Public-Key Cryptography and RSA
Course: 60-564
Section: 1

Instructor: Dr. A. Aggarwal

Assignment no. 3
Prepared by:

Md Ashif Adnan
Student Id. 101392499
Graduate Students

Department of Computer Science

University of Windsor
Fall 2007

Question selection

My name (without space): Mdashifadnan
Following is the list of ASCII values (in decimal) of my name and their total:
	char
	Dec

	M
	77

	d
	100

	a
	97

	s
	115

	h
	104

	i
	105

	f
	102

	a
	97

	d
	100

	n
	110

	a
	97

	n
	110

	Total
	1214

We have total 23 problems at the end of chapter 9 in the text book.

So, (Total % 23) + 1 = (1214 % 23) + 1 = 19
Question 9.19
Show the OAEP decoding operation, used for decryption that corresponds to the encoding operation of Figure 9.9.

Introduction
 RSAES-OAEP is a public-key encryption scheme which combines the encoding method Optimal Asymmetric Encryption Padding (OAEP) with the RSA encryption primitive RSAEP. RSAES-OAEP takes a plaintext as input, transforms it into an encoded massage via OAEP and applies RSAEP to the result which is interpreted as an integer using an RSA public key [2]. The RSA was invented by Ronald L. Rivest, Adi Shamir, and Leonard Adleman, while the OAEP was invented by Mihir Bellare and Phillip Rogaway which was later enhanced by Don B. Johnson and Stephen M. Matyas [1].
 An encoding method for encryption consists of an encoding operation and a decoding operation. Our focused method here for encoding is OAEP. The encoding operation, say OAEP-ENCODE, takes a message M as input and gives an encoded message EM as output of special length using some encoding parameters P, a hash function H, and a mask generation function MGF. Reversely, the decoding operation, say OAEP-DECODE, takes the encoded message EM as input and gives back the original message M as output. So, the encoding and decoding operations are inverse [1].
 One of the main features of the OAEP encoding operation is the introduction of some randomness, so that difference applications of the encoding operation to the same message will produce different encoded message [1]. Moreover, a deterministic padding operation which includes the hash of the encoding parameters is applied to the message to be encoded. This way, the encoded message gains some structure that can be verified by the decoding operation. This also helps the decoding operation to extract the hash of the encoding parameters from the encoded message.
 OAEP is parameterized by the choice of hash function H and mask generation function MGF. IN our case, MGF is based on H. MGF actually takes an octet string of variable length and a desired output length as input and outputs an octet string of the desired length which is completely determined by the input string. This function is deterministic. The output of MGF is also pseudorandom which makes it infeasible for prediction. The security of OAEP mainly comes from this random nature of the output of the MGF function, which in turns relies on the randomness of the underlying hash function [1].
OAEP decoding operation
 As we said earlier that the operation uses the hash function H which outputs an octet string of fixed length HLen, and the mask generation function MGF. The operation takes an encoded message EM as an input which is an octet string of length at least 2HLen+1 (let’s denote is as EMLen) and also takes encoding parameters P (octet string) as another input [1].
 First of all, the operation will check the length of P and will warn if it is greater than the input limitation for the hash function and will stop decoding. It will also check the encoded message’s length and will warn and stop decoding if the length EMLen is less than 2HLen+1 [1]. Let maskedSeed be the first HLen octets of EM and let maskedDB be the remaining emLen-HLen octets. Now we should pass the maskedDB to the function MGF which will return an octet string of a length. Now this output of MGF is XORed with maskedSeed to get the seed, a random seed generated by the OAEP encoding operation. Now again this seed is passed through the MGF to get another octet string which is then XORed with maskedDB to get the original data block DB. Now the encoding parameter P is passed to the hash function H to get an octet string PHash of the length HLen. Since, the DB data block has few parts other than data, we need to separate them to extract the exact data. So, first we separate DB into an octet string PHash’ which is the first HLen octet of DB. Now, we also separate DB into another octet string PS consisting of zero octets which follows PHash’. Finally, we will separate the message M which follows both PHash’ and PS. As a separator of PS and M there should be an octet 01, otherwise it is an error. Then the operation will check the equality of PHash’ and PHash; if unequal, it will generate an error and stop proceeding, otherwise it will output the recovered message M, an octet string of length at most EMLen-1-2HLen [1]. Following Figure 1 depicts OAEP decryption.
 Note: The OAEP decoding operation uses octet strings, while the RSA encryption primitives act on integers. This is why, there has to be a converter which can convert a nonnegative integer into an octet string for the decoding operation and after decoding, there has to be another converter which can convert the outputted octet into another nonnegative integer.

References
[1] ftp://ftp.rsasecurity.com/pub/rsalabs/rsa_algorithm/rsa-oaep_spec.pdf
[2] http://www.rsa.com/rsalabs/node.asp?id=2148#RSAESOAEP
EM

maskedSeed

maskedDB

MGF

seed

MGF

DB

H(P)

M

Padding

P = encoding parameter

M = message decoded

H = hash function

DB = data block

MGF = mask generating function

EM = encoded message

Figure 1: Decryption using Optimal Asymmetric Encryption Padding (OAEP) [1]

