
TrueCrypt: Analysis and Implementation

Introduction

TrueCrypt is a software package used for the encryption and obscuring of local files on a system. It
incorporates a number of encryption algorithms and features including the encryption and hiding of an
operating system. The purpose of this software is to protect sensitive data on the host system from
potential threats and misuses by others. The following report provides a brief review and explanation of
the various algorithms used by TrueCrypt, specifically its encryption and hash algorithm. This review is
followed by a summary of its encryption services and a brief analysis of how the software impacts the
system.

Analysis

The encryption used in TrueCrypt consists of three different block ciphers. The purpose of these ciphers
is to provide confidentiality by ‘diffusing’ and ‘confusing’ the plaintext data in the ciphertext. Diffusing is
accomplished by spreading the data out across the encrypted block so that what may have originally
been bits belonging to a single word may now be several bits spread out across the entire block.
Confusing can be regarded as replacing one word/character or bit/byte for another so that the output is
confusing and doesn’t make sense when looking at normally. TrueCrypt use AES, Twofish and Serpent
as its block ciphers, each using a 128 bit key and 128 bit plaintext as input.

Encryption

The Advanced Encryption Standard (or Rijndael) is the current cipher standard set by NIST (the National
Institute of Standards and Technology). It uses a 128, 192 or 256 bit key and performs a number of
rounds (number of rounds depends on the key length used) on a plaintext input of 128 bits, eventually
producing an output ciphertext of 128 bits. With the exception of the first initialization round and the
final round, each round is identical to one another and can be broken up into four specific operations.

Encryption: AES

Byte Substitution:

During the byte substitution step the plaintext is broken down into 16 bytes (8bits x 16 = 128bits) whose
values are then used to determine a substitution. The substitute value for the byte is selected from a
preexisting data table (see appendix A) using the leftmost 4 bits as the row index for the table and the
remaining 4 bits as the column index. Once the value is determined from the table the original plaintext
(or indexing) byte is replaced with the listed value.

Row Shifting:

The arrangement of the 128 plaintext bits (and the subsequent Byte Substituted bits) can be regarded as
a 4x4 matrix with each element being a byte and the matrix itself being filled row-wise, where the first
byte would go in row 1 column 1, the second byte would go in row 1 column 2 and so on. During the

Row Shift operation each row is cyclically shifted left a number of times equal to the rows specific index
(i.e. the first/top row is row 0; the second is row 1 etc.).

Column Mixing:

The Column Mixing step can be regarded as a mapping from one set of values to another by means of a
linear transformation. The operation itself is a matrix multiplication of a transformation matrix and the
byte substituted and row shifted plaintext. The purpose of this step is to further diffuse the plaintext
throughout the data block being encrypted. The transformation matrix is given in Appendix A.

Round Key Addition:

For each round a separate sub key is computed from the original primary key. During the Round Key
Addition step the output of the previous step is bitwise XORd with the current round key. This
corresponds to addition over GF(2).

The initialization and final rounds of Rijndael make use of the previous four steps except that they do
not use every step. The initialization round only performs a Round Key Addition while the final round
performs every step except Column Mixing before computing the final ciphertext.

Round Key Generation

For each round a separate key is determined for use in the cipher. This key is based on the original key.
For a 128 bit key the source key is arranged in a 4x4 matrix with each element of the matrix being a byte
of the key. This matrix then has 40 additional columns appended to it with the original four columns
having the index (i) of 0, 1, 2 and 3. The new columns are then filled out according to the following
algorithm:

For columns with index i not evenly divisible by 4:

𝐶𝐶(𝑖𝑖) = 𝐶𝐶(𝑖𝑖 − 4) ⊕ 𝐶𝐶(𝑖𝑖 − 1)

Where C is a column vector with index i and entries �
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑

�

 ⊕ is the XOR operation

For columns with index i divisible by 4:

𝐶𝐶(𝑖𝑖) = 𝐶𝐶(𝑖𝑖 − 4) ⊕ 𝐵𝐵(𝑖𝑖 − 1)

Where B(i-1) is the same as C(i-1) but with it’s Byte entries a, b, c and d replaced using the same
substitution matrix used in the Byte Substitution step, yielding a’, b’, c’ and d’ and the
performing the following operation:

𝐵𝐵(𝑖𝑖 − 1) = �
𝑎𝑎"
𝑏𝑏"
𝑐𝑐"
𝑑𝑑"

� = �

𝑎𝑎′ ⊕ 𝑟𝑟(𝑖𝑖)
𝑏𝑏′
𝑐𝑐′
𝑑𝑑′

�

𝑟𝑟(𝑖𝑖) = �
000000102

(1−4)/4 , 𝑖𝑖 < 36
000000102

(1−4)/4 ⊕ 1 000110112, 𝑖𝑖 ≥ 36
�

Note that the exponent term in the r(i) function acts as a shift operator, shifting left for values of
i greater than 4. Upon realizing this, it is easy to see that an overflow would occur for values of i
greater than or equal to 36. For this reason the exclusive or operation is performed, reducing
the value over 𝐺𝐺𝐺𝐺(28). Note that the value 1 000110112corresponds to a generator
polynomial of 𝐺𝐺𝐺𝐺(28), specifically 𝑥𝑥8 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 + 1.

Much like Rijndael, Twofish is a block cipher that makes use of a key size of 128, 192 or 256 bits and a
plaintext of 128 bits. Compared to Rijndael, Twofish is quite complex, but makes use of many similar
functions. The basic process of Twofish is given as follows (depicted in figure 1):

Encryption: Twofish

1. The plaintext is broken up into four 32 bit words and each is XORd with a 32 bit expanded key
(The first word is XORd with 𝐾𝐾0, the second word with 𝐾𝐾1 and so on).

2. The first word is broken up into 4 bytes, each of which is applied to a substitution box (or S-box,
like the lookup table mentioned in AES). The second word is first rotated left by 8 bits and then
is also applied to the same set of S-boxes.

3. From here both the first and second words are applied to an MDS matrix (Maximum Distance
Separable) which serves to diffuse the newly substituted data of the 32 bit word amongst its 4
bytes.

4. After the MDS matrix multiplication the first word is applied to a pseudo-Hadamard Transform:
𝑎𝑎′ = 𝑎𝑎 + 𝑏𝑏 𝑚𝑚𝑚𝑚𝑑𝑑 232

where a is the first word, b is the second word and a’ is the new first word.
Using the ‘new’ first word as input, the second word is applied to the same transform, which can
equivalently be represented as:

𝑏𝑏′ = 𝑎𝑎 + 2𝑏𝑏 𝑚𝑚𝑚𝑚𝑑𝑑 232
This operation serves to diffuse the two words amongst each other.

5. At this point the first two words are XORd with a round key each.
6. Following this step the third word is XORd with the output of the first word (the new first word

or 𝑊𝑊0′) and then rotated right by one bit producing what will be the new third word (𝑊𝑊2′). At
the same time the fourth word is rotated left by one bit and then XORd with the output of the
operations on the second word (𝑊𝑊1′) producing what will be treated as the new fourth word
(𝑊𝑊3′).

7. The next round begins (starting at step 2) with the first and second words (𝑊𝑊0 and 𝑊𝑊1) at the
beginning of the previous round becoming this rounds third and fourth words while the new
first and second words are the output from the previous round (𝑊𝑊2′ and 𝑊𝑊3

′ respectively).

8. Steps 2 through 7 are repeated for a total (including the first) of 16 rounds.
9. The first and second words are swapped with the third and fourth words, effectively undoing

the seventh step of the final round.
10. The words are XORd with another set of round keys (𝐾𝐾4 − 𝐾𝐾7) producing the ciphertext.

Figure 1) the Twofish Cipher Structure

An important note to make about Twofish however is that the S boxes used in the rounds (while the
same 4 S-boxes for each round) are key dependant (dependant on the original source key, not the round
keys). This adds an extra layer of security in that the S-boxes are now an unknown quantity to a would
be attacker, making it much more difficult to crack a single round without knowledge of the key, since
for two unique keys the primary substitution scheme will be different. The generation of the S-boxes
(and similarly the round keys) is accomplished through a somewhat complicated process that is not fully
explained here (due to its relatively low significance to TrueCrypts operation and the excessive length of
the required explanation). Simply put however, the original key is used to generate three 2-word
vectors (64 bits total), one of which is used specifically to generate the S-boxes. These three vectors are

used in a series of conditional permutations (conditional as in the exact sequence of permutations,
depending on the round number) and XORs, followed by a set of matrix multiplications and word
operations (specifically rotations and modular additions) to produce the round keys and the four 8x8 S-
boxes. For more information please see section 4.3 of [11].

Serpent is the third and final block cipher used by TrueCrypt to perform its data encryption. Just like
Rijndael and Twofish, Serpent accepts keys size of 128, 192 or 256 bits and uses an input block of
plaintext 128 bits long. The encryption process involves an initial permutation of the plaintext followed
by 31 rounds of operations (described below), a modified 32nd round and then a final permutation
(which is the inverse of the initial permutation).

Encryption: Serpent

Initial Permutation and Setup:

The initial permutation is simply a remapping of the 128 input bits into new positions. The new
positions are specified in the reordered matrix (given in Appendix A) by the bit place or number that
they originally occupied. Note that Serpent is specified using the little-endian standard, such that the
least significant bit (bit 0) is first (or the leftmost bit). After this, the rest of the algorithm is arranged
into four 32 bit words (𝑊𝑊0, 𝑊𝑊1, 𝑊𝑊2 and 𝑊𝑊3). These words are encrypted in parallel with each other but
are not treated entirely independently, as shown below.

Rounds 0-30:

Each round starts with XORing the input with a 128 bit round key. The result is then broken up into
groups of 4 bits which are each applied to an S-box (this operation is applied to each of the four bit
groups in parallel). The S-box used depends on which round is currently being computed. There are a
total of 8 different S-boxes, 𝑆𝑆0 − 𝑆𝑆7, where 𝑆𝑆0 is used in rounds 𝑅𝑅0, 𝑅𝑅8, 𝑅𝑅16, and 𝑅𝑅24, 𝑆𝑆1 in rounds
𝑅𝑅1, 𝑅𝑅9, 𝑅𝑅17, and R25 and so on. The S-Boxes are accomplished through logical operations but can be
regarded as the mappings provided in Appendix A, where the input value of the 4 bits are used to select
the column position which contains the new value to be used as the output. At this point the output is
subjected to a series of logical operations defined as follows (in this order):

• 𝑊𝑊0is rotated left by 13 bits
• 𝑊𝑊2is rotated left by 3 bits
• 𝑊𝑊1is replaced with the result of XORing 𝑊𝑊1, 𝑊𝑊0 and 𝑊𝑊2together
• 𝑊𝑊3is replaced with the result of XORing 𝑊𝑊3, 𝑊𝑊2 and a version of 𝑊𝑊2that has been shifted left by

3 bit positions.
• 𝑊𝑊1is rotated left by 1 bit
• 𝑊𝑊3is rotated left by 7 bits
• 𝑊𝑊0 is replaced with the result of XORing 𝑊𝑊1, 𝑊𝑊0 and 𝑊𝑊3together
• 𝑊𝑊2 is replaced with the result of XORing 𝑊𝑊3, 𝑊𝑊2 and a version of 𝑊𝑊1that has been shifted left by

7 bit positions.
• 𝑊𝑊0 is rotated left by 5 bits

• 𝑊𝑊2 is rotated left by 22 bits

These operations are performed to diffuse the four words amongst each other as well as to maximize
the effects of the S-Boxes and round key addition. Changing one bit in the input of an S-Box will cause
two output bits to change, which in turn propagates through to the next round.

Round 31:

The final round is treated the same way as the first 31 rounds, except that the set of logical operations is
not performed and instead the output of the S-Boxes is XORd against a final round key 𝐾𝐾32.

Final Permutation:

The final permutation operation is simply the inverse of the initial permutation. The table is given in
Appendix A and is indexed in the same manner as the Initial Permutation.

Key Generation:

Serpent uses thirty-three 128 bit round keys, one for each round and an additional key for the final
round. The 33 round keys are derived from the original key which is 256 bits. Regardless of the input
key size, Serpent always expands it to 256 bits by attaching a 1 to the most significant bit position and
zero padding the rest up to the 256th bit (MSB) position. The 256 bit key is then broken up into eight 32
bit words and are indexed as 𝑊𝑊−8

𝑘𝑘 , 𝑊𝑊−7
𝑘𝑘 , 𝑊𝑊−6

𝑘𝑘 , 𝑊𝑊−5
𝑘𝑘 , 𝑊𝑊−4

𝑘𝑘 , 𝑊𝑊−3
𝑘𝑘 , 𝑊𝑊−2

𝑘𝑘 , and 𝑊𝑊−1
𝑘𝑘 . These are then used to

calculate 𝑊𝑊0
𝑘𝑘 − 𝑊𝑊131 as follows:

𝑊𝑊𝑖𝑖
𝑘𝑘 = 𝑅𝑅𝑅𝑅𝑅𝑅[�𝑊𝑊𝑖𝑖−8

𝑘𝑘 ⊕ 𝑊𝑊𝑖𝑖−5
𝑘𝑘 ⊕ 𝑊𝑊𝑖𝑖−3

𝑘𝑘 ⊕ 𝑊𝑊𝑖𝑖−1
𝑘𝑘 ⊕ 𝛷𝛷 ⊕ 𝑝𝑝�, 11]

Where ROL(x,y) specifies to rotate x left by y bits
 𝛷𝛷 is the Hex word 9E3779B9
 p is the Hex word 000001A5

And the round keys are formed according to:

𝐾𝐾𝑖𝑖 = 𝑆𝑆𝑖𝑖+3𝑚𝑚𝑚𝑚𝑑𝑑 8(𝑊𝑊4𝑖𝑖
𝑘𝑘 , 𝑊𝑊4𝑖𝑖+1

𝑘𝑘 , 𝑊𝑊4𝑖𝑖+2
𝑘𝑘 , 𝑊𝑊4𝑖𝑖+3

𝑘𝑘)

Where S represents one of the S-Boxes used in the cipher
 i is the round index

A mode of operation is a method for applying an encryption standard to a block of data that is equal to
or greater than the standard block size used by the encryption cipher. The specific goal of using a mode
of operation as opposed to a straight forward implementation of the cipher itself is to help protect
against chosen plaintext attacks (CPA) and chosen ciphertext attacks (CCA). As an illustration of these
threats let us assume that a system (computer) has its hard drive encrypted as a series of blocks, each
encrypted independently of the other blocks by a straight forward implementation of the encryption

Mode of Operation: XTS

cipher. A chosen plaintext attack could be performed on system by an attacker entering a set of
plaintext blocks to be encrypted and stored on the device and then observing the resultant ciphertext
on the drive. With enough such plaintext/ciphertext pairs the attacker would be able obtain the
encryption key used by the cipher, and would then be able to access the rest of drive. Similarly, let us
assume that the drive itself is not entirely full and consists of several similar blocks. By using the same
key and encrypting each block independently of the others the attacker would be able to recognize such
blocks simply by virtue of their similar appearance. The attacker could then analyze the system and
make an educated guess as to the type of plaintext that was entered. Knowing the encryption algorithm
used the attacker could then begin to extract a pattern from the ciphertext/plaintext relationship and
begin to recognize it in other similar blocks, eventually obtaining enough ciphertext/plaintext pairs to
extract a key from; such an attack is a chosen ciphertext attack. Using a mode of operation counters
these attacks by relating the blocks to each other such that the encryption for each is not identical but
rather a function of the key and its relation to the rest of the encrypted blocks. The XTS mode of
operation accomplishes this in the following way (as described on the TrueCrypt Website):

𝐶𝐶𝑖𝑖 = 𝐸𝐸𝑘𝑘1 �𝑃𝑃𝑖𝑖 ⊕ �𝐸𝐸𝑘𝑘2(𝑛𝑛) ⊗ 𝑎𝑎𝑖𝑖�� ⊕ (𝐸𝐸𝑘𝑘2(𝑛𝑛) ⊗ 𝑎𝑎𝑖𝑖)

Where C is the ciphertext
P is the plaintext
E is the encryption algorithm
i is the block index in the data unit (the data unit is the 512 byte block of data being
encrypted)
k is the key being used by the encryption cipher (two different keys are used)
n is the data unit within the sector being encrypted
a is the primitive element 2 or x (or ….00010 in binary)
⊕ represents the XOR operation
⊗ represent the multiplication of two polynomials modulo 𝑥𝑥128 + 𝑥𝑥7 + 𝑥𝑥2 + 𝑥𝑥 + 1
over GF(2)

This operation can alternately be represented by the following diagram:

Figure 2) the XTS Operation Structure [9]

By incorporating the data unit (n) and block index (i) as a part of the encryption process XTS successfully
differentiates the encryption used for one block from another, producing a unique ciphertext for
identical plaintext in two separate blocks. Additionally, the ciphertext of one block does not depend on
the ciphertext of another, thus any errors that occur will not propagate from one block to another.

Hash algorithms are generally used to provide data integrity, such that the data being viewed is in fact
the data that it is supposed to be and has not been tampered with. Hash algorithms accomplish this by
using the data itself to calculate what is referred to as a message digest, such that the message digest
uniquely represents the message from which it was derived. Hash algorithms are generally one way
functions, in that a message digest cannot be used to determine what the original message was. Given
this, a piece of data can be stored along with its message digest and encrypted to provide
confidentiality. The data can later be viewed by someone with the appropriate key(s) but without the
message digest they have no way of knowing if the data has been tampered with, even if the would be
attacker was unable to read the data itself. With the message digest the user can first decrypt the data
and then run the data (or message) through the hash algorithm once again to produce another message
digest. The two digests can then be compared and if they match the data’s integrity has been verified,
or likewise disproven if they do not match. TrueCrypt makes use of has algorithms in a different way
however. Due to the requirement that hash algorithms provide unique message digests for unique
messages, they also serve as good pseudo random number generators. Considering this, along with the
fact that even given the output of the hash function the source material remains obscured, hash
algorithms are often utilized for key generation. TrueCrypt uses its hash functions in this way, producing
keys (and the SALT – see Appendix B). TrueCrypt uses the following hash algorithms:

Hash Algorithms

The first hash algorithm to be considered is SHA-512, which is a variant of the SHA-2 algorithm,
producing a large message digest (512 bits) from messages up to a size of 2128 − 1bits. The algorithm
first takes the input message and zero-pads (fills any empty bit places with 0s) it such that the message
contains 896 𝑚𝑚𝑚𝑚𝑑𝑑1024 bits (if the size is already congruent to this 1024 bits of zero-padding are applied
anyways). A 128 bit value is then appended to the message indicating the size of the original message
prior to zero padding. The message now consists of N 1024bit blocks of data, (1 ≤ 𝑁𝑁 ≤ 13). These
message blocks are then passed to the hashing algorithm which is performed sequentially for each 1024
bit block as shown in figure 3, where each output of the previous block operation is used by the next
subsequent block operation.

Hash Algorithm: SHA-512

Figure 3) Block Level structure of SHA-512 [6]

In each round the message block is broken up into sixteen 64 bit words (𝑊𝑊0 − 𝑊𝑊15). From these initial
words 𝑊𝑊16 − 𝑊𝑊79 are calculated using the following relationship [6]:

𝑊𝑊𝑗𝑗 = 𝜎𝜎0�𝑊𝑊𝑗𝑗 −2� + 𝑊𝑊𝑗𝑗 −7 + 𝜎𝜎1�𝑊𝑊𝑗𝑗 −15� + 𝑊𝑊𝑗𝑗 −16 for j =16, 17, 18…..79
𝜎𝜎0(𝑥𝑥) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥, 1) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥, 8) ⊕ 𝑆𝑆𝑆𝑆𝑅𝑅(𝑥𝑥, 7)
𝜎𝜎1(𝑥𝑥) = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥, 19) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅(61, 𝑥𝑥) ⊕ 𝑆𝑆𝑆𝑆𝑅𝑅(𝑥𝑥, 6)

Where ⊕ is the XOR operation
 + is addition modulo 64 (not simply the XOR operation but addition followed by the
 modulus operation)
 ROR(x,y) is a right rotation of x by y bits
 SHR(x,y) is a right shift of x by y bits

The message words are then used in the block function as shown in figure 4) which consists of 80
rounds. At the beginning of each block function the previous block functions 512 bit output is used as
the input (for the first round an initialization vector is used). This input is broken up into eight 64 bit
words called a, b, c, d, e, f, g, and h. During each round these words are updated using message word
corresponding to the round number, a specific constant for the round 𝐾𝐾𝑗𝑗 (which correspond to the
fractions of the cubic roots to each of the first 80 prime numbers) and the following relationship [6]:

𝑇𝑇1 = ℎ + [(𝑒𝑒 𝐴𝐴𝑁𝑁𝐴𝐴 𝑓𝑓) ⊕ (𝑁𝑁𝑅𝑅𝑇𝑇 𝑒𝑒 𝐴𝐴𝑁𝑁𝐴𝐴 𝑔𝑔)] + [𝑅𝑅𝑅𝑅𝑅𝑅(𝑒𝑒, 14) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑒𝑒, 18) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑒𝑒, 41)] + 𝑊𝑊𝑗𝑗 + 𝐾𝐾𝑗𝑗
𝑇𝑇2 = [𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎, 28) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎, 34) ⊕ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎, 39)] + [(𝑎𝑎 𝐴𝐴𝑁𝑁𝐴𝐴 𝑏𝑏) ⊕ (𝑎𝑎 𝐴𝐴𝑁𝑁𝐴𝐴 𝑐𝑐) ⊕ (𝑏𝑏 𝐴𝐴𝑁𝑁𝐴𝐴 𝑐𝑐)]

𝑎𝑎 = 𝑇𝑇1 + 𝑇𝑇2
𝑏𝑏 = 𝑎𝑎
𝑐𝑐 = 𝑏𝑏
𝑑𝑑 = 𝑐𝑐

𝑒𝑒 = 𝑑𝑑 + 𝑇𝑇1
𝑓𝑓 = 𝑒𝑒
𝑔𝑔 = 𝑓𝑓
ℎ = 𝑔𝑔

Figure 4) Round Level Structure of SHA-512 (operation performed on each block) [6]

Where AND is the logical ‘and’ operation
NOT is the logical inverse operation
j is the round index (0-79)

At the end of the 80th round (j=79) the output of the previous block function is added to the new
version of abcdefgh to produce the output for that block function. Once all the blocks
have been computed the final output is the message digest.

Whirlpool is a hash algorithm that makes use of a block cipher as its core function. The algorithm itself
accepts up to 2256 − 1 bits of input and pads the input up to a number of bits such that the result is
congruent to 256 𝑚𝑚𝑚𝑚𝑑𝑑 512. The padding is applied by first attaching a 1 and then whatever number of
zeroes are required as well. Following this a value representing the size (stored as a 256 bit word) is
attached to the input. From here the message is broken up into blocks of 512 bits to be used as the
message inputs for the block cipher (shown in Figure 5) and is arranged as an 8x8 matrix of bytes. The
first block round function begin by taking the message input, the output of the previous blocks round
functions (𝑆𝑆𝑖𝑖−1 where 𝑆𝑆0is an empty string, all zeroes) as an initial key (described below) and adding
them together. The rest of the rounds are performing as follows:

Hash Algorithm: Whirlpool

Figure 5) Whirlpool Block Level Structure [6] Figure 6) Whirlpool Round Structure [6]

Byte Substitution

The byte substitution operates in the same manner as S-box, by using the leftmost four bits of a byte as
a row index and the rightmost 4 bits as a column index for a lookup table from which the replacement
value is selected. The hardware implementation of this is implemented somewhat differently but the
result is the same and corresponds to the S-Box listed in Appendix A.

Column Shifting

The column shifting step is accomplished by rotating the bytes in each column of the 8x8 matrix
downward a number of positions based on their column index. For instance the bytes in the first
column of the matrix (with index 0) would not be rotated, or rather, are rotated 0 positions while the
bytes in the eighth column (index 7) are rotated downwards by 7 spaces. This step serves the purpose
of providing diffusion throughout the block, on a byte by byte level.

Row Mixing

Row mixing is accomplished by means of a matrix multiplication. The matrix operation is defined as: (in
HEX)

𝑅𝑅𝑅𝑅 = 𝑅𝑅𝐶𝐶𝑅𝑅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
01 01
09 01

04 01
01 04

02 09
05 02

01 01
09 01

08 05
01 08

02 09
05 02

04 01
01 04

08 05
01 08

08 05
01 08

02 09
05 02

04 01
01 04

08 05
01 08

01 01
09 01

04 01
01 04

02 09
05 02

01 01
09 01⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Which is performed over 𝐺𝐺𝐺𝐺(28) using 𝑥𝑥8 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥2 + 1 (or 11D in Hex) to reduce the values
during the multiplicative shifts. This step is used to diffuse the data amongst the rows so that diffusion
is achieved in both dimensions and is not simply a reorganization of bytes.

Round Key Addition

At the end of each round the output is XORd with a round key which is generated from the source key
for the current block operation, 𝑆𝑆𝑖𝑖−1. The round keys are generated by applying a parallel version of
this block cipher, using 𝑆𝑆𝑖𝑖−1 as the message input and a round specific constant for its key input (as
shown in the right half of figure 6). Each round constant (an 8x8 byte matrix) for the key cipher is
formed according to the following relationship:

For row 1:

𝑅𝑅𝐶𝐶0,𝑗𝑗 = 𝑆𝑆(8𝑟𝑟 + 𝑗𝑗) for 0 ≤ 𝑟𝑟 ≤ 9, 0 ≤ 𝑗𝑗 ≤ 7

Where S(x) is the S-Box operation on input byte x
 r is the round index (0-9)
 j is the column index

For all other rows:

𝑅𝑅𝐶𝐶𝑖𝑖,𝑗𝑗 = 0

The output of each round of the key cipher is then used as the round key for the corresponding round in
the block (or message) cipher.

After completing the final round the output is XORd with the output of the previous block operation
(𝑆𝑆𝑖𝑖−1) and the input message for the current block. This yields the output of the current block (𝑆𝑆𝑖𝑖). This
process is continued until each of the N blocks has been treated, resulting in 𝑆𝑆𝑁𝑁which is used as the
message digest.

RIPEMD-160 differs from the previous two hash algorithm in that its message digest is only 160 bits in
length as opposed to 512 bits. The message input can be up to 264 − 1 bits long, and padding is
performed so that the message is congruent with 448 𝑚𝑚𝑚𝑚𝑑𝑑 512. The original length of the message is
then appended in a 64 bit word. RIPEMD starts by dividing up its message into groups of 32 bit words.
It processes these sixteen of these words in one of its block functions but will only be using ten at a time
in two parallel paths (five words in each path). The overall structure of RIPEMD is similar to that of SHA-
512 and Whirlpool in that its block function (specifically the two paths for the set of ten words) takes as
input the message words and the output of the previous block function (𝑆𝑆𝑖𝑖−1). The two paths operate
on their set of 5 words independently of each other over 5 rounds (each round consisting of 16 steps,
for a total of 80 steps). The exact functions performed in each round depends on the step number and
which path is being considered, for ease of identification functions and values corresponding to the left

Hash Algorithm: RIPEMD

path will be denoted with a subscript ‘l’ while those in the right path will have a subscript ‘r’. The
functions are as follows:

For 0 ≤ 𝑗𝑗 ≤ 15 𝑓𝑓𝑙𝑙1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥 ⊕ 𝑦𝑦 ⊕ 𝑧𝑧
 𝑓𝑓𝑟𝑟1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥 ⊕ �𝑦𝑦 𝑅𝑅𝑅𝑅 (𝑁𝑁𝑅𝑅𝑇𝑇 𝑧𝑧)�
for 16 ≤ 𝑗𝑗 ≤ 31 𝑓𝑓𝑙𝑙2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑥𝑥 𝐴𝐴𝑁𝑁𝐴𝐴 𝑦𝑦)𝑅𝑅𝑅𝑅�(𝑁𝑁𝑅𝑅𝑇𝑇 𝑥𝑥)𝐴𝐴𝑁𝑁𝐴𝐴 𝑦𝑦�
 𝑓𝑓𝑟𝑟2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑥𝑥 𝐴𝐴𝑁𝑁𝐴𝐴 𝑧𝑧)𝑅𝑅𝑅𝑅�𝑦𝑦 𝐴𝐴𝑁𝑁𝐴𝐴 (𝑁𝑁𝑅𝑅𝑇𝑇 𝑧𝑧)�
for 32 ≤ 𝑗𝑗 ≤ 47 𝑓𝑓𝑙𝑙3(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑓𝑓𝑟𝑟3(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �𝑥𝑥 𝑅𝑅𝑅𝑅 (𝑁𝑁𝑅𝑅𝑇𝑇 𝑦𝑦)� ⊕ 𝑧𝑧
for 48 ≤ 𝑗𝑗 ≤ 63 𝑓𝑓𝑙𝑙2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑥𝑥 𝐴𝐴𝑁𝑁𝐴𝐴 𝑧𝑧)𝑅𝑅𝑅𝑅�𝑦𝑦 𝐴𝐴𝑁𝑁𝐴𝐴 (𝑁𝑁𝑅𝑅𝑇𝑇 𝑧𝑧)�
 𝑓𝑓𝑟𝑟2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (𝑥𝑥 𝐴𝐴𝑁𝑁𝐴𝐴 𝑦𝑦)𝑅𝑅𝑅𝑅�(𝑁𝑁𝑅𝑅𝑇𝑇 𝑥𝑥)𝐴𝐴𝑁𝑁𝐴𝐴 𝑦𝑦�
for 64 ≤ 𝑗𝑗 ≤ 79 𝑓𝑓𝑟𝑟1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥 ⊕ �𝑦𝑦 𝑅𝑅𝑅𝑅 (𝑁𝑁𝑅𝑅𝑇𝑇 𝑧𝑧)�
 𝑓𝑓𝑙𝑙1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥 ⊕ 𝑦𝑦 ⊕ 𝑧𝑧

Figure 7) Structure of the two paths [3]

These functions are used in the each step in the following way:

𝑇𝑇𝑙𝑙 = 𝑅𝑅𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑙𝑙 + 𝑓𝑓𝑙𝑙𝑗𝑗 (𝐵𝐵𝑙𝑙 , 𝐶𝐶𝑙𝑙 , 𝐴𝐴𝑙𝑙) + 𝑅𝑅𝑖𝑖�𝑟𝑟(𝑗𝑗)� + 𝐾𝐾(𝑗𝑗)� , 𝑠𝑠𝑙𝑙 (𝑗𝑗)� + 𝐸𝐸𝑙𝑙

𝐴𝐴𝑙𝑙 = 𝐸𝐸𝑙𝑙
𝐸𝐸𝑙𝑙 = 𝐴𝐴𝑙𝑙

𝐴𝐴𝑙𝑙 = 𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝑙𝑙 , 10)
𝐶𝐶𝑙𝑙 = 𝐵𝐵𝑙𝑙
𝐵𝐵𝑙𝑙 = 𝑇𝑇𝑙𝑙

𝑇𝑇𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑟𝑟 + 𝑓𝑓𝑟𝑟𝑗𝑗 (𝐵𝐵𝑟𝑟 , 𝐶𝐶𝑟𝑟 , 𝐴𝐴𝑟𝑟) + 𝑅𝑅𝑖𝑖�𝑟𝑟(𝑗𝑗)� + 𝐾𝐾(𝑗𝑗)� , 𝑠𝑠𝑟𝑟 (𝑗𝑗)� + 𝐸𝐸𝑟𝑟

𝐴𝐴𝑟𝑟 = 𝐸𝐸𝑟𝑟
𝐸𝐸𝑟𝑟 = 𝐴𝐴𝑟𝑟

𝐴𝐴𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝑟𝑟 , 10)
𝐶𝐶𝑟𝑟 = 𝐵𝐵𝑟𝑟
𝐵𝐵𝑟𝑟 = 𝑇𝑇𝑟𝑟

Where j is the step index
 I is the block index
 A, B, C, D, E are the 32 bit words of the current message digest (initialized to the
 previous block function digest at the start of the current block function)
 K* is a specific constant used for that round
 M* is a 32 bit message word, indexed according to the path and round (discussed
 below)
 s(x)* is a matrix of values representing a number of bits to rotate by. The index x is the
 index of the matrix being referenced

 + is addition modulo 232
*See Appendix A for information regarding these values.

At the end of the 5 rounds the message digest 𝑆𝑆𝑖𝑖 is updated and then passed on to the next block
function. The 160 bit digest 𝑆𝑆𝑖𝑖 (ℎ0, ℎ1, ℎ2, ℎ3, ℎ4) is updated using the digest from the previous round
ℎ𝑝𝑝0, ℎ𝑝𝑝1, ℎ𝑝𝑝2, ℎ𝑝𝑝3, ℎ𝑝𝑝4 (or the initial values for the first block– see Appendix A) as well as the A,B,C,D and
E values from the left and right paths:

ℎ𝑚𝑚 = ℎ𝑝𝑝1 + 𝐶𝐶𝑙𝑙 + 𝐴𝐴𝑟𝑟
ℎ1 = ℎ𝑝𝑝2 + 𝐴𝐴𝑙𝑙 + 𝐸𝐸𝑟𝑟
ℎ2 = ℎ𝑝𝑝3 + 𝐸𝐸𝑙𝑙 + 𝐴𝐴𝑟𝑟
ℎ3 = ℎ𝑝𝑝4 + 𝐴𝐴𝑙𝑙 + 𝐵𝐵𝑟𝑟
ℎ4 = ℎ𝑝𝑝0 + 𝐵𝐵𝑙𝑙 + 𝐶𝐶𝑟𝑟

Implementation

TrueCrypt can be used to encrypt data in a number of different ways (providing different features) and
using a number of different encryption techniques. As mentioned above AES, Twofish and Serpent are
used as the encryption ciphers and are applied using the XTS mode of operation while the hash
functions SHA-512, Whirlpool and RIPEMD-160 are used for creating key information. In addition to
using one of the three available block ciphers TrueCrypt allows the user to chain the different ciphers
together such that the data is encrypted sequentially by some or each of the different ciphers. The
various cipher cascades available are Serpent-Twofish-AES, AES-Twofish-Serpent, Twofish-Serpent, AES-
Twofish, Serpent-AES, where the first cipher in the cascade name is applied on top of or after the cipher
name following it. TrueCrypt offers the following different encryption strategies:

Process

TrueCrypt File

A TrueCrypt file, once completed, acts very similar to a file folder where anything contained within the
folder is encrypted. The files themselves are made on the hard drive, in plain site (not hidden at all), and
can be moved and relocated like any other file. To access the file it must be mounted as a drive using
TrueCrypt, after which the user will be prompted for a password in order to gain access to the file. The
TrueCrypt website provides a guide for setting up a TrueCrypt file and the volume creation wizard is very
self explanatory (for all types of volumes) so as opposed to giving a implementation guide for each
volume type a few notes are made on the finer points of the creation process instead. Partway through
the file creation process the user will be prompted to choose the encryption method (a brief analysis of
which concludes this report) and the hash algorithm to use for key generation. The choice of encryption
algorithm should be based on the need for security versus speed. While each of the block ciphers used
is still currently secure each offers various degrees of security and speed/system strain. After selection
the cipher and hash algorithm to use the user will be brought to a menu indicating the file system type
and be asked to make a series of random mouse movements for a time. This is because TrueCrypt uses

data relating to mouse movements as a seed for the hash algorithms during key and salt generation,
therefore the more random and the longer the duration of the mouse movements the better.

Encrypted/Hidden Volume

An encrypted volume is a physical drive or partition (it could be a flash drive, a separate hard drive,
partition or other permanent storage device) that isn’t the system drive, such that it does not have an
operating system installed on it. During the setup of the TrueCrypt volume the partition (or drive) will
be formatted, losing any data that was originally on the drive. Once the drive is formatted it has to be
mounted using TrueCrypt in order to access it (note that this is done using the mount device option in
the main TrueCrypt menu instead of the mount file option used with TrueCrypt files). Without mounting
the device it will appear as an unformatted drive when it is accessed by the file system. Once a
TrueCrypt volume has been created a second volume, or rather a hidden volume can be created within
it. This second volume is created with its own password and can be accessed when the original volume
is mounted. Depending on which password is entered either the original volume or the hidden volume
will be accessed. The volume headers (composed of data required to access the volume/files on it) are
located at the beginning of the original volume, in a space specifically left for them, with the original
volume header appearing first and the second volume header (or none if there is no hidden volume)
following it before the data of the original. In this way the presence of the hidden volume remains
secret since the space for the header volume is always left with what appears to be random data, even
in the case where there is no hidden volume.

Encrypted/Hidden OS

TrueCrypt can also encrypt the system drive/partition. In doing so, a boot loader is installed which is
responsible for prompting the user at startup for a password prior to loading the operating system. By
encrypting the operating system the user can achieve an extra level of confidentiality for their system
drive but more importantly they can also install a secondary, hidden operating system. This is done by
creating two partitions in the system drive, the inner and outer partitions. The primary operating
system is installed on the first partition while the second partition contains a hidden volume with a
clone of the operating system stored on it. For this reason the second partition is always larger than the
first since it requires space for the hidden volume as well. Depending on the file system used this could
force the second partition to be 2.1 times as larger as the first (for NTSF). When a hidden operating
system is installed it is accessed similar to how a hidden volume is accessed. During the boot sequence,
when TrueCrypt asks the user for a password the user can supply either the password for the normal
operating system or for the hidden one. TrueCrypt will then try and decrypt the data stored in the
header files for the two operating systems (or the data in the location of where the two header files
would be) and loads the operating system with the corresponding password. During the encryption
process of the system drive the user will be prompted to create a TrueCrypt Rescue Disk. This is to be
used in case of instances where the TrueCrypt boot loader becomes damaged for some reason or if
other similar corruption issues occur at launch. It is important to note that TrueCrypt will not proceed
until it has verified that the user has a working rescue disk for this purpose.

Plausible Deniability

Plausible deniability is a general term for hiding the fact that the user has hidden data, volume or
operating systems even if it is apparent that the user has encrypted data on their system. This is
accomplished by use of hidden volume and/or a hidden operating system since while it is obvious that
TrueCrypt is installed on your system, and that you have an encrypted drive, volume or files, there is no
clear indication to prove that the user has a secondary hidden volume or operating system. This is
important for instances where the user may be coerced into revealing their password for an encrypted
device. In an event like this the user only has to reveal the password for the original or dummy drive. In
order to be able to maintain this level of security it is important for the system to be free of clues that
would suggest the presence of a hidden operating system or volume. Doing so is referred to as
maintaining plausible deniability. Towards this ends the TrueCrypt website offers a set of suggestions
and practices that would help to remove the risk of leaving or creating such clues. Some of these
practices include using the dummy operating system as you primary OS so that an active use record is
maintained (a low level of use for that system could be discovered and would be suspicious) and placing
dummy files that may appear sensitive (but are not, or at least not as sensitive) on the original drive that
also contains a hidden volume. During the setup of a hidden operating system or volume TrueCrypt also
takes steps to help ensure plausible deniability such as overwriting the original (non-hidden) operating
system after the creating of the hidden OS in order to eliminate any logs of the TrueCrypt functions used
in its creation. One final note is that while random data (equivalently: encrypted data) may appear
suspicious and serve as a sign that encrypted data is present it can also be easily excused since there are
many reasons and ways in which random data can exist on a system (i.e. the drive has just been recently
formatted).

Multiple Users

In instances where a system is used by multiple users, particularly when multiple users do not share the
same level of security access or require that their own data remain available only to themselves or a
subset of the user group, it is important to maintain a level of access restriction. TrueCrypt will only
allow a drive to be mounted by someone with the necessary password, and as such this password
should only be given to those who are allowed to access the drive. However, once a drive has been
mounted it remains accessible to any of the systems users while it remains mounted. Switching the user
does not dismount a drive. It is also important to note that while any user can mount a drive they have
access to only the user who mounted a drive (or the system administrator) can dismount the drive. For
this reason it is important to maintain a clear and regimented set of procedures (involving the
dismounting of any drives) when switching between users in order to maintain the desired level of
confidentiality.

The following presents a brief performance evaluation of TrueCrypt under its various encryption
schemes. The evaluation was performed on the following system:

Evaluation

• Intel Pentium 4 CPU 2.00 GHz
• 256 MB of RAM
• Microsoft Windows XP Service Pack 3

The performance test was done using the same file for each encryption scheme. The file itself is an
audio file 8.56 MB in size and has a bit rate of 320 kbps. It is important to note that TrueCrypt
encrypts/decrypts its data ‘on the fly’ such that all computation is done in RAM and no data is saved on
the drive except for the final encrypted version (or decrypted version if the file is being moved). In the
case of an application reading a file from a TrueCrypt file or volume, TrueCrypt will decrypt the entire
file (in the case of a small file) for the application at once and will not need to be called again until it is
time to save the file. In the case of a large file (such as a video file like a movie) TrueCrypt will decrypt
the file in sections for the application, providing the decrypted data as needed. As a result the rate of
calls to TrueCrypt will depend on the bitrate of such a file. For the file used for the performance
evaluation this call was only needed once and as such only the first few seconds (particularly the time
required to run the performance tool, mount the file, open the file location and begin playing the file)
were recorded since only they possessed relevant data on TrueCrypts performance. The data was
gathered using Microsoft’s built in performance monitoring utility (perfmon.msc):

 Encrypt Decrypt

RAM
(bytes)

Processor

RAM
(bytes)

Processor

 Min Max
AVG %
Processor Min Max

Time
(s) Min Max

AVG %
Processor Min Max

Time
(s)

AES 9113600 9113600 0.568 0 6.25 11 8962048 9129984 0.827 0 7.813 34

Twofish 9121792 9383322 0.962 0 6.25 39 9388032 9416704 0.092 0 1.563 17

Serpent 6352896 7475200 0.725 0 4.688 28 7495680 7467008 0.25 0 1.563 25
Serpent-Twofish-
AES 7499776 7540736 0.756 0 10.938 31 7491584 7520256 0.276 0 1.563 34
AES-Twofish-
Serpent 7528448 8765440 1.078 0 12.5 29 8716288 8749056 0.732 0 10.938 32

Twofish-Serpent 8769536 8781824 1.227 0 10.938 19 8744960 8744960 0.195 0 1.563 24

AES-Twofish 8740864 8769536 1.116 0 10.938 21 8716288 8744960 0.313 0 3.125 20

Serpent-AES 8744960 8781824 1.897 0 14.063 18 8716288 8744960 0.213 0 1.563 22

As can be seen the table is broken up into two sections, one for the encryption process and one for the
decryption. Each section presents the same information regard the minimum and maximum amount of
RAM used by TrueCrypt during the duration of the test as well as the percentage of the processor used
(min max and average values), the test time is listed as a means to normalize the average values with
each other so that they are not taken out of context. The tests themselves can be broken up into phases
as shown in figure 8. It is worth mentioning that both the decryption and encryption test begin with
mounting the volume. This is done so that the encrypted/decrypted file is not already in the RAM at the
beginning of the test, providing more reliable results. From the data table it is clear that TrueCrypt uses

relatively static amount of RAM while the processor time varies depending on the encryption cipher.

Figure 8) the steps and corresponding processor usage involved in the
data recording phase for file encryption and decryption

The inclusion of the three different blocks ciphers allows the user to balance their choice versus security
requirements. While each cipher is considered safe and has yet to be cracked, each has a different
safety factor, which is represented by the number of rounds in the algorithm divided by the number of
rounds that have been jeopardized. AES has the lowest safety factor of the three with 1.42 (10/7)
followed by Twofish with 16/6 and then Serpent with 32/9. Upon regarding the table however it
appears that of the three standard choices (non cascaded) Serpent appears to be the best in both terms
of security and system resources used, while AES shows moderate performance for encryption and
somewhat poor performance for decryption while Twofish behaves in the opposite manner. This being
said however, all three algorithms perform well and the case can easily be made for a more rigorous
performance evaluation for a definitive result.

Conclusion

Based on the review and analysis the following points can be made about TrueCrypt

• Effective, versatile program with regards to the encryption mechanisms it utilizes and
incorporates

• It can be useful for mobile security (through use of the movable TrueCrypt file) or for in-depth
local security (using an encrypted volume or hidden OS), for single or multi-user systems while
also being able to provide a degree of plausible deniability assuming that appropriate user
precautions are taken.

• Can be used on a variety of platforms (FAT, NTSF) and operating systems (Windows Linux and
Mac OSX)

• Efficient in terms of the system resources it uses.

References

[1] “TrueCrypt Free Open Source On-The-Fly Encryption”, http://www.truecrypt.org/docs/

[2] Bruce Schneier, “Bruce Schneier: Twofish”, http://www.schneier.com/twofish.html

[3] Antoon Bosselaers, “The RIPEMD Page”, 25 August 2004,
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html,

[4] “Serpent Homepage”, http://www.cl.cam.ac.uk/~rja14/serpent.html

[5] Paulo S. L. M. Barreto, “Whirlpool Homepage”, 25 November 2008
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

[6] William Stalling, Cryptography and Network Security Principles and Practices 4th Edition, Pearson
Education 2006

[7] W. Trappe, L. C. Washington, Introduction to Cryptography with Coding Theory 2nd Edition,
Pearson education 2006

[8] Phillip Rogaway, Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes
OCB and PMAC, 24 September 2004, http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

[9] Luther Martin, Voltage Superconductor: Understanding AES-XTS,

http://superconductor.voltage.com/2009/07/understanding-aesxts-part-1.html

[10] http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, page 16

[11] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, “Twofish: A 128 bit block

Cipher”, NIST AES Submission, June 15th 1997

[12] Morris Dworkin, CSRC Cryptography Toolkit, December 4 2001,

http://csrc.nist.gov/archive/aes/index.html

http://www.truecrypt.org/docs/�
http://www.schneier.com/twofish.html�
http://homes.esat.kuleuven.be/~bosselae/ripemd160.html�
http://www.cl.cam.ac.uk/~rja14/serpent.html�
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html�
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf�
http://superconductor.voltage.com/2009/07/understanding-aesxts-part-1.html�
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf�
http://csrc.nist.gov/archive/aes/index.html�

Appendix A

Byte Substitution Matrix:

Rijndael

Column Mixing:

𝐶𝐶𝑐𝑐𝑚𝑚 = �
2 3
1 2

1 1
3 1

1 1
3 1

2 3
1 2

�

⎣
⎢
⎢
⎢
⎡
𝐶𝐶𝑟𝑟𝑠𝑠 00 𝐶𝐶𝑟𝑟𝑠𝑠 01
𝐶𝐶𝑟𝑟𝑠𝑠 10 𝐶𝐶𝑟𝑟𝑠𝑠11

𝐶𝐶𝑟𝑟𝑠𝑠 02 𝐶𝐶𝑟𝑟𝑠𝑠 03
𝐶𝐶𝑟𝑟𝑠𝑠12 𝐶𝐶𝑟𝑟𝑠𝑠 13

𝐶𝐶𝑟𝑟𝑠𝑠 20 𝐶𝐶𝑟𝑟𝑠𝑠 21
𝐶𝐶𝑟𝑟𝑠𝑠 30 𝐶𝐶𝑟𝑟𝑠𝑠 31

𝐶𝐶𝑟𝑟𝑠𝑠 22 𝐶𝐶𝑟𝑟𝑠𝑠 23
𝐶𝐶𝑟𝑟𝑠𝑠 32 𝐶𝐶𝑟𝑟𝑠𝑠 33⎦

⎥
⎥
⎥
⎤

MDS Matrix (in HEX):

𝑅𝑅𝐴𝐴𝑆𝑆 = �
01 𝐸𝐸𝐺𝐺
5𝐵𝐵 𝐸𝐸𝐺𝐺

5𝐵𝐵 5𝐵𝐵
𝐸𝐸𝐺𝐺 01

𝐸𝐸𝐺𝐺 5𝐵𝐵
𝐸𝐸𝐺𝐺 01

01 𝐸𝐸𝐺𝐺
𝐸𝐸𝐺𝐺 5𝐵𝐵

�

Twofish

Initial Permutation:

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 32
4 36

64 96
68 100

8 40
12 44

72 104
76 108

1 33
5 37

65 97
69 101

9 41
13 45

73 105
77 109

16 48
20 52

80 112
84 116

24 56
28 60

88 120
92 124

17 49
21 53

81 113
85 117

25 57
29 61

89 121
93 125

2 34
6 38

66 98
70 102

10 42
14 46

74 106
78 110

3 35
7 39

67 99
71 103

11 43
15 47

75 107
79 111

18 50
22 54

82 114
86 118

26 58
30 62

90 122
94 126

19 51
23 55

83 115
87 119

27 59
31 63

91 123
95 127⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

Serpent

S-Boxes:

𝑆𝑆0 = [3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12]
𝑆𝑆1 = [15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4]
𝑆𝑆2 = [8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2]
𝑆𝑆3 = [0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14]
𝑆𝑆4 = [1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13]
𝑆𝑆5 = [15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1]
𝑆𝑆6 = [7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0]
𝑆𝑆7 = [1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6]

Final Permutation:

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 4
64 68

8 12
72 76

1 5
65 69

9 13
73 77

16 20
80 84

24 28
88 92

17 21
81 85

25 29
89 93

2 6
66 70

10 14
74 78

3 7
67 71

11 15
75 79

18 22
82 86

26 30
90 94

19 23
83 87

27 31
91 95

32 36
96 100

40 44
104 108

33 37
97 101

41 45
105 109

48 52
112 116

56 60
120 124

49 53
113 117

57 61
121 125

34 38
98 102

42 46
106 110

35 39
99 103

43 47
107 111

50 54
114 118

58 62
122 126

51 55
115 119

59 63
123 127⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

S-Box (In HEX):

Whirlpool

RIPEMD-160

Initial 𝑆𝑆0 Values:

[3]

Constant Values𝐾𝐾:

𝐾𝐾𝑙𝑙 (𝑗𝑗) = 𝐾𝐾𝑟𝑟 (𝑗𝑗) =

32 bit Message Word 𝑅𝑅(𝑗𝑗)

𝑅𝑅𝑙𝑙 (𝑗𝑗) =

𝑅𝑅𝑟𝑟 (𝑗𝑗) =

Rotation bits 𝑆𝑆(𝑗𝑗)

𝑆𝑆𝑙𝑙 (𝑗𝑗) =

𝑆𝑆𝑟𝑟 (𝑗𝑗) =

Appendix B

SALT:

A SALT is a series of random bits that is used to obscure a source key, intending to make dictionary
attack much more difficult if not infeasible. For instance, assume a user has a password that is a word in
a particular language. A dictionary attack will make use of this by trying the different likely words as a
key for decrypting an encoded message. However, if a SALT is used, the bitstring representing the users
word will be augmented by the SALT bitstring (according to the particular method being used), thus
making the key used for encryption different (or rather a modified version) of that which would have
normally corresponded directly to the key from the ‘language word’.

