
Mohammed Fadel Mokbel

 Department of Computer Science

University of Windsor, Windsor, Ontario, Canada
Mokbel@uwindsor.ca
(
Achilles Heel in the Philosophy of Prometheus Boundless Security
Abstract—This paper presents a semi-inclusive analysis of the current Black Box security breaches, taking into account human factor as information security involves both technology and people. No matter how hard it is to analyze the system under assessment, still a complete logical dissection of the outer/inner layout shell is pertinent. A philosophical approach will be addressed concerning people compliance to the technology in general and to the way normal and competent end user sees the technology evolution and interaction. The degree of transparency in the cyberspace is no longer valid in today ever mutant digital world, and this to be proved by applying a heuristic attack by showing how the visibility medium is shadowed with time advancement. The fact that not all the companies consider people technology education is a must is referred to the inconsistency in knowledge distribution knowing that people are afraid from the unknown, so knowledge is the best counterattack, otherwise a self-destructive future will be waiting this digital world because balance is what makes human aware of the devil advocate from underground world. In this paper a proof of concept is also presented to deduce how a complete modification to the executable file could be carried without detection.
Keywords— Algorithm, C++, Philosophy, Pseudo Code, Human Factor, Reverse Code Engineering,
I. Introduction
I
N today world of computer security and internet widespread usage an enormous amount of information is carried out using either a wire or a wireless devices. Everything built to have its own mechanism of communication ranging from specification, requirement, and internal/external procedures of security measurements, limited to some values of mutual understanding so that a line of communication could exist in first place. But, human nothing can limit him or seize his imagination in dealing with everyday task or doing a new experiment. That’s why the most important and dangerous factor in computer/internet security is the human standing. While it is obvious to do whatever you want in this cosmos universe of bits, a different approach could be taken to link this bridge from one point to another so that the gaps are filled one after the other step by step.
The normal user and the competent end user are those who has a different perspectives about internet and computer in general, they do really appreciate the elegance of how things performed at the bits level but mostly precaution and analytical thinking is more imaginable and accurate for the competent end user, because everything is computed with a reliable acquired knowledge about the subject under investigation. Noting that knowledge somehow it is free to take but sometimes it could lead to disaster more than a good outcome. Why, because there is no control or systematic realization of how things should take its course and that does refer to the obligation imposed by the information being researched or the validity and verification of the system itself.
 Building an intelligent system such as a crawler for information acquiring is acceptable at some level but not appropriate all the time, because the entropy of data collected is constrained by the validity of the essential knowledge you have. At some point, this is acceptable but to avoid the complexity of the configuration needed to adjust things in the right direction would distract the normal user from achieving his goal simply. So, a better approach would be to design a Probabilistic Mathematical Behavioral System (PMBS), in which the magnitude of the information required to meet ones’ expectations is proportional to the user fundamental knowledge in terms of time elapsed since the user start using the system and this to be determined stochastically.

Are people equal at information demystification or is it just a matter of time? As most of the theories suggest that exercising the knowledge you have would achieve a satisfactory level of collective thinking. But to put things where exactly it should be a time factor has to be endowed in this relation as time is the judger of whether you did it right or wrong (as time will tell). All in all, almost everything is relativistic and depends on many static/dynamic causes, and that’s entail a lots of general/special cases to be stretched out.
The reason why most people ought to be confidence with the information they have is probably due to the short experience they have with huge amount of resources (again time is the major factor). They may consider things perfect or less but the problem lies in the implementation process where most of the security breaches do not manipulate the system itself but rather reversing or annihilating the techniques and the procedures used to help embed the core system and in this case a plethora of holes and worms are taking its place for a very devious and nefarious attack.
The abstraction and the factual reasoning behind security, privacy …, are not easy to generalize or stick to some rules because each case study has its own world of bits quantum distribution.
The paper will go through more robust infallible security domain coverage criteria especially by assuring that everything is relative and needs to be understood at the highest level of abstraction and not limited to one case or another. Finally, a very well established case study will be presented showing how elegant it is to put things in between so that a good/malicious code is taken an act upon program code execution without any notice during user interaction phase.
II. Don’t Think That You Know

 Don’t think that you know, what you know is what you don’t know. Is this is a conceivable statement in computer security jargon or not? Whatever the path you choose to protect yourself from outside/inside intruders or you just trust the system, the percentage of indirect execution trails of the system you are working on are already preprogrammed following some predetermined functions. As whether the binary file is protected from tampering or it’s an open source code, a fully detailed analysis needs to be addressed in terms of privacy violations. Currently, there is nothing impossible to break any protection or invade clustered computers, stealing confidential information; you still have enough time to own the internet.
Apart from this, Trust is weakness, as one doesn’t know what lies behind the curtains. So technology is there and people also are there, hence gaining insight into the intrinsic interactions between people, technology, and working environment in security systems is a main goal in this cosmos universe.

Fig. 1 Cosmos universe of people technology interaction
The main idea behind Fig. 1 is that people and technology are inseparable entities, they must be fused together to form a solid architectural system of computer security.
Other problems reside not only in this model but also in the system itself such as the OS, especially with proprietary ones. As technology shapes our digital world a more serious steps needs to be taken to secure our home from outside/inside invaders.
III. Nothing What It Seems

Is today security is just an illusion covered by the complexity of security procedures and real time implementation? The global internal/external network is widely deployed, with the assumption that everything is fine because of the availability of lots of options to choose from to protect yourself. As Schneier said “If you think technology can solve your security problems, then you don’t understand the problems and you don’t understand the technology”.
Following any security rules should be under heavy testing with a complete environmental simulation of where the system is going to be installed. Why, because there is no holistic solution or framework for every type of security completion. It all’s boils down to one statement as A. Einstein said: “The significant problems we face cannot be solved at the same level of thinking we were at when we created them”.
After all assuring a confidence level of security for the end user is a must as lots of additional packages are introduced as compulsory requirements; this is not an adequate solution to be deployed but rather a more general adaptive security infrastructure needs to be build from the bottom up. Almost every day, a proof of concept is upload it to the security websites showing how the latest protection is being cracked and completely assimilated. Not only though, it seems the underground security breakers are more engaged in this battle with high level of professionalism shown in the conferences and private sessions (websites).

IV. People and People
The vulnerability is created by people and exploited by people. People have ethical and managerial responsibilities to consider the seriousness of their position in the security planet. They are the fundamental stone in the security mega/nano structure. So, going from A to B requires a clear definition path and a proactive mechanism to control the whole scenario. Stating exactly what’s required from this group and that group is a must to have a mutual hierarchal system build upon a definite and flexible rules which grow and shrink in relation to the situation under inspection.

Fig. 2 People-people transparency path
V. In The Womb: Revamping Console Code Injection
This section shows a complete multifaceted case study by modifying the internal structure of the executable file using code injection technique. Further works has to be done to link it to a more elusive malicious scenario by inserting a special area for network communication using Winsock API’s. It is also presents a constructive technique that renders executable KGM regulations into self-representative deceptive coverage using code injection mechanism. Similar to what already had done in the GUI application from complete resource hacking to code insertion, the same could be applied in Console mode using the correct API’s which are cautiously implemented in relation to other related factors. A monitoring matrix of scattered random modifications should be traced to control these set of alterations so that a meta-transformer tool could be designed to handle it in automated manner as a final revised edition. The main purpose of this section is to demonstrate the validity of this approach following a case study scenario in which an absolute phase modulation is applied.
First of all, a complete analysis of the targeted module (executable file) will be started along with an effective disassembly phase to locate the functional assembly code which needs to be changed and linked to the cave area so that a hidden alternative path will be taking its course from the normal path (redirection step) to the injected assembly procedure.
Writing an automated tool (Full Modulator: MetaTranformer) in C++ (tested under WinXP SP2) to achieve this goal is done using a step by step procedural modification as shown below:

· Check file size{1}
· Check if file exist {2}
· Calculate Original File CRC32 {3}
· Backup File to be patched : Return bool {4}
· Start Patching... {5}
· Backup File to be patched : Return bool {6}
· Nag Remover {7}
· Special Protection Removed {8}
· Cracked By <> Name Insertion {9}

[image: image1]
Fig. 3 Meta Transformer procedures flow
Please note that this has been done through a lot of meticulous verification and validation to make it work perfectly so it’s not worthy to just follow these steps because it requires a lot of understanding in the field of Reverse Code Engineering and API’s. A transformation phase from assembly code to hex is also implemented inside the C++ code.
#include <iostream>

#include <fstream>

#include <cstdlib>

#include <Windows.h>

#include "FastCRC.h"

#include "Console.h"

using namespace FastCRC;

using namespace std;

namespace colors = JadedHoboConsole;

DWORD GetFileSizeFromName(LPCTSTR lpFilename);

int main()

{

SetConsoleTitle(".:Full Modulator:. MetaTranformer v0.0
 [Mohammed Fadel Mokbel]");

cout <<endl<<endl<<endl;

cout << colors::fg_green<<"{--}";

cout << colors::fg_white<<" This is a complete MetaTransformer [Inliner] Engine! designed specifically for KeygenMe\

 #2 by Boonz downloaded from crackmes.de. " << endl;

cout << colors::fg_green<<"{--}" << endl;

const char FileName[] = "KeygenMe2.exe";

const char FileNameKG[] = "KeyGenerator.exe";

const char FileNameP[] = "Patched.exe";

 const char FileNameBack[] = "KeygenMe2.bak";

// Check file size

DWORD FileSize = GetFileSizeFromName(FileName);

cout <<colors::fg_blue<<"\t\t\t#."<<colors::fg_white<<
"Start Engine";

Sleep(100);cout<<".";Sleep(100);cout<<".";Sleep(100);
cout<<".";Sleep(100);cout<<".";Sleep(100);cout<<".";
Sleep(100);cout<<"."<<endl;

// Check if file exist.

fstream File1P(FileName, ios::out | ios::in |ios::binary);

if (!File1P)

{cerr<<colors::fg_blue<<"\t\t\t*." <<colors::fg_red<<"File could not be opened" << colors::fg_white<<endl;

cin.get();

 exit(1);

}

File1P.close();

cout <<colors::fg_blue<<"\t\t\t1."<<colors::fg_white<<"[File Size]|-> " << colors::fg_cyan<< FileSize << " Bytes" << endl;

cout <<colors::fg_blue<<"\t\t\t2."<<colors::fg_white<<"[CRC-32]|-> ";

// Calculate Original File CRC32

unsigned long checksum;

char checksumhex[20];

unsigned long CRCFix = 2938953719;

SL_FCRC32_CalculateFile(&checksum, FileName);

SL_FCRC_ConvertToHex32(checksumhex, checksum, 1);

if (checksum == CRCFix)

{cout << colors::fg_cyan<<"Match" << endl;}

else

{cout << colors::fg_red<< "Diff. Out of Phase"; cin.get();exit(1);cout<<endl;}

cout <<colors::fg_blue<<"\t\t\t3."<<colors::fg_white<<"[KeyGenerator Transformer Created]" << endl;

// Backup File to be patched : Return Bool

CopyFile(FileName, FileNameBack, TRUE);

CopyFile(FileName, FileNameKG, TRUE);

// --

fstream File3P(FileNameKG, ios::out | ios::in |ios::binary);

if (!File3P)

{cerr <<colors::fg_blue<<"\t\t\t*." <<colors::fg_red<<"File could not be opened" << colors::fg_white<<endl;

cin.get();

 exit(1);

}

// Start Patching...

char PH1[2] = {0x90, 0x90};

File3P.seekp(0x194F);

File3P.write(PH1, 2);

char PH2[15] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90};

File3P.seekp(0x20B3);

File3P.write(PH2, 15);

char PH3[2] = {0xF4, 0x60};

File3P.seekp(0x20F0);

File3P.write(PH3, 2);

char PH4[15] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90};

File3P.seekp(0x212B);

File3P.write(PH4, 15);

char PH5[47] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

0x90, 0x90};

File3P.seekp(0x215F);

File3P.write(PH5, 47);

char PH6[6] = {0xE9, 0x3B, 0x39, 0x02, 0x00, 0x90};

File3P.seekp(0x21B5);

File3P.write(PH6, 6);

char PH7[5] = {0xE9, 0xCA, 0xD3, 0x01, 0x00};

File3P.seekp(0x86C0);

File3P.write(PH7, 5);

char PH8[95] = {0x54, 0x69, 0x54, 0x4C, 0x45, 0x3A, 0x3A, 0x20, 0x4B, 0x65, 0x79, 0x67, 0x65, 0x6E, 0x6D,

0x65, 0x20, 0x23, 0x32, 0x20, 0x62, 0x79, 0x20, 0x42, 0x6F, 0x6F, 0x6E, 0x7A, 0x20, 0x2D,

0x20, 0x4B, 0x65, 0x79, 0x67, 0x65, 0x6E, 0x20, 0x56, 0x30, 0x2E, 0x30, 0x3A, 0x3A, 0x20,

0x43, 0x6F, 0x64, 0x65, 0x64, 0x20, 0x42, 0x79, 0x20, 0x74, 0x48, 0x45, 0x20, 0x6D, 0x55,

0x54, 0x41, 0x42, 0x4C, 0x45, 0x20, 0x3A, 0x3A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6D, 0x73,

0x76, 0x63, 0x72, 0x74, 0x2E, 0x64, 0x6C, 0x6C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x73,

0x79, 0x73, 0x74, 0x65, 0x6D};

File3P.seekp(0x25A26);

File3P.write(PH8, 95);

char PH9[190] = {0x60, 0x9C, 0x68, 0x6F, 0x5A, 0x42, 0x00, 0xE8, 0xDC, 0xC2, 0x3D, 0x7C, 0x8B, 0xF0, 0x68,

 0x7F, 0x5A, 0x42, 0x00, 0x50, 0xE8, 0x80, 0x51, 0x3E, 0x7C, 0x68, 0x26, 0x5A, 0x42, 0x00,

 0xFF, 0xD0, 0x83, 0xC4, 0x04, 0x56, 0xE8, 0xAE, 0x4F, 0x3E, 0x7C, 0x9D, 0x61, 0x55, 0x8B,

 0xEC, 0x6A, 0xFF, 0xE9, 0x01, 0x2C, 0xFE, 0xFF, 0x90, 0x00, 0x70, 0x72, 0x69, 0x6E, 0x74,

 0x66, 0x00, 0x00, 0x00, 0x59, 0x6F, 0x75, 0x72, 0x20, 0x53, 0x65, 0x72, 0x69, 0x61, 0x6C,

 0x20, 0x4E, 0x75, 0x6D, 0x62, 0x65, 0x72, 0x20, 0x49, 0x73, 0x20, 0x3A, 0x20, 0x25, 0x64,

 0x0A, 0x00, 0x70, 0x61, 0x75, 0x73, 0x65, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x9C, 0x8B,

 0xD8, 0x68, 0x6F, 0x5A, 0x42, 0x00, 0xE8, 0x74, 0xC2, 0x3D, 0x7C, 0x8B, 0xF0, 0x68, 0xC6,

 0x5A, 0x42, 0x00, 0x50, 0xE8, 0x18, 0x51, 0x3E, 0x7C, 0x83, 0xEC, 0x08, 0x89, 0x5C, 0x24,

 0x04, 0xC7, 0x04, 0x24, 0xCF, 0x5A, 0x42, 0x00, 0xFF, 0xD0, 0x8B, 0xC6, 0x68, 0x7F, 0x5A,

 0x42, 0x00, 0x50, 0xE8, 0xFB, 0x50, 0x3E, 0x7C, 0x68, 0xEB, 0x5A, 0x42, 0x00, 0xFF, 0xD0,

 0x83, 0xC4, 0x06, 0x56, 0xE8, 0x29, 0x4F, 0x3E, 0x7C, 0x9D, 0x61, 0x83, 0xC4, 0x08, 0x8D,

 0x8D, 0xD4, 0xFE, 0xFF, 0xFF, 0xE9, 0x6E, 0xC6, 0xFD, 0xFF };

File3P.seekp(0x25A8F); //425ABF

File3P.write(PH9, 190);

char PH10[19] = {0x45, 0x6E, 0x74, 0x65, 0x72, 0x20, 0x59, 0x6F, 0x75, 0x72, 0x20, 0x4E, 0x61, 0x6D, 0x65,

 0x3A, 0x20, 0x00, 0x00};

File3P.seekp(0x360CF);

File3P.write(PH10, 19);

char PH11[22] = {0x4B, 0x65, 0x79, 0x47, 0x65, 0x6E, 0x4D, 0x65, 0x20, 0x23, 0x32, 0x20, 0x42, 0x79, 0x20,

 0x42, 0x6F, 0x6F, 0x6E, 0x7A, 0x0A, 0x00};

File3P.seekp(0x3610E);

File3P.write(PH11, 22);

char PH12[18] = {0x54, 0x72, 0x75, 0x73, 0x74, 0x20, 0x49, 0x73, 0x20, 0x57, 0x65, 0x61, 0x6B, 0x6E, 0x65,

 0x73, 0x73, 0x20};

File3P.seekp(0x36148);

File3P.write(PH12, 18);

char PH13[25] = {0x7B, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D,

 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x7D, 0x0A};

File3P.seekp(0x36181);

File3P.write(PH13, 25);

char PH14[17] = {0x3C, 0x4B, 0x65, 0x79, 0x47, 0x65, 0x6E, 0x65, 0x72, 0x61, 0x74, 0x6F, 0x72, 0x20, 0x46,

 0x6F, 0x72};

File3P.seekp(0x361BF);

File3P.write(PH14, 17);

char PH15[16] = {0x5B, 0x4A, 0x75, 0x6E, 0x65, 0x20, 0x32, 0x39, 0x2C, 0x20, 0x32, 0x30, 0x30, 0x37, 0x5D,

 0x2B};

File3P.seekp(0x361F8);

File3P.write(PH15, 16);

char PH16[16] = {0x5B, 0x3A, 0x74, 0x48, 0x45, 0x20, 0x6D, 0x55, 0x54, 0x41, 0x42, 0x4C, 0x45, 0x2B, 0x3A,

 0x5D};

File3P.seekp(0x36230);

File3P.write(PH16, 16);

char PH17[27] = {0x68, 0x74, 0x74, 0x70, 0x3A, 0x2F, 0x2F, 0x77, 0x77, 0x77, 0x2E, 0x74, 0x68, 0x65, 0x6D,

 0x75, 0x74, 0x61, 0x62, 0x6C, 0x65, 0x2E, 0x63, 0x6F, 0x6D, 0x0A, 0x0A};

File3P.seekp(0x36265);

File3P.write(PH17, 27);

File3P.close();

cout <<colors::fg_blue<<"\t\t\t4."<<colors::fg_white<<"Start Patcher...." <<endl;;

// Backup File to be patched : Return Bool

CopyFile(FileName, FileNameP, TRUE);

fstream File4P(FileNameP, ios::out | ios::in |ios::binary);

if (!File3P)

{cerr << "File could not be opened" << endl;

cin.get();

 exit(1);

}

Sleep(100);

cout <<colors::fg_blue<<"\t\t\t 4.1."<<colors::fg_white<<"Nag Screen Removed" << endl;

// Nag Remover

char NR[2] = {0xEB, 0x11};

File4P.seekp(0x194F);

File4P.write(NR, 2);

Sleep(100);

cout <<colors::fg_blue<<"\t\t\t 4.2."<<colors::fg_white<<"Special Protection Removed" << endl;

// Special Protection Removed

char SP[1] = {0xEB};

File4P.seekp(0x2058);

File4P.write(SP, 1);

Sleep(100);

cout <<colors::fg_blue<<"\t\t\t 4.3."<<colors::fg_white<<"Cracked By <> Name Inserted" << endl<<endl;

// Cracked By <> Name Insertion

char NI[14] = {0x74, 0x48, 0x45, 0x20, 0x6D, 0x55, 0x54, 0x41, 0x42, 0x4C, 0x45, 0x2B, 0x3E, 0x0A};

File4P.seekp(0x361CC);

File4P.write(NI, 14);

File4P.close();

cout << colors::fg_green<<"{--}" << endl;

cin.get();

return 0;

}

// Get File Size

DWORD GetFileSizeFromName(LPCTSTR lpFilename)

{

HANDLE hFile;

DWORD nSize;

hFile = CreateFile(lpFilename, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if(hFile != INVALID_HANDLE_VALUE)

{

nSize = GetFileSize(hFile, NULL);

CloseHandle(hFile);

}

else

return 0xFFFFFFFF;

return nSize;

}
The source code is not generic to handle another case study under any circumstances. This approach proves that most of today systems are weak to withstand a simple phase of RCE attack. A more sophisticated and advanced case study could also be developed in order to thwart many protection imposed by network administrators with an embedded stealth behavior. Even if CRC32 checksum algorithm is used to protect the binary file, defeating it is much easier than injecting a complete assembly code either linked dynamically or statically (using the free space or extend the section size).
As the software developers presenting more and more advanced plugin’s and frameworks for Internet browsers, the problem is still the same where the implementation is very weak to survive against a determined attack by a skilled hacker and professional expert.
VI. Future Work
 Further work has to be done in the area of code injection technique especially employing a stealthy connection and tricky behavior to the culprit binary file. In addition to that a more detailed case studies could be provided to make things easier to understand and less obstructive.
VII. Conclusions

 This paper establishes a new dimension of computer security vision by providing the security aspect in terms of philosophy and conceptual analysis. It does not gives an absolute approach for security problems as almost everything is relativistic based on the case under assessment
References
[1] F. Scott and S. Steve, “Omnivore: Risk Management through Bidirectional Transparency”, ACM 1-59593-076-0/05/05, 2005.
[2] K. Alfred, “PRIVACY-ENHANCED PERSONALIZATION”, Vol. 50, No. 8 COMMUNICATIONS OF THE ACM, August 2007.
[3] E.D.G. Robson and D.Z. Sergio, “Privacy Protection Without Impairing Personalization by Using the Extended System MASKS and the Extended Contextualized P3P Privacy Policies”, ACM 8576691000, November 19-22, 2006.
[image: image2.png]

Cosmos Universe

People

Technology

 Bi-dir- ectional

Do you think you know?

Trust

P2

P4

P3

P1

P5

P6

P0

P7

P8

P9

9

8

7

6

5

4

3

2

1

Meta Transformer

PAGE

