Course # 03-60-564

Security and Privacy on the Internet
Instructor: Dr. A. K. Aggarwal
Assignment # 02
Selected Signature of the IDS “Snort”

Submitted By:

Ahmedur Rahman,
SID:101 270 427

Lawangeen Khan,
SID: 101 994 824

Zillur Rahman, SID: 101 282 172

Due Date: March 2006
SID: 270 (Teardrop Attack)
Description

This event is generated when an attempt is made to issue a Teardrop. The teardrop exploit is a denial of service attack that exploits a flaw in the implementation of older TCP/IP stacks. Some implementations of the IP fragmentation re-assembly code on these platforms do not properly handle overlapping IP fragments

Simulation Details

Teardrop exploits a vulnerability in some TCP/IP stack implementations. The program sends a specially crafted fragmented packet where the first fragment has offset 0 and data length N and the second fragment has an offset less than N (The fragments overlap). The resulting packet can not be properly assembled. This can be done remotely against any open UDP port using a spoofed address. The teardrop attack would cause these machines to reboot, hang or crash.

Attack Signature

An intrusion detection system can find this attack by looking for two specially fragmented IP datagrams. The first datagram is a 0 offset fragment with a payload of size N, with the MF bit on (the data content of the packet is irrelevant). The second datagram is the last fragment (MF == 0), with a positive offset greater than N and with a payload of size less than N [5].

Affected Systems
· Windows 95

· Windows NT 4.0 SP3 and earlier

· HP HPUX 10.34 and earlier

· Linux kernels 2.0.31 and earlier

· FreeBSD 3.0 prior to October 27, 1998

Corrective Action
Patches are available from all affected vendors. Newer versions from each vendor are not vulnerable.

Rule: alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"DELETED DOS Teardrop attack"; fragbits:M; id:242; reference:bugtraq, 124; reference:cve, 1999-0015; reference:nessus, 10279; reference: url,www.cert.org/advisories/CA-1997-28.html; classtype:attempted-dos; sid:270; rev:9;)

SID: 356 (Dictionary Attack)
Description
The Dictionary attack is a Remote to Local User attack in which an attacker tries to gain access to some machine by making repeated guesses at possible usernames and passwords. This event is generated when an attempt to retrieve a specific file, in this case the systems user database from an FTP server is made. Users typically do not choose good passwords, so an attacker who knows the username of a particular user (or the names of all users) will attempt to gain access to this user’s account by making guesses at possible passwords. Dictionary guessing can be done with many services; telnet, ftp, pop, rlogin, and imap are the most prominent services that support authentication using usernames and passwords.

Simulation Details

This event is generated when an attempt to download a copy of the "passwd" file from the server is made. The UNIX "passwd" file (typically located in "/etc/" directory) is used to hold the authentication information for system logins. This file needs to be readable by all system users. Where shadow passwords are used, the actual encrypted passwords are stored in a separate file, only readable by root. It is possible to use various password cracking tools to obtain unencrypted passwords either by trying random character combinations, a predefined word list or a combination of public user information. The attacker may use the information contained in the passwd file to launch a dictionary attack against the victim host or other hosts the same users may have access to.

The attack usually requires FTP access to the /etc/ directory either by system misconfiguration or via a directory traversal technique. Also, in the rare circumstances the system administrator may have accidentally left a copy of a "passwd" file in a directory accessible for anonymous or other FTP users, which presents a high security risk and simplifies the attack.

Attack Signature

An intrusion detection system that finds attempted dictionary attacks needs to know the session protocol of every service that provides username/password authentication. For a given service, the intrusion detection system must be able to recognize and record failed login attempts. Once this functionality is available, detecting dictionary attacks is a matter of setting a detection threshold based on the number of failed login attempts within a given period of time.

Corrective Action:

By identifying the downloaded file and confirm that it indeed a valid system password file and changing the user passwords on the system and notify the users. Also by ensuring that FTP access to sensitive system files is not allowed.

Rule: alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg: "FTP passwd retrieval attempt"; flow: to_server, established; content: "RETR"; nocase; content: "passwd"; reference: arachnids,213; classtype:suspicious-filename-detect; sid:356; rev:5;)
Sid: 358 (Saint Attack)
Description

SAINT is the Security Administrator’s Integrated Network Tool. In its simplest mode, it gathers as much information about remote hosts and networks as possible by examining such network services as finger, NFS, NIS, ftp and tftp, rexd, statd, and other services. The information gathered includes the presence of various network information services as well as potential security flaws. These flaws include incorrectly setup or configured network services, well-known bugs in system or network utilities, and poor policy decisions. Although SAINT is not intended for use as an attack tool, it does provide security information that is quite useful to an attacker.

Simulation Details

This event is generated when an attempt is made to login anonymously into an ftp server using a suspicious password (-saint). SAINT is distributed as a collection of perl and C programs and is known to run on Solaris, Linux, and Irix systems. Within the simulation, the Saint program was run from a Linux traffic generator and was used to probe several victim machines for vulnerabilities. SAINT’s behavior is controlled by a configuration file which allows the user to specify several parameters. The most important parameters are the list of machines to scan, and how heavily to scan these machine (light, normal, or heavy). In light mode, SAINT will probe the victim for dns and rpc vulnerabilities and will look for unsecured NFS mount points. In normal mode SAINT will also check for vulnerabilities in fingerd, rusersd, and bootd, and will perform a portscan on several tcp (70, 80,ftp, telnet, smtp, nntp, uucp) and udp (dns, 177) ports. Heavy mode is the same as normal mode except that many more ports are scanned.

Attack Signature

A Saint scan of a network leaves a distinct signature that will vary depending on the level of scanning being performed. The Saint program performs each scan in a nearly deterministic fashion. To identify a Saint scan, an intrusion detection system needs to be able to recognize the distinct set of network traffic the scan creates. Figure 9-2 is a plot that provides a graphical view of this signature. The horizontal axis of this plot represents time in minutes, and the different services probed are presented along the vertical axis. The names of the services are shown on the left side of this plot, and connections for each service are plotted within each named region. The numbers after the service names are the number of separate tcp connections or of udp or icmp packets. Names ending in “/i” indicate that packets use the icmp protocol and names ending in “/u” indicate that packets use the udp protocol. All other services use the tcp protocol.

Each line segment represents a connection to a service. This plot shows the unique signature of a medium level Saint scan. Because this signature does not change significantly across multiple instantiations of the Saint attack, an intrusion detection system that has been trained to recognize the pattern of connections shown in Figure 9-2 will probably detect other Saint attacks.

Affected Systems
Machines running anonymous ftp servers.

Corrective Action:

By disabling anonymous FTP access.

Rule: alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP saint scan"; flow:to_server,established; content:"pass -saint"; reference:arachnids,330; classtype:suspicious-login; sid:358; rev:5;)

Sid: 359 (Satan Attack)
Description

This event is generated when an attempt is made to login anonymously into an ftp server using a suspicious password (-satan). SATAN is an early predecessor of the SAINT scanning program described in the last section. While SAINT and SATAN are quite similar in purpose and design, the particular vulnerabilities that each tools checks for are slightly different.

Simulation Details

Like SAINT, SATAN is distributed as a collection of perl and C programs that can be run either from within a web browser or from the UNIX command prompt. SATAN supports three levels of scanning: light, normal, and heavy. The vulnerabilities that SATAN checks for in heavy mode are:

· NFS export to unprivileged programs

· NFS export via portmapper

· NIS password file access

· REXD access

· tftp file access

· remote shell access

· unrestricted NFS export

· unrestricted X Server access

· write-able ftp home directory

· several Sendmail vulnerabilities

· several ftp vulnerabilities

Scans in light and normal mode simply check for smaller subsets of these vulnerabilities.

Attack Signature

A SATAN scan of a network can be recognized by the consistent pattern of network traffic the program creates. The checks for the vulnerabilities listed above are always performed in the same order.

Affected Systems:

Machines running anonymous ftp servers.

Corrective Action:

By disabling anonymous FTP access.

Rule: alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP satan scan"; flow:to_server,established; content:"pass -satan"; reference:arachnids,329; classtype:suspicious-login; sid:359; rev:5;)

Sid: 473 (Teardrop Attack)
Description
This event is generated when an ICMP Redirect Network message was detected in network traffic. Several susceptible IP Stack implementations may result in the system hanging or crashing when malformed or corrupted ICMP Redirect Network (Type 5, Code 0) packets are sent to them. This vulnerability was first discovered in 1997.

Simulation Details

A malicious user may send corrupted ICMP Redirect Net messages to networks in an attempt to crash a system. Under normal network conditions ICMP Redirect Network packets will occur in a number of situations. One such situation is when a host is on a subnet with more than one router. The host can only have one default gateway, and forwards all traffic for networks outside its own subnet to this gateway. If the default gateway detects that the gateway for this route is on the same subnet as the originating host, the default gateway forwards the packet onto this gateway and sends an ICMP Redirect Network to the originating host.

This functionality exists primarily to save network administrators from having to keep extensive routing tables on hosts, the host will remember the route learned from the ICMP Redirect Network message for a period of time, and will forward any traffic directly while it has the route in its cache.
It causes possible system crash, Denial of Service (DoS) for some embedded operating systems.

Affected Systems

All systems

Corrective Action
Patches for Microsoft Windows NT 4.0 were included in SP4, and also release as a post SP3 fix - teardrop2-fix. Fixes are also available for Windows 95 and various embedded systems.

Rule: alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP redirect net"; icode:0; itype:5; reference:arachnids,199; reference:cve,1999-0265; classtype:bad-unknown; sid:473; rev:5;)

Sid: 478 (Smurf Attack)
Description

This event is generated when Broadscan Smurf Scanner generates an ICMP echo request message. In the "smurf" attack, attackers use ICMP echo request packets directed to IP broadcast addresses from remote locations to create a denial-of-service attack. There are three parties in these attacks: the attacker, the intermediary, and the victim (note that the intermediary can also be a victim). The attacker sends ICMP “echo request” packets to the broadcast address (xxx.xxx.xxx.255) of many subnets with the source address spoofed to be that of the intended victim. Any machines that are listening on these subnets will respond by sending ICMP “echo reply” packets to the victim. The smurf attack is effective because the attacker is able to use broadcast addresses to amplify what would otherwise be a rather innocuous ping flood. In the best case (from an attacker’s point of view), the attacker can flood a victim with a volume of packets 255 times as great in magnitude as the attacker would be able to achieve without such amplification. The attacking machine sends a single spoofed packet to the broadcast address of some network, and every machine that is located on that network responds by sending a packet to the victim machine. Because there can be as many as 255 machines on an Ethernet segment, the attacker can use this amplification to generate a flood of ping packets 255 times as great in size (in the best case) as would otherwise be possible. This figure is a simplification of the smurf attack. In an actual attack, the attacker sends a stream of icmp “ECHO” requests to the broadcast address of many subnets, resulting in a large, continuous stream of “ECHO” replies that flood the victim.

Simulation Details

Because the simulation network for the 1998 DARPA evaluation has a flat network topology with only two physical subnets, the smurf attack as described above could not be implemented on the simulation network. For this reason, the “smurfsim” program was developed to recreate the observable effects of a smurf attack. Smurfsim uses the raw socket API to construct ICMP packets with forged source addresses. Smurfsim takes as parameters the IP address of the victim, the number of packets to send, the average percentage of hosts on a subnet that are alive, and a comma-separated list of subnets. The program then randomly constructs a list of hosts that are alive on each of the subnets in the comma-separated list and starts sending “echo reply” packets to the victim, that have been spoofed to look like they originating from the hosts in the list. This behavior is exactly what would occur if an attacker had performed an actual Smurf attack in which “echo request” packets (with the source address spoofed to be that of the victim machine) were sent to the broadcast address of each subnet given in the parameter list. Several different simulated Smurf attacks were included in the evaluation data. In the most extreme case, the smurfsim program was used to simulate a smurf attack that generated traffic from 100 subnets for a period of one hour. During this period of time the entire simulation network was unresponsive and other network sessions (such as normal users trying to send e-mail, etc) would time out before they could be completed. In all, this particular attack instance generated over two gigabytes of network packets.

Attack Signature

The Smurf attack can be identified by an intrusion detection system that notices that there are a large number of “echo replies” being sent to a particular victim machine from many different places, but no “echo requests” originating from the victim machine.

Corrective Action
To prevent information gathering, use a firewall to block incoming ICMP Type 8 Code 0 traffic.

Rule: alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Broadscan Smurf Scanner"; dsize:4; icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:478; rev:4;)

Sid: 655 (Sandmail Attack)
Description

The Sendmail attack exploits a buffer overflow in version 8.8.3 of sendmail and allows a remote attacker to execute commands with superuser privileges. By sending a carefully crafted email message to a system running a vulnerable version of sendmail, intruders can force sendmail to execute arbitrary commands with root privilege.

Simulation Details

Although this vulnerability was widely known about at the time of the evaluation, no code that exploited this vulnerability had been posted to public forums such as Bugtraq, or Rootshell.com. A significant period of time (one person working for more than two weeks) was spent developing the first known implementation of this exploit explicitly for use in the evaluation. The implementation consists of a carefully constructed mail message which, when sent to the victim machine with a vulnerable version of sendmail, adds a new entry with root privilege to the end of the password file on the victim system. Once this new entry has been added, the attacker can log into the machine as this new user and execute commands as a root user. Initially the attacker sends a carefully crafted e-mail message to the victim machine. After that the sendmail daemon starts to process this message, overflows one of its buffers, and executes the attacker’s inserted commands that create a new entry in the password file. Then the attacker comes back to the victim machine and uses the new password file entry to gain root access to the victim machine and perform some malicious actions.

Attack Signature

The Sendmail attack overflows a buffer in the MIME decoding routine of the sendmail program. In order for an intrusion detection system to identify a Sendmail attack it must monitor all incoming mail traffic and check for messages that contain a MIME header line that is inappropriately large.

Affected Systems
Sendmail version 8.6.9.

Corrective Action
By applying the appropriate patch or upgrade to a Sendmail version greater than 8.6.9.

Rule: alert tcp $EXTERNAL_NET 113 -> $SMTP_SERVERS 25 (msg:"SMTP sendmail 8.6.9 exploit"; flow:to_server,established; content:"|0A|D/"; reference:arachnids,140; reference:bugtraq,2311; reference:cve,1999-0204; classtype:attempted-admin; sid:655; rev:8;)
Sid: 1071 (Dictionary Attack)
Description

This event is generated when an attempt is made to get a .htpasswd file from an HTTP server. The Apache HTTP server provides an authentication mechanism using .htaccess files and .htpasswd files. These files contain authentication information and encrypted passwords. However, older versions of Apache HTTPD for Windows systems the password might be stored in plaintext. In the default configuration, Apache HTTP server blocks any attempt to access .htaccess or .htpasswd files.
Simulation Details

The attacker could make a request to retrieve the .htpasswd file then use the information in it to launch a dictionary attack based on the usernames found. Although .htpasswd files cannot be accessed through the Apache HTTP service by default.

Attack Signature

An intrusion detection system that finds attempted dictionary attacks needs to know the session protocol of every service that provides username/password authentication. For a given service, the intrusion detection system must be able to recognize and record failed login attempts. Once this functionality is available, detecting dictionary attacks is a matter of setting a detection threshold based on the number of failed login attempts within a given period of time.

Corrective Action:

The .htpasswd file should be stored in a location outside the DocumentRoot for the webserver. The default configuration should include the following section to prevent access to .ht files:

<Files ~ "^\.ht">

 Order allow,deny

 Deny from all

</Files>

Ensure the passwords stored in .htpasswd are encrypted.

Rule: alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC .htpasswd access"; flow:to_server,established; content:".htpasswd"; nocase; classtype:web-application-attack; sid:1071; rev:6;)

Sid: 1458 (Perl Attack)
Description

This event is generated when an attempt is made to exploit an authentication vulnerability in a web server or an application running on that server. The Perl attack is a User to Root attack that exploits a bug in some Perl implementations. Suidperl is a version of Perl that supports saved set-user-ID and set-group-ID scripts. In early versions of suidperl the interpreter does not properly relinquish its root privileges when changing its effective user and group IDs. On a system that has the suidperl, or sperl, program installed and supports saved set-user-ID and saved set-group-ID, anyone with access to an account on the system can gain root access.

Simulation Details

This event is generated when an attempt is made to exploit a known vulnerability in Blackboard CourseInfo running on a web server. Any valid user is able to modify the contents of the database by supplying form values of their choosing to the perl scripts running the application. A perl script that uses this vulnerability to gain root access was made publicly available in August 1996. The code is only two lines long, and can easily be executed from the command-line. Once this perl script has run, the user will be presented with a new shell that is running with root privileges.

Attack Signature

The methods by which an intrusion detection system could identify a perl exploit attempt are identical to those described above for the loadmodule attack. A host-based intrusion detection system could notice that a root shell was spawned without a legal user to root transition, or a network-based intrusion detection system could look the strings “$>=0; $<=0;” or “exec (‘/bin/sh’);”, which have little valid use except in an exploit attempt.

Affected Systems
Blackboard CourseInfo 4.0 for UNIX and Windows NT

Corrective Action
Upgrade the application to the latest non-affected version of the software.

Rule: alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI user_update_passwd.pl access"; flow:to_server,established; uricontent:"/user_update_passwd.pl"; nocase; reference:bugtraq,1486; reference:cve,2000-0627; classtype:attempted-recon; sid:1458; rev:6;)

Sid: 1755 (IMAP Attack)
Description
This event is generated when a remote authenticated user sends a malformed request for partial mailbox attributes to an internal IMAP server, indicating an attempt to exploit a buffer overflow vulnerability in some versions of IMAP which causes possible denial of services. The attacker must have a valid IMAP account to attempt this exploit.
Simulation Details

An attacker with a valid user account sends a malformed request for partial mailbox attributes, causing a buffer overflow condition. The attacker can then execute arbitrary code on the server or can crash the mail server.

Versions of University of Washington imapd that are compiled with RFC 1730 support contain a vulnerability where an authenticated user can send a malformed request for partial mailbox attributes to the IMAP server, causing a buffer overflow condition. The attacker can then run arbitrary code on the server or crash the server completely.

Attack Signature

The Imap attack can be identified by an intrusion detection system that has been programmed to monitor network traffic for oversized Imap authentication strings.

Affected Systems
Any operating system running University of Washington imapd compiled with RFC 1730 support, which includes the following versions of University of Washington imapd:

2000.0

2000.0a

2000.0b

2000.0c

2001.0

2001.0a

Corrective Action
Upgrade University of Washington imapd to 2002.0 or higher, or apply the patch for your current version of UW IMAP appropriate to your operating system. The University of Washington has provided patches that address this vulnerability, and affected operating system vendors have distributed patches for their specific implementations of UW IMAP.

Rule: alert tcp $EXTERNAL_NET any -> $HOME_NET 143 (msg:"IMAP partial body buffer overflow attempt"; flow:to_server,established; content:"PARTIAL"; nocase; content:"BODY["; distance:0; nocase; pcre:"/\sPARTIAL.*BODY\[[^\]]{1024}/smi"; reference:bugtraq,4713; reference:cve,2002-0379; reference:nessus,10966; classtype:misc-attack; sid:1755; rev:15;)

Page # 1

