received on the port that services remote log-in requests. The TCP SYN Flooding attack consists of a tool that only implements one portion of the Sequence Number Guessing attack, with a completely different focus.
 The SYN flooding attack is a denial-of-service method affecting hosts that run TCP server processes. The attack takes advantage of the state retention TCP performs for some time after receiving a SYN segment to a port that has been put into the LISTEN state. The basic idea is to exploit this behavior by causing a host to retain enough state for bogus half-connections that there are no resources left to establish new legitimate connections.
 TCP SYN Flooding causes servers to quit responding to requests to open new connections with clients -- a denial of service attack. Denial of service attacks prevents people from using the affected system or networks. These attacks usually proceed by overloading the target in some fashion. For example, simply sending large ping packets can ``fill up'' a site's connection to the Internet. Illegally large ping packets, easily generated by Microsoft products, such as Windows 95 or NT, can cause some systems to crash or reboot as described on the CERT [1] system in their ping advisory [2].
 CERT has also published an advisory about SYN Flooding [3] that contains a description and information about amelioration, including lists of vendors that have patches for this attack. SYN Flooding hit the public-radar screens in September of 1996, when several Internet service providers, including Panix, disappeared from the Net.
 The TCP SYN Flooding attack takes advantage of the way the TCP protocol establishes a new connection. Each time a client, such as a Netscape browser, attempts to open a connection with a server; some information is stored on the server. Because the information stored takes up memory and operating system resources, only a limited number of in-progress connections are allowed, typically less than ten (more commonly six or less). When the server receives an acknowledgement from the client, the server considers the connection open, and the queue resources are freed for accepting another new connection.
 The attacking software generates spoofed packets that appear to be valid new connections to the server. These spoofed packets enter the queue, but the connection is never completed -- leaving these new connections in the queue until they time out. Only a few of these packets need to be sent to the server, making this attack simple to carry out even using a slow, dial-up (like PPP or SLIP) connection from the attacker's computer. The system under attack quits responding to new connections until some time after the attack stops. We provide a technical explanation of this attack later in this article.
 This paper is organized as follows. Section 2 illustrates our review on TCP/IP protocol, establishment of connection, its weaknesses and possible attacks which may cause damage. Section 3 describes the technical description of SYN flood attacks. Section 4 describes our bench work in details and section 5 and 6 present our future work and conclusion.
2. TCP/IP
2.1 General
The Transport Control Protocol (TCP) is connection oriented and reliable, in-sequence delivery transport protocol. It provides full duplex stream of data octets (8-bit bytes). It is the main protocol for the internet and is widely used in extra- and intranets. Most todays services on internet relay on TCP. For example mail (SMTP, port 25), old insecure virtual terminal service (telnet, port 23), file transport protocol (FTP, port 21) and most important in this case also is the hyper text transfer protocol (HTTP, 80) better known as the world wide web services (WWW). Almost everything uses TCP someway to do their communications over the network - at least the interactive ones. This takes us to the point. What if these services are denied for some reason? SYN flood is one example to this. Following diagram shows the format of a TCP packet [4].
[image: image1.png]o 1 2 3
01234567850123456785012345678901

Saurce Part Destination Port.

Sequence Nuber

Acknouledgnent. Nunber

Data PEECEE
offset| Reserved |R[c[5[3] Y1 vindou
EEEEEE
Checksun Urgent, Pointer
Options. Padding

data

Figure 1: TCP Header Format [5]
 The underlying IP packet contains the source ip (internet protocol) address and target ip address. To grant simultaneous access to the TCP module, TCP provides an interface called a port. Ports are used by the kernel to identify network processes from each other. They are strictly transport layer entities. Together with an IP address, a TCP port provides an endpoint for network communications. At any given moment all Internet connections can be described by four numbers. The source IP address and source port and the destination IP address and destination port completes this. Different services are bound to 'well-known' ports so that they may be located on a standard port on different systems [4].
 TCP packet contains unique sequence and acknowledgement numbers compared to other packets in the same connection. The Initial Sequence Number (ISN) is random integer between 0 and 4,294,967,295. After each sent packet the sequence number counter is incremented by one. Data offset tells the current. This enables the right ordering of the packets if they get scrambled in the network. From the figure we can see that there are some bits called URG, SYN, ACK, RST, PSH and FIN in TCP packet [4].

· URG means out of band data. For example, in the telnet session if we press Ctr-C, TCP stack will send a packet, which has this flag set.

· SYN bit has meaning only when establishing connection e.g. in the handshaking procedure, both sides of the connection needs to send this special packet with SYN flag on.

· When the ACK flag is on, the Acknowledgement field in the TCP packet contains the number of the next acknowledgeable TCP packet with this sequence number. This bit is on almost in every packet. ACK flag tells to the target machine that the sending machine has approved all packets with sequence number below the Ack number in the packet.

· If the reset flag RST is on then the connection is destroyed and all data structures in memory for the connection must be freed.

· With interactive connections PSH flag is used to gain rapid and smooth interaction. The packet is not queued but rather sent as soon as possible. Interactive programs should thus use this flag.

· FIN flag tells to the target machine that it should not take anymore data packets from the sending machine. E.g. the sending machine tells that it won’t send anymore packets but can still receive packets by himself.

2.2. Establishing a TCP/IP connection

 The Transport Control Protocol (TCP) is connection oriented protocol and thus uses handshaking to start transmission of data. When two hosts A and B want to make a TCP connection they use three-way handshaking. The TCP packet contains some bits to make some difference between different kinds of packets.
 1. A ------------------SYN------------------> B

 2. A <---------------SYN/ACK-------------- B

 3. A ------------------ACK-------------------> B

 At first (1) the client is telling the server that it wants to establish a connection. This is the SYN flag's only purpose. The client then tells the server that the sequence number field is valid, and should be checked. The client sets the sequence number field in the TCP header to its ISN (Initial Sequence Number). The server, upon receiving this segment (2) responds with its own ISN (that is why the SYN flag is on) and an acknowledgement (ACK) of the client’s first segment (which is the client's ISN+1). The client then sends ACK to the server's ISN (3). Now handshake is completed and connection established. Data transfer may take place [4].

2.3. Weaknesses of the protocol
 There are many weaknesses in the TCP protocol and we are going to get deeper with the problem in the handshaking transaction. Consider again the handshaking. What if the machine A sends a fake packet to machine B. Fake because the source address (should be the B's IP address), is unreachable host in this network segment. Target machine B accepts the SYN packet and tries to send SYN/ACK packet to the fake address. The answer will never get to the target. Request for Comments file number 1122 (rfc1122) gives good advices:

Address Validation

 Reject OPEN call to invalid IP address x

 Reject SYN from invalid IP address x

 Silently discard SYN to bcast/mcast addr x

[6]

 Here the x means that it MUST be implemented. Unfortunately as the flood is possible with fake source address, this address validation schema hasn't been used (except the third one)! The fact that two first advices are not followed. So, it is possible to do SYN flood DoS attack.

2.4. Severity of possible attacks / caused damage

 As with many other DoS attacks the SYN flood doesn't do any physical damage for the information in the machine. Nor does it make any damage to physical devices. The nature of DoS attacks is to deny something from users or other machines/processes. It may not sound very severe but when you think it more deeply it is very unpleasant effect in the growing and more commercial internet. The www browsers are used almost for every access to internet resources nowadays. WWW services are used more and more. Little by little comes the electronic cash possibilities and other growing services. Browser is the main tool in the internet communications. For example with SYN flood you can deny access to the port 80 where the http server resides in a vulnerable machine. The mail server, ftp, telnet and ssh. The list is quite long [4].
3. Technical description of SYN flood attacks

 The SYN in SYN flood stands for the Synchronize flag in TCP headers. The SYN flag gets set when a system first sends a packet in a TCP connection, and indicates that the receiving system should store the sequence number included in this packet.
 Figure 1 shows the TCP header, which is twenty bytes long without options. In this illustration each line represents four bytes. We are mainly concerned with the Flags, six different bits that may be sent to represent different conditions, such as initial sequence number (SYN), that the acknowledgement field is valid (ACK), reset the connection (RST), or close the connection (FIN).
 Both the client and the server send a packet with an initial sequence number and the SYN flag set. The client, opening the connection, sends a packet with just the SYN flag set. The server makes one of two responses. If there is no application listening at the port address indicated in the client's packet, the server returns a packet with the RST (reset) flag set in the TCP header, telling the client to break off the connection.
 On the other hand, if there is an application listening, the server both acknowledges the first packet and sends its own initial sequence number. In this packet's TCP header, both the SYN and ACK (Acknowledge) flags are set. When the client receives the server's first packet, it enters the ESTABLISHED state. Until the server enters the ESTABLISHED state, information about the first packet received from the client remains in the connection queue for that service.
[image: image2.png]Client

Server
=]

Internet Cloud

Figure 2: Handshaking sequence [10]
 The TCP stack functions as a state machine and you can view the state of each port, representing an application, by using the netstat command as shown here:
C:\> netstat -a
Active Connections

 Proto Local Address Foreign Address State

 TCP uofw-3l9unio6k3:http uofw-3l9unio6k3:0 LISTENING

 TCP uofw-3l9unio6k3:epmap uofw-3l9unio6k3:0 LISTENING

 TCP uofw-3l9unio6k3:microsoft-ds uofw-3l9unio6k3:0 LISTENING

 TCP uofw-3l9unio6k3:netbios-ssn uofw-3l9unio6k3:0 LISTENING

 TCP uofw-3l9unio6k3:1025 uofw-3l9unio6k3:0 LISTENING

 UDP uofw-3l9unio6k3:microsoft-ds *:*

 UDP uofw-3l9unio6k3:isakmp *:*

 UDP uofw-3l9unio6k3:1033 *:*

 UDP uofw-3l9unio6k3:1101 *:*

 UDP uofw-3l9unio6k3:1520 *:*

C:\>
 For this discussion, we are most interested in the last three columns of output. In both local and foreign addresses, the host name appears first followed by a colon and the service name or port address. Most server applications will be named. Most client applications will be represented by numbers. An asterisk represents a wild card.
 The state for each application appears in the last column of netstat’s output. A connection is established after the initial SYN packet has been acknowledged. The LISTEN state represents server applications that are waiting for connections. Note that servers for UDP-based applications do not show state because UDP is stateless.
 There are other possible states. For example, when the client has closed a connection (by sending a packet with the FIN for finish flag set), the server acknowledges this packet, then sends its own packet with the FIN flag set, entering the TIME_WAIT state.
 TCP enters the SYN_RCVD state after receiving the first packet from a client. During a SYN flooding attack, we can see many lines in netstat output in the SYN_RCVD state as many packets have been received, acknowledgements have been sent, but no acknowledgements have been received from the clients.
 Most TCP/IP implementations, including Windows NT, accept only a limited number of ``half-open'' connections (when the S YN packet has been received from the client, but the client has not acknowledged the server's SYN-ACK packet). So the attacking system only needs to send as few as five packets per minute for each port targeted on the attacked system. The attacker can determine which ports have servers listening by using port scanning software, such as FreePortScanner.
 The attacker must also choose a source address to spoof. When client software uses TCP/IP, the IP stack inserts the source address of the sending system in the IP header. The attack tool creates phony TCP and IP headers and inserts a spoofed source address. The spoofed source address is key to this attack's success.

[image: image3.png]

Figure 3: Spoofing IP address [10]
 During a normal TCP connection sequence, packets are routed from the client to the server and vice versa. Figure 3 shows that during TCP SYN Flooding, the attacker sends packets with the SYN flag set, but a spoofed source address. The server keeps information about this packet in the connection queue for the service, and sends a response with the SYN and ACK flags set to the source address. The system at that source address doesn't exist or cannot respond, so the packet ``gets lost'' and the server never gets an ACK. Without the acknowledgement, the information stays in the server's connection queue until it times out.
4. Bench work
 In this section we are going to present our experiment on TCP SYN flooding. We have subdivided this section into several subsections. We start this section giving the configuration of our whole test bed. Then we will mention the tools used for generating and capturing SYN packets and their hex format. Finally, we will give the theoretical idea of attacking the target machine with those generated SYN packets to flood the target machine.
4.1 Setting up the wireless environment
 Here we are going to give detail the detail configuration of the wireless network we have set up to do our experiment along with the entire hardware and software configuration.
 We have used two hosts machines – host A and host B where host A is configured as a attacking machine and host B is configured as a target machine. Since, Windows 2000 Pro is vulnerable to TCP SYN flooding attack, we have installed Win 2000 on the target host (B) to make the host vulnerable to the attack. Followings are the configurations of both the attacking and target machines.
The attacking machine

OS Name: Microsoft Windows XP Professional

Version: 2002

System type: X86-based PC

Processor: Mobile AMD Sempron

Processor speed: 1.79 GHz

Physical memory: 896 MB
The target machine
OS name: Microsoft Windows 2000 server

Version: 5.0.2195 Service Pack 4 Build 2195

System type: X86-based PC

Processor: Intel Pentium 3

Processor speed: 1.3 GHz

Physical memory: 523,184 KB
 After finding the two hosts our next step is to set up a private wireless network with a wireless router as an access point which will include connect the two hosts in the network. So, following is the details about our network configuration.

Network configuration:

Router: D-Link wireless G router (WBR-2310)

NIC card (Host A): Dell Wireless 1390WLAN Mini-Card

NIC card (Host B): NetGear 802.11g wireless PCMCIA card

IP Configuration (static):

Host A: 192.168.0.101

Host B: 192.168.0.102

Router: 192.168.0.1

Subnet mask: 255.255.255.0

 After setting up the network, we have used the dos command ping to make sure if the communication takes place between the host and target machines. Following shows the result of ping.
C:\>ping 192.168.0.102
Pinging 192.168.0.102 with 32 bytes of data:

Reply from 192.168.0.102: bytes=32 time=8ms TTL=128

Reply from 192.168.0.102: bytes=32 time=4ms TTL=128

Reply from 192.168.0.102: bytes=32 time=4ms TTL=128

Reply from 192.168.0.102: bytes=32 time=4ms TTL=128

Ping statistics for 192.168.0.102:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 4ms, Maximum = 8ms, Average = 5ms
 The above statistics show that the two hosts are up in our network which indicates that our wireless network all ready. The network set up is shown in the following figure:

Figure 4: Network setup
4.2 Essential Softwares
 Now its time for us to choose all the softwares for implementing TCP SYN attack. All the installations are done in root user mode. To fulfill our purpose, we need two main tools – one for generating TCP SYN packets installed on the host A (attacking machine) and one for capturing those packets installed on the host B (target machine). Moreover, we need a server installed on the host B in which we will be flooding a specific port with TCP SYN packets. Following is the details description of those softwares:
Packet generating tool

 We will use Engage Packet builder v2.2.0 developed by G. Wilmes at EngageSecurity. It is Powerful and scriptable Libnet-based packet builder for Windows platform. It is useful to build personalized packet with the aim of testing the security of firewall, network, etc. (TCP, IP, UDP, ICMP). It is also a powerful tool to send packets in wireless 802.11 a/b/g network. We can generate TCP SYN packet with the help of this tool and send to the target machine. Engage Packet builder provides the following features:

· Packet injection starting from link layer (MAC address spoofing), supporting following transpo-rt protocols :

 - TCP

 - UDP

 - ICMP
· Custom payload in hex format / ASCII format

 - Payload data, with input file support

 - ASCII to Hex converted built-in

· Scripting engine

 - Easy to learn scripting language

 - Full control without using the front-end
· Based on Libnet library
 - A C Programming library for packet construction and injection
- A simple interface
- Good for tools requiring meticulous control over every field of every header of every packet
- Portable to all of today’s hottest operating systems (Windows, OS X, BSD, Linux, Solaris, HPUX)
- Libnet supports all of today’s in-demand protocols

- Open Source
· Great for Firewall and IDS testing

 - SYN-Floods can be generated very easily
 - Build "strange" packets (SYN-FIN for example)

 - Full control over sequence and acknowledge number, window size and urgent pointer

· Multiple language support

 The screenshot of the interface of Engage Packet builder is given in the Appendix A. System requirements for the tool are as follows:
· An Ethernet or Wireless Ethernet network card
· Pentium III of higher

· Windows 2000/XP/2003/Vista
· WinPcap 3.1 or 4.0
· 128 MB RAM
· 6 MB of free disk space.
 Engage Packet builder needs WinPcap to run. The installer of the version 2.2.0 contains the WinPcap v3.1 installer. So, we do not need two different products to install on the same machine.
 Since our host machine A (attacking machine) satisfies the above requirements, we can install Engage Packet builder on the machine for generating packet.
Packet capturing tool
 We will use Wireshark, the world's most popular network protocol analyzer v0.99.6a for packet capturing from inside our wireless LAN. This is developed by Gerald Combs and is open source software released under GNU General Public License.
 Wireshark is a network packet analyzer which tries to capture network packets and tries to display that packet data as detailed as possible. We can use Wireshark for the following purposes [7]:
· Troubleshooting network problems
· Examining security problems

· Debugging protocol implementations

· Learning network protocol internals etc.
Wireshark provides the following features [7]:

· Available for UNIX and Windows.

· Capture live packet data from a network interface.

· Display packets with very detailed protocol information.

· Open and Save packet data captured.

· Import and Export packet data from and to a lot of other capture programs.

· Filter packets on many criteria.

· Search for packets on many criteria.

· Colorize packet display based on filters.

· Create various statistics.

The screenshot of the interface of Wireshark is given in the Appendix A.
 Since for the assignment purpose we are not going to detect the attack on the host B (target machine), we can use Wireshark just as a packet sniffer. System requirements for the tool for Microsoft Windows [7]:

· Windows 2000, XP Home, XP Pro, XP Tablet PC, XP Media Center, Server 2003 or Vista
· 32-bit Pentium or alike (recommended: 400MHz or greater), 64-bit processors in WoW64 emulation
· 128MB RAM system memory
· 75MB available disk space
· A supported network card for capturing:

· Ethernet: any card supported by Windows should do

· WLAN: Intel pro 100/VE is one of many wireless network cards
 Wireshark needs WinPcap to run. The Wireshark installer contains the latest released WinPcap installer. Without the WinPcap installed, we won't be able to capture live network traffic. That is why, we have to also install current version of WinPcap 4.1 beta [8] on host B. This is basically a Windows packet capture library. The Wireshark detects the currently installed WinPcap version.
 Since our host machine B (target machine) satisfies the above requirements, we can install Wireshark on that machine for capturing packet along with WinPcap.
Server software
 We are also going to use a web server, Apache Tomcat v5.5 which is a servlet container and has been downloaded form the apache site. We will install it on the host machine B (target machine). Tomcat 5.5 requires the Java 2 Standard Edition Runtime Environment (JRE) version 5.0 or later. So before installing Tomcat, we have to install J2SE 5.0 which has been downloaded from the sun java site. To install it we have gone through the following steps:

1. Download and Install the J2SE Runtime Environment (JRE)

2. Download the Java 2 Standard Edition Runtime Environment (JRE) release version 5.0 or later, from http://java.sun.com/j2se.

3. Install the JRE according to the instructions included with the release.

4. Set an environment variable named JAVA_HOME to the pathname of the directory into which we have installed the JRE.
Then we have followed the steps as below to install Tomcat binary distribution:
1. Download a binary distribution of Tomcat from http://tomcat.apache.org.
2. Unpack the binary distribution into a convenient location.

3. The environment variable "$CATALINA_HOME" is set the full pathname of the release directory.
4.3 Generating and sending TCP SYN packet
 Now we are ready to generate and send SYN packets from host A to host B. However, before sending a packet to the target machine, we need to have the Tomcat sever running on the host machine B. We can start Tomcat by executing the following command:
$CATALINA_HOME\bin\startup.bat

After startup, the default port Tomcat attempts to bind is 8080. Actually this is the port we are going to flood with TCP SYN packets. Now we got our server running at port 8080 on the target machine B.
 Now we will use Engage Packet builder to create TCP SYN packet. Followings are the sequence we need to follow to fill the packet builder interface with information regarding source and destination hosts, network interface card, packet type and size, and packet rates:
1. First we need to select our network interface card of machine A (attacking machine) at the top left corner of the user interface. For the machine A, it is “Dell Wireless 1390 WLAN..
2. In the IP section, we need to put the source IP and destination IP and their corresponding ports. In our case, the source IP is the host A’s IP (192.168.0.101) and the destination IP is the host B’s IP (192.168.0.102). Moreover, the port number of the source computer is 80 (http port) and attacking port number of the target machine is 8080 (http port of Tomcat server).
3. In the following section we can select the service as “Flash” to send the packets right away without buffering them. We can also specify total length of the packet, set the DF or MF bits. We need to also select the protocol which is TCP in our case.
4. Then at the right half of the interface, we need to select the tab “TCP”, because we need to generate TCP packet. Now since it is going to be a SYN packet, we have to select the button named as “SYN” to make the packet a SYN packet in the “Flags” section.

5. Then the following section of “Commands” is one of the most important sections where we need to insert a large number of packets e.g. 10000 and then we have to select TCP from the drop down list next to it.
6. Finally we need to start the http port 80 of the host A by clicking on the button “START” at the very bottom of the interface.

 Now the packet builder is ready to generate and send the packets of the personalized configuration. Whenever we will click on the button “SEND” at the “Commands” section, it will start sending thousands of TCP SYN packets from the port 80 of the attacking machine A to the port 8080 of Tomcat server running on the target machine B to flood that port. The screen shot of the interface with all these specifications is given in Appendix B.
 Alternatively, we can also use script file to generate and send TCP SYN packets instead of using the front end. Script file gives us the full control over the packets. Following is an example script of generating SYN flooding:
%name=SYN Flood v0.2

%category=Test

IPDESTINATION=192.168.0.102

PORTDESTINATION=8080
SYN=1

!ECHO OFF
!Display=Script for SYN Flood

!SEND 50000 TCP
The above script assigns the target IP address with port 8080. It also sets the SYN flag to 1 meaning the packet is a SYN packet. Finally it puts the command “SEND” which can send the TCP packets of type SYN and can send 50000 packets which is lot bigger than the amount we put in the front end (maximum 10000). To run this script file, we need to first save it to the disk as SYNFlood.rsb file and then we have to load the script file in the front end interface and finally execute the button “RUN SCRIPT”. Then the packet builder will follow the specifications in the script file not in the front end to generate the packets. Appendix B shows the screen shot of the front end with the script file loaded.
4.4 Capturing the SYN packet

 Now to make sure that if SYN packets sent by host A are actually arrived at host B, we need to capture those packets on the host B using the packet capturing tool Wireshark.
 Capturing live network data is one of the major features of Wireshark. Setting up the Wireshark to capture packets is little bit tricky. Followings are the steps we followed to setup a capture [9]:
· Step 1: We have ensured that we are allowed to capture packets from our network.
· Step 2: We setup the machine B’s configuration to be able to capture.
· CaptureSupport: The OS on the machine B supports packet capturing because of the installation of WinPcap.
· CapturePrivileges: The WinPcap driver (called NPF) is loaded by Wireshark when it starts to capture live data. We have ensured that the Wireshark has enough privileges to capture packets by loading WinPcap driver. We did this by changing the start setting of the NPF service to “automatic” at any time using the following command:
 C:\>sc config npf start= auto

· Step 3: We have ensured that we can capture our own local traffic by choosing the right interface to capture from. For machine B, the right interface was Intel pro 100/VE.
· Step 4: We have also made sure that the host B can capture traffic destined for machines other than host B by switching the promiscuous mode on. The WLAN card on host B works very fine in this mode.
 After enabling Wireshark on host B capturing packets, we can start capturing. We got the overview of local interface cards by using “Capture interfaces” dialogue box. We can start capturing from this dialogue box using one of the “Start” buttons. In our case we chose the first button to capture from the wireless interface. The screen shot of the dialog box is given in the Appendix C in Figure 9. Now if we click on “Start” corresponding to the right interface, the Wireshark will start capturing packets.
 Once we have captured some SYN packets, we can view the packets that are displayed in the packet list pane simply by clicking on a SYN packet in the packet list pane, which will bring up the selected packet in the tree view and byte view pane. We can then expand any part of the tree view by clicking on the plus sign to the left of that part of the payload, and we can select individual fields by clicking on them in the tree view pane. An example with a TCP SYN packet selected is shown in Figure 10 in Appendix C. It also has the Acknowledgment number in the TCP header selected, which shows up in the byte view as the selected bytes.

4. Testing the attack (Theoretical idea)
 Now up to this point we have assured that TCP SYN packets are being generated by the host machine A and being sent to the target machine B. Now we have to make sure that we can really flood the specific port 8080 where the Tomcat server is running up. There is a backlog queue associated with the port 8080 where the server stores all the TCP SYN request packets for later processing. This queue has the limited size. When the queue becomes full, next SYN request will not be accepted any more. Since all the generated SYN packets by the Engage Packet builder have spoofed IP address, they will be stored in the queue for a while for getting acknowledgment from the sources. By the mean time, we can send another SYN packet to port 8080 of host B from another third machine (say C) connected to our local wireless network. We can use a scanning tool nmap to discover services or servers on our network. Nmap can send SYN packet to a port for the purpose of scanning that port to check if the port is up or down by using the following command:
C:\Nmap>nmap –sS 192.168.0.102 p8080
Here in the above command the option sS indicates the SN packet and the option p indicates port number to be checked on the target machine. If we found that the host is down, it indicates that the TCP SYN flooding has been taken place on the target machine B.
5. Future works
 Our future work is to implement the TCP SYN flooding attack to prove that really the Denial of Service is taking place on the attacking host machine B.
6. Conclusion
 Here in this paper we have shown one of the vulnerabilities of TCP protocol which leads to the TCP SYN flooding DoS attack. Then we have developed our test bed for wireless network consisting of two hosts and explained how to use Engage Packet builder tool to generate TCP SYN packets on source host and send them to the target host and how to capture and analyze those packets using another tool Wireshark on the target host. Finally, we have given some theoretical idea of recognizing TCP SYN flood DoS attack using another tool nmap.
References:

[1] url:http://www.cert.org/
[2] url:ftp://info.cert.org/pub/cert_advisories/CA96.26p- ing
[3] url:ftp://info.cert.org/pub/cert_advisories/CA96.21t- cp_syn_flooding
[4] http://www.niksula.hut.fi/~dforsber/synflood/result.h tml
[5] http://www.scit.wlv.ac.uk/rfc/rfc7xx/RFC7932.gif
[6] http://www.nic.funet.fi/pub/doc/rfc/rfc793.txt
[7] Wireshark User’s Guide
[8] http://www.winpcap.org
[9] http://wiki.wireshark.org/CaptureSetup
[10] http://www.networkcomputing.com/unixworld/secur ity/004/004.txt.html
Host B

Target machine

Host A

Attacking machine

Router

Access point

192.168.0.101

192.168.0.102

192.168.0.1

