
his is the first article in a three-part
series that will focus on the main
processes used to model commodity

spot and forward prices. Stochastic processes
form the basis of derivatives pricing and risk
management models, as they allow us to
model possible price evolution through time,
and assign probabilities to possible future
prices as a function of current spot and
forward prices and a set of parameters that
describe the possible variability of those prices
over time, (hopefully matching empirical
patterns).

Characteristics of Commodity Prices
Before starting with the description of the

mathematical models, it is important to keep
in mind the actual behaviour of commodity
prices that we are trying to model.

Commodity prices are somewhat different

than other prices set in financial markets. Due
to short term supply and demand imbalances,
prices for short-term delivery of the
commodity - or spot prices - tend to exhibit
significantly different behaviour than prices
for delivery of the commodity in the future, or
forward prices.

Spot Prices: There are several important
properties associated with the volatility of spot
energy prices, principal among them being:

- Seasonal Effects: - In response to
cyclical fluctuations in supply and
demand mostly due to weather and
climate changes, energy prices tend to
exhibit strong seasonal patterns.
- Mean-Reversion: - Prices tend to
fluctuate around and drift over time to
values determined by the cost of
production and the level of demand.
- Occasional Price Spikes: - Large
changes in price attributed to major
shocks (e.g. generation/transmission
outages, unanticipated political events …).

Forward Prices: The forward markets
provide the ‘best guess’ about the future spot
price for different maturities. As we can see in
the adjacent chart, there can be dramatic
differences between prices for delivery of
electricity in successive months.

In this first of three articles, we will describe the most commonly used process,
Geometric Brownian Motion, and in the second and third pieces, we will
introduce two processes that are gaining rapid acceptance for a wide
range of applications involving commodity derivatives: Mean Reversion and
Jump Diffusion. We will talk about the main uses of each of these processes
and some of the pitfalls that practitioners should take into account when
using these processes for pricing and managing the risk of various energy
derivatives structures. By Carlos Blanco, Sue Choi & David Soronow, Financial
Engineering Associates.

Energy Price Processes
Used for Derivatives Pricing &
Risk Management

ENERGY PRICING

74 Commodities Now, March 2001

T

 J
an

 9
2

 J
an

 9
3

 J
an

 9
4

 J
an

 9
5

 J
an

 9
6

 J
an

 9
7

 J
an

 9
8

 J
an

 9
9

 J
an

 0
0

 J
an

 0
1

0

2

4

6

8

10

$/
M

M
B

T
U

Henry Hub NYMEX Front Month Weekly Prices
January 1992 - February 2001

Energy prices typically display seasonal
variations in volatility, occasional price

spikes, and a tendency to quickly revert to
the average cost of production. Stochastic

Processes used to model Commodity
prices should capture the specific
characteristics of the commodity. 



In addition to seasonality and mean
reversion, forward prices are characterised by
exhibiting a different behaviour depending on
the time to maturity. As contracts get closer to
their maturity date, the volatility usually
increases, (Samuelson’s Hypothesis).

In order to capture energy markets reality -
regardless of the price process being used - we
should aim to incorporate, as the model’s
essential building blocks, the information
contained in the forward price term
structures(i.e. expected prices for delivery at
different times), and the forward volatility term
structure (i.e. expected variability of prices at
different points in time). In the next two
articles of this series, we will analyze the more
sophisticated models, which also incorporate
into the analysis the mean reversion and
price spikes observed in many
commodity prices.

Derivatives pricing and Risk
Management models are based on some
type of assumption about the price
evolution of the underlying commodity.
Each of the processes that we are going to
present have a set of advantages and
disadvantages. The more simple ones may
provide a simplistic view of reality, but allow
us to characterise the multiple sources of risk
in a very limited number of parameters, and
therefore are easier to interpret and calibrate
from market prices. The more complex
processes provide the ability to incorporate
more information about the possible price
changes, but at the cost of having to estimate
many more parameters and increasing the
probability of model errors.

Brownian Motion, Random Walks &
Black-Scholes

The most known price process is ‘Brownian
Motion’, which takes the name from Scottish
botanist Robert Brown, who in 1827 found
that particles within water-suspended pollen
grains followed a particular random
movement that resembled a zigzag path. Even
particles in pollen grains that had been stored
for a century moved in the same way.

Since then, Brownian Motion has been
used in multiple fields, including in finance, to
model the behaviour of security prices. Over
time, in the finance literature, Brownian
motion came to be called ‘Random Walk’, in
reference of the path of a drunk after leaving
the bar on his way home.

The main properties of random walk
process are:

- Price changes are independent of
each other (no memory).

- Price changes have a constant mean 
and volatility.
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(Forward Price Curve for January 8th, 2001)

Geometric Brownian Motion Lognormal price diffusion

Mean-Reversion Lognormal price diffusion with mean reversion

Mean Reverting Jump Diffusion Same assumptions as the mean-reversion processes

and adds a separate distribution for price jumps.

Main Stochastic Processes Used to Value Commodity Derivatives
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Brownian Motion With & Without Drift

Source: NYMEX

(Forward Price Curve for January 8th, 2001)

If we are using the spot price only, we need
to add a drift to reflect the expected change
in price to converge to the observed forward
price. The commodity yield plays a large role

in determining that drift. 

When we are simulating forward prices, it
is common to assume that the drift is zero,

and use the current forward price as the
starting point. 

Drift Rate Determined by
Commodity Yield

No Drift



For most commodities, it is possible to
observe or build a forward price curve that

provides the expected level of
prices for different delivery dates.
Within the forward price curve,
the relation between different
commodity prices is governed by
the commodity yield. In order to

incorporate the term structure of commodity
yields, it is necessary to add a drift component
to the Brownian motion.

Geometric Brownian Motion & Black-
Scholes

In 1973, Fischer Black and Myron Scholes
published their seminal paper on options
pricing. The Black-Scholes option pricing

model - which was based on the extension of
Brownian motion contributed to the explosive
growth in trading of derivatives.

The original Black-Scholes model allowed
only for pricing options on a non-dividend
paying stock. Extensions to the Black-Scholes
model, such as the Garman-Kohlhagen and
Black(1976) model, allowed for pricing global
commodity options, and options on futures
respectively.

Geometric Brownian motion implies that
returns have a lognormal distribution, meaning
that the logarithmic returns, which are simply
continuously compounded returns follow the

normal (bell shaped) distribution. Consistent
with reality, the lognormal distribution
restricts prices from falling below zero (eg. the
maximum negative return is 100%).

If S is the price, the change in price can be
approximated by:

∆ S = µ S∆t + σ S ε√∆t

Over a short period of time, the
logarithmic change in  price is assumed to be
normally distributed with:

- Mean or Drift  µ S∆t

with  µ = r - q -      σ2

- Standard Deviation  σ S ε√∆t
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Drifting Brownian Motion

Price Change Process = Drift effect (Non-random) + Volatility effect (Random)

Price Evolution From ti to ti+1

Price 
at ti+1

Price 
at ti

Drift
Component

Random
Component

r = Risk free rate
q = Commodity yield
σ = Annualised standard

deviation of returns
(ti+1 - ti) = Time step in years
ε i+1 is the random shock to

price from t to t+1

exp = the base of the natural logarithm 
ti ti+1

S (ti)

S (ti+1)
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Geometric Brownian Motion - Sample Price Paths
Forward Price = $30 - Volatility = 50%

Source: @Energy. Financial Engineering Associates

For most commodities, it is
possible to observe or build
a forward price curve 

We can see randomly
simulated price paths for daily

steps during a year. 

S(ti+1) = S(ti) exp [r - q - σ2 ] (ti+1 - ti) + σ ε i+1  S ε√(ti+1 - ti)  √1
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GBM Parameters: Volatility
In order to simulate possible future prices

following GBM, we just need to know the
current asset price, and the expected variability
of the asset (volatility).

There are several methods to estimate
‘expected’ volatility.

Some traders prefer to use estimates based
on historical prices (‘historical volatilities’),
while others prefer to use the volatilities
implied by option market prices (‘implied
volatilities’).

How to Calculate Historical Daily &
Annual Volatility in Excel

1. Choose a particular price series. Prices
could be hourly, daily, weekly, etc. Column A
(rows 2–11) contains historical prices for asset
x over a ten-day period.

2. Calculate the logarithmic price changes.
The continuous returns are the natural logs of
the price relatives. For example, cell B3’s
formula is =LN(A3/A2). Column B (rows
3–11) shows the daily returns, denoted u.

3. Use Excel’s built-in STDEV (sample
standard deviation) function to calculate the
daily volatility (cell B13).

Under geometric Brownian Motion,
volatilities are proportional to the square root
of time. The process of converting volatilities
between different time horizons is known as
the square-root-of-time rule. This rule allows
us to annualise hourly, daily, weekly, monthly
or any other volatilities.

4. Using the square-root-of-time rule, we
annualise to obtain  s* (cell B15) assuming
that time is measured in trading days and there
are 250 trading days per year. The formulas
are:

B14: =SQRT(250)
B15: =B13*B14

• Example 1: Suppose we have computed
the daily volatility as being 1.26%. Then the
annualized volatility would be equal to 19.98%
( 1.26% x  √ 250  ).

The square root of time rule is commonly
used in Risk Management to convert certain
Value at Risk measures for different holding
periods.

Introducing ‘Seasonality’ in the Simulation
with the Forward Price & Volatility Curve

Prices and volatilities have a strong
seasonal component that should be taken into
account at the time of describing the possible
evolution of prices through time.

We can replace the constant volatility
parameter by a time dependent one (see figure
opposite).

In this figure, we can observe simulated
paths for a Electricity Forward Price Curve
with strong price seasonality, and volatilities
of 50% during each summer month (July,
August, September) and 20% for all other
months. We can observe the strong seasonal
component in price variations given to
seasonal price differences.

Pitfalls of Using Geometric Brownian
Motion to Model Commodity Prices
1. Energy prices are not ‘exactly’ lognormally
distributed.

Several empirical studies have shown that
energy prices experience significant variations
from lognormality. In the next two articles, we
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Price Histogram at Expiration - 
Geometric Brownian Motion

Forward Price = $30 - Volatility = 50%; 360 days
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The lognormal distribution allows for
commodity prices between zero and

infinity and has an upward bias
(representing the fact that commodity

prices can only drop 100% but can
rise by more than 100%).
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will introduce Mean Reversion and Jump
Diffusion processes that better characterise the
behaviour of certain commodities, especially
electricity.

2. Extreme Price changes may be
underestimated by the lognormal distribution

A direct consequence of the previous
pitfall is that Geometric Brownian motion
does not capture extreme price changes
accurately. This pitfall is particularly
important for Risk Management and the
pricing of certain exotic options.

3. Volatilities are not known.
The only unknown parameter in the

Geometric Brownian motion is the volatility
of the underlying. The ideal volatility to use
for modelling purposes would be the ‘future
volatility’, but by definition, it is not possible
to know the ‘future volatility’ until we know
what has happened in the market, and by that
time has become ‘historical volatility’.
Therefore, the volatility curve used as an input
should be our "best estimate" of future
volatility, and reflect our expectations
regarding the variability of the asset price over
the period of time under consideration.

4. Volatilities are not constant.
Any trader knows that volatilities change

through time, and the assumption of constant
volatilities may not be very realistic. More
complex processes incorporate time varying
volatility, and some Risk Management models
assume that volatilities fluctuate just as asset
prices do.

5. Beware of the model results for very high
volatilities (e.g. above 300%).

Price paths generated with GBM with very

high volatilities can be very different than what
most traders have in mind at the time of using
that process. The technical explanation is that
when volatility is significantly large, the drift
component starts to dominate the price
evolution. For assets with very high volatilities
and mean reversion (e.g. power), it is highly
recommended to use other processes that
better describe the evolution of the underlying,
such as mean reversion or jump diffusion.

Conclusion
The development of general diffusion

models contributed to the development of the
options markets. Today, these models are still
the most commonly used by market
practitioners, largely due to the relative
simplicity of estimating input parameters.
However, as we will point out in the next
articles, these models fail to capture many of
the key characteristics of commodity prices.
In particular, commodity prices tend to
fluctuate around and drift over time to values
determined by the cost of production, and
often experience large changes in price due to
shock events. The mean reversion model and
jump diffusion model aim to modify the
general diffusion price process in order to
capture these additional market realities. ■
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FEA @Energy: Monte Carlo Simulation of Price Processes
Forward Price Curve
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Monte Carlo Sample Price Paths - Lognormal Process

Source: @Energy. Financial Engineering Associates

Market Inputs Value
Spot Prices
Interpolation 1
Futures Contract

Simulation Inputs Value
Simulation sate date 2/4/05
Simulation end date 2/12/05
Sampling Frequency d

Model Inputs Value
Model Black Scholes
Mean-Revision rate 222
Cap on Price
Floor on Price
Yearly jump frequency 7
Expected jump size 1
St. Dev. of jump 0

Other Inputs
Value Date* 2/5/05
Interest rate 5.0096
Seed*

Histogram Inputs
Simul* 10000
Min-Max* 0


