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PREFACE 

 

This thesis has been organized as a series of manuscripts that will be submitted for 

publication in scientific journals. Some repetition of introductory and methodological material 

was unavoidable. 
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ABSTRACT 

 

Currently there are three companies producing bitumen from the Athabasca Oil Sands 

Region located near Fort McMurray, Alberta, Canada. Extraction of bitumen produces solid 

(sand) and liquid (water with suspended fine particles) tailings material, called oil sands process- 

affected materials (OSPM). These waste materials are stored on site due to a “zero discharge” 

policy and must be reclaimed when operations end. The OSPM is known to contain naphthenic 

acids (NAs) and polycyclic aromatic hydrocarbons (PAHs) and has high pH and salinity. A 

possible method of reclamation is the “wet landscape” approach, which involves using OSPM to 

form wetlands that would mimic natural wetland ecological functioning. This study investigated 

the effects of wetlands formed with OSPM on wood frog larvae (Rana sylvatica), using 

endpoints including survival, growth, time to metamorphosis, hormonal status, and detoxification 

enzyme induction [ethoxyresorufin-o-dealkylase (EROD) activity]. 

 
In-situ caging studies were completed in 2006 and 2007.  Four wetlands were studied in 

2006 and 14 wetlands were studied in 2007. The 2006 season saw a host of problems that were 

resolved for the 2007 season. In 2006, tadpole survival did not differ among reference wetlands 

and old OSPM-affected wetlands but there was 100% mortality of tadpoles in the young OSPM-

affected sites that contain the highest concentrations of toxic components. Results were similar in 

2007, with tadpoles raised  in young OSPM-affected wetlands having 41.5%, 62.6%, and 54.7% 

higher tadpole mortality than old OSPM-affected, young reference, and old reference wetlands, 

respectively. In 2007, tadpoles from young OSPM-affected sites had delayed metamorphosis (12 

days longer than tadpoles from old reference wetlands and 18 days longer than tadpoles in old 

OSPM-affected wetlands). The thyroid hormone ratios of tadpoles in young OSPM-affected 

wetlands were between 25% and 42% lower than tadpoles in all other wetlands groups. The 

EROD activity of tadpoles in young OSPM-affected wetlands was an average 223% higher than 

those in old OSPM-affected wetlands, showing us that tadpoles were responding to higher levels 

of contaminants in young OSPM-affected wetlands. Size differences were only noted in 2007, 

most likely not as a result of exposure to OSPM, but due to differences in population density. 

The results of this study lead us to believe that toxicity due to OSPM decreases as wetlands get 

older and OSPM-affected wetlands could support native amphibian populations if they are 
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allowed to mature. Since we considered wetlands to be old if they were seven years or older and 

the fact that old-OSPM wetlands showed effects on tadpoles similar to those of reference 

wetlands and showed much less toxicity than young OSPM-containing wetlands, we believe 

wetlands that are at least seven years old would sustain amphibian life. 
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CHAPTER 1:  LITERATURE REVIEW 

 

1.1 Oil Sands History and Background 

 
 Bituminous sands, more commonly known as oil sands, are heavy oil (bitumen) packed 

between sand particles that are associated with silt, clay, and water (FTFC, 1995). Oil sands 

deposits are found in many areas of the world including Venezuela and the United States, with 

some of the largest being located in western Canada (Rogers, 2003).   

 

 Oil sands deposits in Canada are found in the provinces of Alberta and Saskatchewan. In 

Alberta there are three main deposits that cover an area of approximately 146 280 km2 (AEUB, 

2006). These deposits are the Peace River, Cold Lake, and Athabasca Oil Sands (AOS) deposits 

(Figure 1.1). The Athabasca deposit is the largest, covering approximately 102 760 km2, and is 

the only deposit in which conventional surface mining methods are used (AEUB, 2006; Gentes 

et al., 2006). 

 
 The origin of oil sands is a disputed issue (Speight, 1999). The most widely accepted 

theory as stated by Squires (2005) is called the remote origin by Speight (1999) and states that 

bitumen was formed by oil that migrated into a sand deposit. At some point after migration, 

pressure from overburden was removed allowing lighter fractions of oil to escape, leaving 

heavier portions behind that we call bitumen. 
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 Oil sands have been known to exist for a long period of time. However, it was not until 

the past century that exploitation of these resources was attempted on an industrial scale. Large 

scale production of oil by extraction of bitumen from the AOS did not progress beyond pilot 

projects until the 1960s and 1970s (Scott and Fedorak, 2004). Currently, there are three major 

companies (Syncrude Canada Ltd., Suncor Energy Inc., and Albian Sands Energy Inc.) mining 

oil sands using surface mining techniques, with many other surface mining operations in the pre-

production phase. Due to recent increases in production, approximately 25 percent of Canada’s 

oil production comes from the oil sands and this amount is expected to increase as demand for 

oil increases and more companies begin mining (Leung et al., 2003). An increase in production 

will be accompanied by a large increase in the production of tailings materials and disturbed 

land. Currently, there is a large amount of research being conducted into reclamation options and 

their effects on the environment. 

 

1.1.2 Mining 

 
Surface mining operations in the Athabasca oil sands deposit are completed using typical 

mining methods. Vegetation is stripped and other overlying materials (overburden), such as soil 

and rock, are removed. Once exposed, raw oil sands are dug up and hauled away using large 

stripping shovels and heavy-haul trucks (Squires, 2005).  

 
Surface mining techniques are only feasible for bitumen deposits that exist under less 

than 80 metres of overlying materials (AEUB, 2006). Any oil sands covered by more than 80 

metres overburden must be recovered by other, more economically and technologically feasible 

methods. These include different forms of in-situ oil recovery, such as steam stimulation, in-situ 

combustion, and other forms of enhanced oil recovery (EOR) that increase the oil’s ability to 

flow (Speight, 2007). After EOR techniques have been employed oil can be pumped to the 

surface in a fashion similar to conventional oil deposits. Currently less than ten percent of 

Canada’s oil sand deposits are suitable for surface mining (Speight, 1999). 
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Figure 1.1 Map showing Alberta’s major oil sand deposits (modified from Source: Einstein, 
2006) 
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1.1.3 Extraction and Upgrading 

 
 Oil bound in the form of oil sand must be extracted from the associated solid particles. 

The extraction method used today is an adaptation of the Hot Water Extraction Process (Figure 

1.2) developed by Dr. Karl Clark (Clark and Pasternack, 1932; FTFC, 1995). Once raw oil sands 

are mined they are sent to the extraction plant as a slurry of sand and water. In the extraction 

plant this slurry is mixed with sodium hydroxide (NaOH) and hot water (Clemente and Fedorak, 

2005). Tailings water has a pH in the range between 8 and 9 (Rogers, 2003). The increase in pH 

resulting from addition of NaOH causes naturally occurring carboxylic acids (naphthenic acids) 

to be come soluble in water. Once naphthenic acids are dissolved, they exhibit surfactant-like 

properties that aid in the separation of oil from the sand (Schramm et al., 2000). This resulting 

slurry is then screened to remove materials too large for the upgrading process and sent on to the 

primary separation vessels, where components of oil sands are segregated based on density. 

Heavy components such as sand move to the bottom, while bitumen floats to the top as froth and 

is removed and sent for upgrading (Schramm et al., 2000). The left over materials include sand 

and water with suspended fine solids.  

 

Once extracted, bitumen is sent for upgrading. The final product of upgrading is called 

sweet synthetic crude (SSC). The SSC oil has a shorter carbon chain, lower molecular weight, 

and is less viscous than bitumen. Further upgrading and processing results in the formation of 

other petroleum products such as gasoline and kerosene. A more in-depth review of upgrading 

and refining process can be found in Speight (1999 and 2007). 

 

1.1.5 Production of Tailings Materials 

 
Surface mining for oil sands creates a major environmental disturbance by removing 

large amounts of overburden and oil sand [approximately two of oil sand must be extracted to 

produce one barrel of crude oil (Mikula et al., 1996)], as well as using large amounts of water in 

the extraction process. The extraction process also produces large amounts of tailings waste. 

Approximately four cubic meters of fluid tailings are generated for each cubic metre of oil sand  



Oil sand Hot water, NaOH 

Tumbler 

Screens 

Primary 
separation 
vessel 

Froth 
(Bitumen) 

Upgrading 

Froth 
(Bitumen) 

Tailings 
Oil 

Recovery 

Tailings (Fines, Water, Sand) 
 

 
 
 
 
Figure 1.2 Diagram outlining the Hot Water Extraction Process (Clark and Pasternak, 1932) that 
is used for separating bitumen from raw oil sand.
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that is extracted (Madill et al., 2001). Oil sands tailings are comprised of sand, silt, clays, water, 

and other dissolved materials. Also associated with the tailings is unrecoverable bitumen, which 

accounts for approximately two percent (FTFC, 1995) of the final tailings volume (Holowenko et 

al., 2002). The solid and liquid portions of the tailings waste can collectively be referred to as oil 

sand process-affected materials (OSPM). Provincial legislation does not allow oil sands 

companies to discharge any of the tailings waste into the surrounding environment, so all of the 

OSPM is stored on-site in large ponds (tailings ponds). Here heavier solids, mainly sand, settle 

out quickly and form a beach in tailings ponds leaving silt and clay (fines) suspended in water.  

Liquid tailings consist of process-affected water and fine tails. After further settling and 

compaction of fine particles in water, the resulting material is called mature fine tailings (MFT). 

The MFT are approximately 30% solids and 70% process-affected water (Mikula et al., 1996).   

 

Another tailings product is called consolidated tailings (CT). The fine tails portion of 

MFT can take thousands of years to completely settle out if not treated (Mikula et al., 1996). One 

method of treating MFT is by the addition of coagulants, such as gypsum, which can greatly 

increase the speed of settlement of suspended fine particles. The coagulated final product is CT, 

which can help speed reclamation by using the MFT to produce a stable material that can be used 

in reclamation (Chalaturnyk et al., 2002). Although a large portion (> 70%) of tailings water is 

recycled back into the process (Quagraine et al., 2005), liquid tailings materials are accumulating 

at 100 000 m3 / day (Madill et al. 2001). It is predicted that more than one billion cubic metres of 

tailings will eventually have to be reclaimed (Leung et al., 2001). 

 
 As well as the sheer volume of tailings there is concern due to proven toxicity of many 

tailings constituents to living organisms. Increased salinity, polycyclic aromatic hydrocarbons in 

the form of unrecovered bitumen, and concentrated naphthenic acids are all sources of toxicity in 

liquid tailings material (Leung et al., 2001). Tailings have been shown to adversely affect fish 

(Nero et al., 2006a,b; Peters et al., 2007; Siwik et al., 2000), amphibians (Pollet and Bendell-

Young, 2000), birds (Gentes et al., 2006; Gurney et al., 2005; Smits et al., 2000), mammals 

(Rogers, et al., 2002), and plants (Renault, 2005).  
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1.1.6 Reclamation of Mines and Tailings Materials 

  

After mine closure, mining companies are required by law to return the mine lease areas 

to a state similar to the pre-production state. This means that the area must be able to support a 

functioning ecosystem, one that can sustain populations of native flora and fauna expected to 

inhabit the area naturally (Madill et al., 2001).  

 

 One method of reclamation proposed is called the “wet landscape approach”. This 

involves the formation of different types of wetlands (ponds, lakes) from tailings materials such 

as MFT and CT (Gulley and MacKinnon, 1993; Madill et al., 2001). To form these wetlands, 

mined out pits, which would not allow OSPM to escape, would be lined with tailings (CT and 

MFT) and filled with process-affected water and/or clean water. In time, it is hoped these created 

wetlands will support a natural wetland ecosystem (Siwik et al., 2000). However, since tailings 

materials have been shown to cause toxic effects to wildlife (Gentes et al., 2006) these wetlands 

have to be proven to become less toxic as they mature and be able to support organisms expected 

to inhabit the area. This study used a native amphibian, the wood frog (Rana sylvatica), as a bio-

indicator to increase knowledge of the success of detoxification and the ability of wetlands 

formed with OSPM to sustain populations of indigenous amphibians. 

 

1.2 Bioindicators 

 
The use of bioindicators as a method for assessing environmental impacts caused by 

human activities has been increasing greatly in recent years (Venturino et al., 2003). A bio-

indicator, as described in Olsgard (2007), is a living species that can act as an “early warning” of 

potential toxicity or damage to an ecosystem, as a result of exposure to contaminants. A 

bioindicator should have an important function in its ecosystem, be widely distributed, and have 

measurable biological responses that are reproducible when exposed to pollutants. Amphibians 

can be considered to be good bio-indicators because they are sensitive to contaminant exposure, 

are representative of aquatic life (Cooke, 1981; Gupta et al., 2007), and have been well studied in 

relation to environmental problems. Also, amphibian metamorphosis is a highly visible 

biological change which can be altered by environmental conditions and exposure to pollutants. 
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They reflect both terrestrial (adults) and aquatic (larvae) habitats, and they are also integral to 

food webs, playing important roles as both a prey and a predator species. For these reasons, R. 

sylvatica (Pollet and Bendell-Young, 2000) and other amphibians (Fort et al., 1999; Harris et al., 

1998) have been used as indicators of environmental health in various ecosystems. 

 

1.2.1 Amphibian use in Toxicology  

 
 The use of amphibians in toxicology has increased in recent years. This has been a result 

of the acknowledgement that amphibians are sensitive to environmental contaminants, are 

representative of aquatic life spending their larval (tadpole) life stage in the aquatic environment, 

and may show readily visible signs, such as deformations, as a result of exposure to 

contaminants (Cooke, 1981; Storrs and Kiesecker, 2004). 

 
 Amphibians are thought to be sensitive to man-made contaminants for a number of 

reasons. First, their skin is thinner and therefore more permeable to contaminants than other 

forms of wildlife (Storrs and Kiesecker, 2004). Also, frogs have an area of skin on their abdomen 

that is more absorptive of water (Wassersug, 1997) and therefore likely to absorb toxicants more 

readily. Secondly, amphibians have a complicated life cycle that is under highly coordinated 

hormonal control (Shi, 2000; Fort et al., 2007), which can be used as an indicator of exposure to 

contaminants. Further, their eggs, larvae, and adult stages may differ in response to exposure to 

the same toxicants such as pesticides (Cooke, 1972; Harris et al. 2000). As a result, amphibians 

have been used as test animals in environmental toxicology studies pertaining to many different 

anthropogenic contaminants, such as polychlorinated biphenyls (PCBs) (Gutleb et al., 2000), 

petrochemicals (Huang et al., 2007), and pesticides (Freeman and Rayburn, 2005; Fort et al., 

2004; Diana et al., 2000). 

 

1.2.2 Amphibian Caging Studies 

 
 Amphibian in-situ caging studies involve raising amphibians or their larvae in an 

enclosure or cage. Cages are usually made of a wooden or plastic frame and some type of mesh 

screen and are located in an area (usually a wetland) to be investigated (Harris et al., 2001). 
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Recently, amphibian caging studies have been identified as a valuable method for environmental 

studies in toxicology (Fort et al., 1999; Chinathamby et al., 2006) and ecology (Eaton et al., 

2004; Harris et al., 2001). Caging studies allow researchers to control some variables associated 

with field studies, such as predation and difficulties in obtaining adequate numbers of study 

organisms. At the same time, caging studies permit researchers to keep environmental 

parameters such as temperature, photoperiod, and water chemistry identical to those encountered 

in regular field studies (Harris et al., 2001). In this respect, in-situ caging studies would fall 

somewhere in between laboratory and field based studies. The trade-off for having a higher 

density of animals in a restricted area and the need for food supplementation is off-set by the 

benefit of animals being able to experience naturally encountered conditions. 

 
 

1.2.3 Wood Frog (Rana sylvatica) Life History 

 

The wood frog is native to the northeastern United States and most of Canada (including 

the AOS), including Alaska and the Northwest Territories (Figure 1.3). Wood frogs are a species 

of “true frog”, which have the general characteristics of webbed toes on their hind limbs and 

visible dorso-lateral ridges on their trunk. Wood frogs usually have a dark mask around the eyes. 

Their color is generally brownish but may range from light brown to green to nearly black 

(Government of Alberta, 2002).  

 

Wood frogs are generally found in moist, shaded areas such as marshes and damp 

woodlands. They are quite mobile in search of food items, such as insects and other small 

invertebrates. The ability of the wood frog to reside as far north as Alaska is due to their ability 

to endure freezing. Wood frogs endure freezing by increasing the concentration of glucose in 

cells, which acts as a cryoprotectant (Hemmings and Storey, 1996). Also, the presence of 

specialized blood proteins, called ice nucleating proteins, control ice formation in body fluids 

(Storey and Storey, 1992). These proteins also allow them to be active and begin reproductive 

activities as early as March when ice may still be present on wetlands, which is earlier in the year 

than any other anurans in the area. 
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Wood frogs mate between early April and mid-June. The large, round, jelly-like egg 

masses laid by the females can contain several thousand eggs. Wood frogs congregate at 

breeding areas and many egg masses are usually found together. Eggs hatch in approximately 

three weeks into the larval (tadpole) stage. The tadpoles metamorphose into frogs in 6 to 12 

weeks depending on water temperature (Government of Alberta, 2002; Northern Prairie Wildlife 

Research Center, 2006). 

 

1.2.4 Amphibian Metamorphosis 

 
Anurans, such as Rana sylvatica, have a dual life stage after hatching from eggs.  

Metamorphosis is a period of rapid changes and development from the free swimming, larval 

(tadpole) form to the mostly terrestrial, tetrapod, juvenile frog stage. During metamorphosis, 

almost every body system undergoes drastic changes (Degitz et al., 2005). New structures are 

also formed, such as limbs. A detailed review of amphibian metamorphosis is published by Shi 

(2000).  

 
Metamorphosis has three phases. First, premetamorphosis occurs without the influence of 

thyroid hormones (THs). It is distinguished by formation of hind limbs. Secondly, 

prometatmorphosis is a period of time when THs start to increase in concentration. Thirdly, the 

metamorphic climax is defined by the emergence of forelimbs, resorption of the tail, and a large 

spike in the amount of thyroid hormone concentrations. Extensive changes in internal organs, 

such as remodeling of the gastro-intestinal tract and a change from ammonia excretion to urea 

excretion within the liver, also take place during the metamorphic climax (Shi, 2000). In the 

Gosner (1960) format for staging amphibians, the metamorphic climax starts at stage 42. 

Metamorphosis has been extensively studied and is known to be under control of thyroid 

hormones and the hypothalamic-pituitary-thyroid axis (HPT) (Galton, 1988, 1992; Shi, 2000; 

Tata, 2006; Fort et al., 2007). After metamorphic climax, the tails of tadpoles are fully resorbed 

and the organism left is a juvenile frog. 
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1.3 Biomarkers of Exposure to Contaminants 

 

A biomarker, as defined by Shugart et al. (1992), is a biochemical or cellular change that 

occurs as a result of exposure to a xenobiotic, which is any foreign chemical naturally occurring 

or anthropogenic (Klaassen, 2001) that can be measured in a living sample or biological system. 

In this manner, biomarkers are similar to bio-indicator species in that they can act as an early 

warning system, allowing researchers to detect changes in a test organism or population of 

organisms before visible changes, such as direct physical damage or reduced survival, occur. 

Common biomarkers that can be measured are hormones, detoxification enzymes, enzyme 

activities, and immunological changes. Smits et al. (1996, 2002) have used immune function 

changes to monitor responses of mink (Mustela vison) to effluent from a Kraft pulp mill and 

American kestrels (Falco sparverius) to PCBs. Ethoxyresorufin dealkylase (EROD) activity, an 

enzymatic assay that is used to detect exposure to contaminants, has been used by Gauthier et al. 

(2004) in the amphibian Xenopus laevis in relation to river contamination. Also in amphibians, 

analysis of different parts of the thyroid system have been used as biomarkers of exposure to 

cadmium (Sharma and Patino, 2008), PCBs (Gutleb et al., 2000) and estrogenic compounds 

(Hogan et al., 2006). 

 

1.3.1 Thyroid hormones (T3 and T4) 

 
Thyroid hormones (THs) have widespread functions in the body. In amphibians there are 

two main THs, thyroxine (T4) and the more biologically active triiodothyronine (T3). They 

control basal metabolic rates and growth rates in many species (Brent, 1994; Helbing et al., 

2006).  T4 is the main product secreted by the thyroid glands. However, for thyroid hormones to 

be active, T4 must be converted to T3. This is done mainly in peripheral tissues, most notably the 

liver, but can also be done in the thyroid gland, by 5-deiodinase (Fort et al., 2007). Another 

deiodinase enzyme 5-deiodinase can convert T3 and T4 to reverse T3 (rT3) and T2 respectively. 

To cause a change in physiology, THs must bind to thyroid hormone receptors (TRs) located in 

the nucleus of cells. By binding to TRs, thyroid hormones alter gene expression and ultimately 

cause the intended change. Since rT3 and T2 have low affinity for thyroid hormone receptors 

they effectively inhibit or inactivate thyroid hormone (Shi, 2000). 
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In amphibians such as R. sylvatica, thyroid hormones control the highly specialized 

process of metamorphosis (Brown and Cai, 2007; Denver, 1997; Galton, 1988; Shi et al., 1996; 

Tata, 2006). Without thyroid hormones, metamorphosis will not progress, resulting in 

abnormally large tadpoles that never complete the change to frogs (Shi, 2000). Fort (2007) 

describes six areas of control of thyroid hormone and their function. Each of these areas could be 

possible targets for toxicants and could lead to alterations in thyroid hormone production and 

function, ultimately leading to alterations in metamorphosis. In-depth reviews of thyroid 

hormone and amphibian metamorphosis are given by both Shi (2000) and Fort (2007). 

 

Due to the important functions of THs in many species, many studies have investigated 

the effects of chemicals that can potentially interfere with thyroid hormone, effectively using 

them as a biomarker. Oil sands process-affected material caused an increase in thyroid hormone 

in tree swallows (Tachycineta bicolor), while PCBs suppressed THs in American kestrels (Falco 

sparverius (Smits et al., 2002). In amphibians, cadmium altered thyroid gland activity (Sharma 

and Patino, 2008). 



 
Figure 1.3 Map of geographical range of Rana sylvatica (modified from Northern Prairie 
Wildlife Research Center, 2006). 
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CHAPTER 2: RESEARCH GOALS, OBJECTIVES AND HYPOTHESES 

 

2.1 Overall Goal 

 The main purpose of this research is to determine how wetlands formed from oil sands 

process-affected materials (OSPM) may affect the survival and development of Rana sylvatica 

larvae, which are expected to inhabit reclaimed wetlands after mine closure and reclamation.  

Furthermore, this study will determine how the effects of OSPM created wetlands on R. sylvatica 

larvae may change as the wetlands mature by comparing wetlands formed with OSPM that are of 

different ages. 

2.2 Objectives 

 
1) To raise Rana sylvatica larvae (tadpoles) from early pre-metamorphic stages until 

metamorphic climax in cages placed in wetlands of different ages that either contain OSPM or 

do not contain OSPM. 

 

2) To measure physiological variables such as length, weight, and energy metabolism 

through triglyceride concentrations, as well as survival, which may show measurable changes as 

a result of the chemical differences in the wetlands. 

 

3) To examine effects on development and metamorphosis related to differences in wetlands 

through endocrinological endpoints, specifically thyroid hormone (T3 and T4) status.  
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4) To determine liver ethoxyresorufin-o-dealkylase (EROD) induction. This reflects 

biotransformation efforts of tadpoles that are exposed to different levels of contaminants through 

placement in OSPM and reference wetlands. 

 

2.3 Hypotheses 

 

 Null Hypothesis 1- There will be no difference in Rana sylvatica larval survival, growth 

and development, thyroid hormone concentrations, EROD enzyme activity, and whole body 

triglyceride concentrations as a result of being raised in OSPM-affected wetlands compared with 

reference wetlands. 

 

 Null Hypothesis 2- Rana sylvatica larval survival, growth and development, thyroid 

hormone concentrations, EROD enzyme activity, and whole body triglyceride concentration, will 

not be affected by the maturity (age) of the wetlands. 
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CHAPTER 3: TADPOLE SURVIVAL, GROWTH AND DEVELOPMENT 

 

3.1 Introduction 

 
  

The demand for oil is increasing, while reserves of oil are decreasing. As a result, 

production of oil from unconventional oil deposits, such as Alberta’s oil sands, is increasing 

rapidly. There are currently three companies using surface mining to excavate oil sand, from 

which bitumen (heavy crude oil) is then extracted. Oil sands production accounts for 

approximately 25% of Canada’s total crude oil production and this percentage is expected to 

increase as more companies begin production (Leung et al., 2003). 

 

Crude oil that is extracted from oil sand is dense and highly viscous.  In the ground 

bitumen is associated with sand, fine clay particles, and water (Speight, 2007). Surface mining of 

oil sands involves clearing land, digging out raw oil impregnated sand with excavation 

equipment, and transporting the oil sand with heavy haul trucks to the extraction facilities (ECT, 

1995). Bitumen is separated from the associated materials by a hot water floatation process 

(Clark and Pasternak, 1932). This produces large quantities of solid (sand) and liquid (process-

water containing suspended fine particles) wastes, called tailings or oil sands process-affected 

materials (OSPM), which are stored on mine sites in large dyked tailings ponds. Quagraine et al. 

(2005) states that by the year 2025 as much as one billion cubic metres of OSPM may be stored 

in tailings ponds. Government legislation requires the mine sites to be returned to a state similar 

to that of the area before production began (Madill et al., 2001). One strategy adopted by the oil 

sands industry to achieve this reclamation, the “wet landscape approach”, involves the use of 
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stored tailing material to form lakes, ponds, and other types of “constructed wetlands” expected 

to cover 20 to 40% of the final landscape (Bendell-Young et al., 2000; Gentes et al., 2006; Siwik 

et al., 2000). 

 

 Since these constructed wetlands are meant to form a working ecosystem over time, they 

must be able to support communities of wildlife that would naturally inhabit the region. This 

may be problematic since OSPM and some of its constituents can be toxic to many organisms 

such as plants (Renault et al., 1998), amphibian larvae (Pollet and Bendell-Young, 2000), 

mammals (Rogers et al., 2002), fish (Nero et al., 2006a; van den Heuvel et al., 2000), aquatic 

invertebrates (Leung et al., 2003), and bird species (Gentes et al., 2006; Smits et al., 2000). It is 

thought that increased concentrations of salts, polycyclic aromatic hydrocarbons, and naphthenic 

acids (NAs) are the main cause of the toxicity to wildlife (Gentes et al., 2007; Nero et al., 2006a, 

b). However, OSPM toxicity is expected to diminish over time (Leung et al., 2003). Little is 

known about the effects of OSPM on amphibians, and chronic, low grade toxicity may interfere 

with the formation of a stable ecosystem that can support amphibian life.   

 

 Amphibians that are native to the northern boreal regions, such as the wood frog (Rana 

sylvatica) are expected to live in and around wetlands formed with OSPM. The larvae (tadpoles) 

of the wood frog are entirely aquatic until they complete metamorphosis. Amphibians and their 

larvae have been used as model subjects in many types of toxicological and ecological studies 

including investigations of the effects of pesticides (Cooke, 1972, 1981; Materna et al., 1995), 

industrial wastes (Huang et al., 2007; Snodgrass et al., 2004), and oil sands tailings water (Pollet 

and Bendell-Young, 2000). Recently, the use of confining amphibians in a wetland of interest 

(in-situ caging) has been recognized as a practical method for toxicology studies. Caging reduces 

variables associated with field collection of wild specimens (predation, stress/unreliability of 

capture, variations in diet, and unknown confounding elements), while still exposing amphibians 

to realistic environmental conditions such as light, temperature, and water chemistry (Harris et 

al., 2001). For these reasons R. sylvatica larvae are excellent subjects for an in-situ toxicological 

study of wetlands formed with OSPM. This study is intended to provide information on the 

viability of using wetlands containing OSPM, as part of a reclamation strategy that could be 

implemented by oil sands companies in northern Alberta.   
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During the course of this study, survival, growth, and developmental (morphometric) 

endpoints of indigenous R. sylvatica larvae were assessed to determine the ecological 

sustainability of the wetlands, and whether this sustainability held true for wetlands of different 

ages. Triglyceride concentration in the larvae was also measured to reveal possible alterations in 

energy storage or use by amphibians exposed to OSPM, which may reduce their ability to 

flourish in such ecosystems. This study was part of a multi-university collaborative project called 

Carbon Dynamics, Food Web Structure, and Reclamation Strategies in Athabasca Oil Sands 

Wetlands (CFRAW). 

 

3.2 Materials and Methods 

 

3.2.1 Experimental Design 

 

3.2.1.1 Year One Experimental Design 

 
 In year one, four wetland sites were chosen for the study (Figure 3.1). Two sites 

contained OSPM and two did not, the latter being considered reference sites. Of these four 

wetlands, one OSPM and one reference site were experimental trenches on the Suncor mine 

lease (Figure 3.2), each consisting of three similar trenches. The three OSPM-impacted trenches 

were filled with water from Natural Wetland, a wetland formed from tailings water (OSPM) 

seepage on the Suncor lease; the three reference trenches were filled with water from Weir 1, a 

commonly used source of ‘clean’ water unaffected by mining and extraction activities, on the 

Suncor lease site. The two other sites were single, distinct bodies of water. One was a reference 

wetland off Tower Road, 20 km from the oil sands leases near the city of Fort McMurray, 

Alberta. The other was called 4m CT, an OSPM-affected created wetland on the Suncor lease 

site. Three enclosures were placed in each wetland or trench and forty young tadpoles were 

placed in each mesocosm.  Tadpoles were collected from a wetland, Bill’s Lake, which did not 

contain OSPM-containing but was located on the Syncrude Mildred Lake lease site. Tadpoles 

were fed boiled lettuce ad libitum. Uneaten lettuce was removed from the enclosures and 

replaced with new lettuce every second day. 
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Figure 3.1 Year 1 (2006) experimental design diagram Note: Abbreviations are as follows: 
OSPM – oil sands process-affected material; 4m CT – Four Metre Consolidated Tailings 
Wetland; Wet. - Wetland
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Figure 3.2 Picture of the experimental trenches on Suncor Energy Inc.’s mine lease.
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3.2.1.2 Year Two Experimental Design 

 
 The year two (2007) design (Figure 3.3) was greatly expanded to encompass 14 different 

sites, seven reference sites (no OSPM) and seven OSPM impacted sites. All cages were placed 

directly in the wetland to be studied, with no use of experimental trenches. Also, all wetlands 

were categorized by age. Wetlands were considered “young” if they wereseven years old or less, 

and “old” if they were eight years or older.  In year two I also increased the number of enclosures 

per wetland from three to four.  Also, the number of tadpoles placed in each mesocosm was 

increased to 50 individuals. Tadpoles were collected from Bill’s Lake. Tadpoles were fed boiled 

lettuce ad libitum. Uneaten lettuce was removed from the enclosures and replaced with new 

lettuce every second day. 

3.2.1.3 Wetland Selection and Classification 

 
 Wetlands of the four classes (young OSPM, old OSPM, young reference, and old 

reference) were available in different numbers since they were selected on the basis of relevance 

to a multi-university collaborative project, availability, and security. Firstly, wetlands were 

selected because of their inclusion and relevance to a multi-disciplinary ecological study of 

wetlands formed with OSPM (CFRAW). A suite of wetlands was chosen for CFRAW and these 

wetlands were used in several research projects as part of CFRAW.  Secondly, large numbers of 

OSPM wetlands were available, while relatively few young reference sites were available. 

Reference wetlands were wetlands containing no OSPM, but could be man-made or naturally 

occurring. Finally, only wetlands located on a mine site were chosen to prevent unwanted human 

disturbances.  These were three limiting factors causing unequal numbers of wetlands among the 

four wetland classes. 

 

 Enclosures from each wetland were used to provide tadpoles for all analyses, unless 

problems were encountered that made samples unavailable or unreliable. Some reasons for not 

including certain enclosures in analyses were physical damage to enclosures allowing escape of 

tadpoles, large changes in water levels (evaporation/draining) altering metamorphosis or 

survival, and death of tadpoles resulting in inadequate numbers of tadpoles for all analyses.  
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Figure 3.3 Year 2 (2007) experimental design diagram Note: Abbreviations are as follows: 
OSPM – oil sands process-affected materials; 4m CT – Four Metre Consolidated Tailings 
Wetland; Wet. – Wetland; NWID – North West Interceptor Ditch Wetland; SWSS – South West 
Sand Storage Complex; TP 9 – Test Pond 9; TP 5 – Test Pond 5
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Complete lists of all enclosures and analyses they were used in are provided in Tables 3.1 and 
3.2. 

3.2.3 Enclosure Design 

 

Enclosure design was adopted and modified from several sources (Harris et al., 2001; 

Materna et al., 1995). The design used in this study (Figure 3.4) consisted of a rectangular 

wooden frame measuring 76 cm x 44.5 cm x 44.5 cm. A wooden framed lid, secured in place 

with removable nails, also measured 76 cm x 44.5 cm. The sides and bottom of the rectangular 

frame and the associated lid were covered with 1600 µm fiberglass mesh. Wooden stakes were 

also attached to the frame allowing the enclosures to be secured in the wetlands. Black 

landscaping cloth was attached to one side of the lid and draped over one side of the enclosure, 

acting to shade the developing larvae. When placed in wetlands, approximately three quarters of 

the enclosures’ total height was submerged. The initial density of tadpoles in each mesocosm 

was approximately 0.44 tadpoles per litre. 

3.2.4 Study Duration 

 

 Tadpoles were added to the enclosures at early pre-metamorphic stages (approximately 

stages 24 to 26) and were kept in the enclosure until they reached metamorphic climax (stage 

42). I called this period the “time to metamorphosis”. The method I used for determining the 

stage of development was that of Gosner (1960). The study was ended on an enclosure-by-

enclosure basis at the time when greater than 75 percent of the remaining tadpoles reached 

metamorphic climax. 

 

3.2.5 Tadpole Survival 

 
Year 1 Tadpole survival was the percentage of tadpoles alive at the end of the study period out of 

the original 40 individuals. 

 
Year2 Tadpole survival was measured and reported as the percentage of tadpoles surviving out 

of the original 50 individuals, after 52 days. Enclosures were checked every second day and dead 

or dying tadpoles were removed. 
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 Table 3.1 Wetland descriptions, including area (m2).  
 

Wetland 
OSPM 
Status Age Area (m2) Other Information 

Bill's Lake Reference Old 5821  
Located at Syncrude Canada's 
South Hills 

Peat Pond Reference Young 6624  
Located at Syncrude Canada's 
South Hills 

Golden Pond Reference Young 5677  
Located at Syncrude Canada's 
South Hills 

Mike's Pond OSPM Young 16920  
Located on Syncrude Canada’s 
mine lease 

Test Pond 5 OSPM Old 675  
Located on Syncrude Canada’s 
mine lease 

Test Pond 9 OSPM Old 3732  
Located on Syncrude Canada’s 
mine lease 

West Interceptor Ditch 
Wetland Reference Old 3155  

Located on Syncrude Canada’s 
mine lease 

South West Sands Storage 
(Flood Wetland) OSPM Young 11954  

Located on Syncrude Canada’s 
mine lease 

Test Pond 14 (Shallow 
Wetland) Reference Old 35000  

 Located on Syncrude Canada’s 
mine lease 

Natural Wetland OSPM Old 12227  
Located on Suncor Energy Inc.’s 
mine lease 

High Sulfate Wetland Reference Old 2394  
Located adjacent to Suncor 
Energy Inc.’s mine lease 

Weir 1 Reference Old  56419  
 Gravel pit filled with water on 
Suncor Energy Inc.’s mine lease 

4 Metre CT - No Peat Zone OSPM Young  4006  
 Located on Suncor Energy Inc’s 
mine lease 

4 Metre CT - Peat Zone OSPM Young  4006  
 Located on Suncor Energy Inc’s 
mine lease 
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Table 3.2 List of wetlands and enclosures (four possible in each wetland) studied in year two 
describing the length of time until the end of study in each enclosure and explanations of why an 
enclosure was not included in statistical analysis for some or all endpoints. All enclosures were 
used for all analyses unless otherwise stated. 
 

Wetland Enclosure 

Days 
To End 
of 
Study End Points Analyzed  

1 62 
2 62 
3 62 

Bill's Lake 

4 62 

All Bill's Lake enclosures were used in all analysis 
with the exception of #1 and #2 in the triglyceride 
assay and #1 in the EROD assay 

1 58 
2 58 
3 58 

Peat Pond 

4 58 

 Used in all analyses  

1 58 
2 58 
3 58 

Golden Pond 

4 58 

Used in all analyses 

1 66 Used in all analyses 
2 68 Used in all analyses 
3 68 Not used in triglyceride analysis - too little extract  

Mike's Pond 

4 N/A 
Not used in any analyses except survival due to 
death of all tadpoles before metamorphosis  

1 52 
2 52 
3 52 

Test Pond 5 

4 52 

All Test Pond 5 enclosures used in all analyses 
except #1 and #2 were not used in triglyceride 
assay - not enough extract after thyroid hormone 
assay 

1 55 
2 56 
3 56 

Test Pond 9 

4 56 

Used in all analyses  

1 60 
2 60 
3 60 

West Interceptor Ditch 
Wetland (WID) 

4 60 

Used in all analyses 

1 N/A 
2 N/A 
3 N/A 

South West Sands Storage 
(Flood Wetland) 

4 N/A 

All Flood Wetland enclosures were used in 
survival analyses only – due to death of all 
tadpoles before metamorphosis 

1 60 Used in all analyses 
2 60 Used in all analyses  
3 60 Used in all analyses 

Test Pond 14 (Shallow 
Wetland) 

4 N/A Not used in any analyses - enclosure damaged 
1 N/A 
2 N/A 

Natural Wetland 

3 N/A 

No Natural Wetland enclosures were used in any 
analyses except survival - death of all tadpoles  
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4 N/A 
1 57 
2 57 
3 56 

High Sulfate Wetland 

4 57 

Used in all analyses 

1 N/A Not used in any analyses - enclosure damage 
2 58 Used in all analyses 
3 58 Used in all analyses 

Weir 1 

4 58 Used in all analyses 
1 75 Used in all analyses 
2 75 Used in all analyses 
3 75 Used in all analyses 

4 Metre CT - No Peat Zone 

4 N/A 
Not used in any analyses except survival-death of 
tadpoles 

1 75 Used in all analyses 

2 N/A 
Not used in any analyses except survival-death of 
tadpoles 

3 75  Used in all analyses 

4 Metre CT - Peat Zone 

4 N/A Not used in any analyses - enclosure damaged 
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Table 3.3 Water chemistry (averages over duration of study) 

Wetland 
 

pH 
Conductivity 

(µs/cm) 
Naphthenic 

Acids        
(mg/L) 

Dissolved 
Oxygen 
(mg/L) 

NH4 
(mg/L) 

Bills Lake 

Peat Pond 

Golden Pond 

Mike’s Pond 

Test Pond 5 

Test Pond 9 

Test Pond 14a 

WIDb 

SWSSc 

Natural Wet.d 

HSe 

4m CT peatf  

4mCT no peatf  

7.38 

7.90 

 8.54 

8.58 

8.75 

8.96 

8.09 

7.99 

8.08 

8.55 

8.55 

8.38 

8.09 

531.7 

1058 

1154 

4047.5 

2224 

1946.5 

373 

582.5 

4130 

1463.3 

3380 

2695 

2770 

0.68 

0.62 

1.68 

22.76 

10.23 

20.30 

0.73 

0.87 

40.80 

53.00 

7.0 

35.65 

30.90 

10.10 

7.50 

8.00 

9.83 

10.15 

9.530 

7.23 

8.40 

N/A 

10.60 

8.16 

7.10 

7.30 

0.26 

0.34 

0.15 

0.68 

0.67 

0.16 

0.43 

0.58 

N/A 

0.66 

0.45 

BDL 

0.24 
aAlso called Shallow Wetland  
bWID – West Interceptor Ditch Wetland 
cFlood wetland on South West Sands Storage area 
dNatural Wetland 
eHigh Sulfate Wetland 
fTwo different areas of the same wetland – one area peat amended, one area no peat amendment 
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3.2.6 Tadpole Length, Weight, and Average Daily Length and Weight Gain 
  

Both tadpole weight and length were measured immediately following euthanasia at the 

termination of the field study. Length (snout to tail) was measured with a Westward electronic 

caliper (Acklands-Grainger, Fort McMurray, AB, Canada). Body weight was measured with a 

Sartorius TE313S scale (max 310 g, d = 0.001) (Sartorius AG, Goettingen, Germany) after 

drying excess moisture from the tadpole by gentle blotting with tissue paper and placing the 

tadpole on a piece of laboratory film. 

 

Average daily length and weight gain were determined by dividing the tadpole’s length 

and weight by the number of days the tadpole was caged (time to metamorphosis). 

3.2.7 Whole-Body Triglyceride and Thyroid Hormone Extraction 

 
The method for extraction used was developed from Brasfield et al. (2004). Whole 

tadpoles and livers removed from selected tadpoles were frozen in liquid nitrogen (Praxair, 

Saskatoon, SK, Canada) immediately following collection and measurement of body weight and 

body length. A total of five tadpoles were sampled from each enclosure. Once returned to the 

Toxicology Centre in Saskatoon, SK, samples were transferred to a -80 oC freezer until the time 

of sample preparation and analysis. 

 

 The same whole body extract from the tadpole was used for both triglyceride and thyroid 

hormone quantification. During sample homogenization and extraction, all materials (scissors, 

forceps, glass tubes, etc.) and buffers were placed on ice. Homogenization buffer consisting of 

1mM 6-propyl-2-thiouracil (Sigma Aldrich, Oakville, ON, Canada) in 95% ethanol was made 

prior to extraction and stored at -20 oC in a glass bottle. The first step in both extraction 

processes was to remove the tadpoles from cryovials and place them in plastic weigh boats 

(VWR International, Mississauga, ON, Canada). A volume of homogenization buffer equal to 

that of the tadpole was then added. Tadpoles were finely minced using scissors and transferred 

along with the buffer to a 16 mm x 100 mm glass culture tube (VWR International, Mississauga, 

ON, Canada). Another volume of homogenization buffer equal to the volume of the tadpole was 

then added to the tadpole homogenate in the glass tube. 



 

 
 
Figure 3.4 Enclosure design showing landscaping cloth used as shade cloth, enclosure with lid 
covered with 1600 µm mesh screen and a stake for securing the enclosure to the bottom of the 
wetland. 
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 Further homogenization was completed using a Tissue Tearor (BioSpec Products, Inc., 

Bartlesville, OK, USA) in three bursts of ten seconds each. Next, samples were vortexed 

vigorously for one minute, then stored on ice. Each sample was then centrifuged at 2900 rpm at 4 

°C for ten minutes in an Eppendorf 5810 R centrifuge and swinging bucket rotor [model A-4-62 

(Eppendorf Canada, Mississauga, ON, Canada)].  Supernatant was carefully removed and 

transferred to a clean glass tube.  Another volume equal to twice the volume of the tadpole was 

then added to the remaining pellet, which was then re-suspended by vortexing for one minute. 

The re-suspended homogenate was then centrifuged again, as described above.  The resulting 

supernatant, which contained ethanol used in the extraction, thyroid hormones, and triglycerides 

was again carefully poured off and combined with the previous supernatant.  This sample was 

then evaporated under a stream of nitrogen in a water bath at 50 °C so that the final volume was 

equal to that of the initial tadpole.  Once the desired volume was reached, the extract was divided 

into as many 150 µl aliquots as possible and stored at –80 °C until assays were completed. 

3.2.8 Whole-body Triglyceride Quantification 

  
Quantification of total body triglycerides was completed using clinical kit reagents from 

Sigma Aldrich (Oakville, ON, Canada). The method was adopted from McGowan et al. (1983). 

For this assay, aliquots of the tadpoles previously homogenized and extracted with ethanol, were 

removed from the –80 °C freezer and stored on ice until sufficiently thawed. Samples were 

vortexed vigorously, and then centrifuged at 2500 rpm for five minutes at 4 °C to ensure samples 

were free of un-dissolved matter. For quantification, pure glycerol standard (Sigma #G7793-5ml) 

was diluted with 95% ethanol to concentrations ranging from 0.0391 mg/ml to 2.5 mg/ml to form 

a standard curve. First, 180 µl of reagent A (glycerol kinase; Sigma #F6428-40ml) and 10 µl of 

all standards and samples were added in duplicate to a clear, flat-bottom, Nunc 96-well plate 

(VWR International, Mississauga, ON, Canada). The plate was then incubated at 37 °C for five 

minutes in the same microplate spectrophotometer (Molecular Devices, Sunnyvale, CA, USA) 

that was used for reading the plate. After shaking, 45 µl of reagent B (lipase; Sigma #T2449-

10ml) was added to all wells. The plate was then shaken again for 20 minutes at 37 °C, after 

which the plate was read at 540 nm. The final concentration of triglycerides in each well was 

calculated by comparing the reading from each sample to the glycerol standard curve.  
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3.2.9 Statistics 

 
 In year two (2007), each wetland was not compared to each of the other wetlands 

separately. Based on the knowledge that as OSPM-affected wetlands get older there is a 

reduction in toxicity, due to bioremediation, I grouped wetlands according to their age (either 

young or old) and OSPM status (OSPM or no OSPM). I assumed that wetlands of the same 

group (young OSPM-affected, old OSPM-affected, young reference, old reference) have similar 

characteristics, such as concentration of NAs. This method of grouping allowed me to complete 

the two-way ANOVA described below to test the hypothesis that there will be an interaction 

between age and OSPM status of wetlands. I predicted that older OSPM-affected wetlands would 

be similar to reference wetlands and much less toxic than young OSPM-affected wetlands. 

 

Statistics were carried out using SPSS statistical software package (Version 16.0.1., SPSS 

Inc., Chicago, IL, USA). The level of significance was p < 0.05. All data were tested for 

normality and equality of variances assumptions using the Shapiro-Wilks test and Levene’s test, 

respectively. In year one, the experimental design was planned for a two-way ANOVA. 

However, due to loss of a reference site, a one-way ANOVA was conducted to determine if there 

were differences in survival (percentage of initial numbers), body weight, body length, and 

concentration of triglycerides (whole-body) among the three remaining experimental sites. If 

assumptions of normality or homogeneity of variances were violated, data presented as 

percentages were arcsin square root transformed, and regular, numeric data were log10 

transformed. If assumptions were met after transformation, an ANOVA was performed on the 

transformed data. If assumptions could not be met the non-parametric Kruskal-Wallis test was 

performed. In year two, if assumptions were met, a two-way ANOVA was completed on the 

same variables as in year one. Age of wetlands (young or old) and OSPM status (OSPM or no 

OSPM) of the wetlands were the two factors in the two-way ANOVA. If assumptions of 

normality and homogeneity of variances were violated the same method for transforming data as 

in year one was taken. After transformation, if assumptions were met a two-way ANOVA was 

performed. If assumptions were not met, the Scheirer-Ray-Hare extension of the Kruskal-Wallis 

test [a non-parametric variation of a two-way ANOVA test (Sokal and Rohlf, 2003)], was 

performed as in Rickwood et al. (2008). 
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3.3 Results 

 

3.3.1 Year One (2006) 

 

3.3.1.1 Problems 

 
 Year one of field research presented many unexpected problems that were beyond control 

of the researcher. Some data were lost or were not used due to the introduction of variables not 

expected to be encountered normally in wetlands. First, the off-site reference wetland near Fort 

McMurray was tampered with by unknown person(s); all enclosures had been emptied of their 

tadpoles and piled on shore. This site was completely abandoned just short of one month into the 

study and no data were obtained. Secondly, water level in some of the experimental trenches on 

Suncor’s lease fluctuated and two were inadvertently, completely drained for approximately 12 

hours. Most of the fluctuations in water level were due to seepage out of the trenches as well as 

high rates of evaporation. This problem was remedied later in the year once a system of tanks 

and pipes were set up, allowing researchers to add water to individual trenches when needed. At 

the end of this field season it was necessary to exclude data from the two trenches (both 

containing process-affected water from Natural Wetland) that had been drained and were 

subsequently refilled. Due to the loss of two of the three OSPM-affected trenches, as well as my 

offsite reference, most of the data used for publication will come from the year two part of the 

study, which was much more successful.   

 

 Given the lack of security at off-site wetlands and the poor control of water levels at the 

experimental trenches, which resulted in poor quality data, changes were made to the 

experimental design in year two. First, all wetlands in the study were located on secure oil sands 

lease sites, preventing interference from outside persons. Second, the experimental trenches on 

the Suncor site were abandoned in favour of traditional wetlands that were either natural or 

constructed since fluctuations in water levels would be less likely. The second field season was 

much more successful because of these adjustments. However, the Natural Wetland site had to 

be excluded from all analyses because water levels in the wetland decreased significantly over 

the summer, resulting in extremely low water levels in enclosures, which would likely have had 

concentrated levels of toxic components (Daly, 2007). Also, one enclosure from the Weir 1 site 
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was lost due to damage in a storm. Nevertheless, sample collection was quite good and resulted 

in sufficient samples from almost all study sites.    

 

3.3.1.2 Survival 

 
 There were differences in survival between reference and OSPM-containing sites in year 

one (Kruskal-Wallis, p=0.027). The young OSPM site, 4m CT, showed greatly decreased 

survival (100% mortality within 2 weeks of the beginning of the study) when compared to the 

reference site and more mature (older) wetland containing OSPM (Natural Wetland) (Figure 

3.5). 

 

3.3.1.3 Tadpole Length, Weight, and Average Daily Length and Weight Gain 

 
 Tadpoles from wetlands containing OSPM had similar body weights [(ANOVA, p = 

0.371) (Figure 3.6)] and body lengths [(ANOVA, p = 0.266) (Figure 3.7)] to tadpoles raised in 

wetlands containing no OSPM. Daily length gain [(ANOVA, p = 0.432) (Figure 3.8)] and daily 

weight gain [(ANOVA, p = 0.625) (Figure 3.9)] of tadpoles were also not significantly different 

between wetlands. 

 

3.3.1.4 Whole-body Triglyceride Concentrations  

 
In the first study year triglyceride concentrations in tadpoles were not determined due to 

lack of specimens for analysis. 
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Figure 3.5 Year one mean survival ( % ±  S.E.) of Rana sylvatica tadpoles raised in a reference 
wetland, an old oil sands process-affected material (OSPM) containing wetland, and a young 
OSPM-affected wetland. The number of enclosures per type of wetland is shown in parentheses 
(n), differences were considered significant when  p < 0.05. A significant difference was detected 
(Kruskal-Wallis, p = 0.027). A tukey post-hoc test determined young OSPM wetlands were 
different from all others (different letters above bars indicate a significasnt difference, p < 0.05). 
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Figure 3.6 Year one mean body weight (g ±  S.E.) of Rana sylvatica tadpoles raised in a 
reference wetland and an old oil sands process-affected material (OSPM) containing wetland. 
The number of enclosures per type of wetland is shown in parentheses (n), differences were 
considered significant when  p < 0.05. No significant difference were detected (ANOVA, p = 
0.371). Different letters above bars indicate a significasnt difference, p < 0.05. 
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Figure 3.7 Year one mean body length (mm ±  S.E.) of Rana sylvatica tadpoles raised in a 
reference wetland and an old oil sands process-affected material (OSPM) containing wetland. 
The number of enclosures per type of wetland is shown in parentheses (n), differences were 
considered significant when  p < 0.05. No significant differences were detected (ANOVA, p = 
0.266).  Different letters above bars indicate a significasnt difference, p < 0.05. Different letters 
above bars indicate a significasnt difference, p < 0.05. 
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Figure 3.8 Year one mean daily length (mm/day ± S.E.) gain of Rana sylvatica tadpoles raised 
in a reference wetland and an old  oil sands process-affected material (OSPM) containing 
wetland. The number of enclosures per type of wetland is shown in parentheses (n), differences 
were considered significant when  p < 0.05. No significant differences were detected (ANOVA,  
p = 0.432). Different letters above bars indicate a significasnt difference, p < 0.05. 
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Figure 3.9 Year one mean daily weight gain (g/day ±  S.E.) of Rana sylvatica tadpoles raised in 
a reference wetland and an old oil sand process-affected material (OSPM) containing wetland. 
The number of enclosures per type of wetland is shown in parentheses (n), differences were 
considered significant when  p < 0.05. No significant differences were detected (ANOVA,  p = 
0.625). Different letters above bars indicate a significasnt difference, p < 0.05. 
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3.3.2 Year Two (2007) 

 

3.3.2.1 Survival 

 
Survival was much lower in young wetlands containing OSPM than all other classes of 

wetlands. Old OSPM-containing wetlands showed survival similar to that of both young and old 

reference wetlands.  There was a significant interaction effect between the factors of age and 

OSPM status. Treatment effects of age and OSPM status were also found to be significant [(two-

way ANOVA, interaction p < 0.001, age p = 0.004, OSPM p < 0.001) (Figure 3.10)]. 

 

3.3.2.2 Tadpole Length, Weight, and Average Daily Length and Weight Gain 

 

Tadpoles that were raised in young OSPM-containing wetlands were heavier than 

tadpoles raised in the other classes of wetlands. For body weight of tadpoles, there was a 

significant interaction effect between the wetland’s age and OSPM status but not treatment 

effects of age or OSPM status alone [(two-way ANOVA, interaction p = 0.016, age p = 0.441, 

OSPM status  p = 0.293) (Figure 3.11)]. For body length, a significant interaction between 

treatment effects was detected, but not for treatment effects alone [(two-way ANOVA, 

interaction p < 0.001, age p = 0.920, OSPM status p = 0.890) (Figure 3.12)]. Weight gain per day 

was not different among tadpoles in any wetland type [(two-way ANOVA, interaction p = 0.226, 

age p = 0.721, OSPM status p = 0.620) (Figure 3.13)]. For daily length gain, no significant 

difference due to an interaction between treatment effects or OSPM status was found, but a 

significant difference due to age was detected (two-way ANOVA, interaction p = 0.733, age p < 

0.001, OSPM status p = 0.137) (Figure 3.14)]. 

 

3.3.2.3 Whole-body Triglyceride Concentrations 

 
 There was a significant difference in triglyceride concentrations of tadpoles raised in 

different wetland types due to an interaction between the factors of age and OSPM status, but not 

treatment effects alone [(two-way ANOVA, interaction p = 0.041, age p = 0.739, OSPM status p 

= 0.711) (Figure 3.15)]. Tadpoles raised in old reference wetlands had the highest concentrations 
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of triglycerides followed by young OSPM-containing wetlands. Young reference sites and old 

OSPM sites were similar to each other and had the lowest concentrations of triglycerides. 
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Figure 3.10 Year two mean survival (% ± S.E.) per mesocosm of Rana sylvatica tadpoles raised 
in different wetlands grouped by the factors of age (young or old) and oil sand process-affected 
material (OSPM) status (OSPM containing or reference). The number of enclosures per type of 
wetland is shown in parentheses (n), differences were considered significant when  p < 0.05. A 
significant difference due to a treatment interaction, as well as age and OSPM status effects 
alone was detected (two-way ANOVA, interaction p < 0.001, age p = 0.004, OSPM status p < 
0.001).  
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Figure 3.11 Year two mean body weight (g ± S.E.) of Rana sylvatica tadpoles raised in different 
wetlands grouped by the factors of age (young or old) and oil sand process-affected material 
(OSPM) status (OSPM containing or reference). The number of enclosures per type of wetland is 
shown in parentheses (n), differences were considered significant when  p < 0.05. A significant 
difference due to an interaction between treatment effects was detected, but not treatment effects 
alone (two-way ANOVA, interaction p = 0.016, age p = 0.441, OSPM status p = 0.293). 
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Figure 3.12 Year two mean body length (mm ± S.E.) of Rana sylvatica tadpoles raised in 
different wetlands grouped by the factors of age (young or old) and oil sand process-affected 
material (OSPM) status (OSPM containing or reference). The number of enclosures per type of 
wetland is shown in parentheses (n), differences were considered significant when  p < 0.05. A 
significant difference due to an interaction between treatment effects was detected, but not for 
treatment effects alone (two-way ANOVA, interaction p < 0.001, age p = 0.920, OSPM status   p 
= 0.890). 
 

 43



 

 

Figure 3.13 Year two mean weight gain per day (g/day ± S.E.) of Rana sylvatica tadpoles raised 
in different wetlands grouped by the factors of age (young or old) and oil sand process-affected 
material (OSPM) status (OSPM containing or reference). The number of enclosures per type of 
wetland is shown in parentheses (n), differences were considered significant when  p < 0.05. No 
significant difference due to an interaction between treatment effects or  treatment effects alone 
was detected (two-way ANOVA, interaction p = 0.226, age p = 0.721, OSPM status p = 0.620). 
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Figure 3.14 Year two length gain per day (mm/day ± S.E.) of Rana sylvatica tadpoles raised in 
different wetlands grouped by the factors of age (young or old) and oil sand process-affected 
material (OSPM) status (OSPM containing or reference). The number of enclosures per type of 
wetland is shown in parentheses (n), differences were considered significant when  p < 0.05. No 
significant difference due to an interaction between treatment effects or  OSPM status was found, 
but a significant difference due to age was detected (two-way ANOVA, interaction p = 0.733, 
age p < 0.001, OSPM status p = 0.137). 
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Figure 3.15 Year two mean whole-body triglyceride concentrations (mg/g ± S.E.) of Rana 
sylvatica tadpoles raised in different wetlands grouped by the factors of age (young or old) and 
oil sand process-affected material (OSPM) status (OSPM containing or reference). The number 
of enclosures per type of wetland is shown in parentheses (n), differences were considered 
significant when  p < 0.05. A significant difference due to an interaction between treatment 
effects was detected, but not treatment effects alone (two-way ANOVA, interaction p = 0.041, 
age p = 0.739, OSPM status p = 0.711). 
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3.4 Discussion  

 

3.4.1 Rana sylvatica Survival 

 
 Rana sylvatica tadpoles raised in the 4m CT wetland, which is formed from young 

OSPM and receives input of fresh tailings water during the spring and summer, showed 100% 

mortality in the 2006 field season. In comparison, survival was not significantly different among 

wetlands containing no OSPM (Weir 1) and Natural Wetland, which contained older OSPM. 

Similarly in 2007, the lowest survival of tadpoles occurred in wetlands that were contained 

young OSPM. These results support those of Pollet and Bendell-Young (2000), who found 

tadpoles exposed to OSPM had low survival. The results from both years showed similar 

survival between old OSPM and young and old reference wetlands, which was much higher than 

the young OSPM sites in all cases. These results strongly suggest that toxicity from OSPM is 

diminishing over time. However, it is not known which components of the OSPM are causing 

the toxic effects. Many previous studies (Holowenko et al., 2001; Rogers et al., 2002; Quagraine 

et al., 2005) have shown that a large part of the toxicity from OSPM (mainly tailings water) is a 

result of naphthenic acids (NAs). NAs are a complex mixture of naturally occurring carboxylic 

acids that are of several different molecular weights, chain lengths, and may have several ring 

structures. Other possible sources of OSPM toxicity are from high levels of salinity (Renault et 

al., 1998; Nero et al., 2006), which has been shown to be toxic to amphibians (Rios-Lopez, 2008; 

Christy and Dickman, 2002). Polycyclic aromatic hydrocarbons (PAHs) may also contribute to 

more acute toxicity. Studies have shown that natural aging of OSPM-affected wetlands can 

reduce toxicity (Quagraine et al. 2005, references there in). Research has shown that microbes 

can degrade PAHs (Madill et al. 2001) and NAs (Herman et al., 1994; Lai et al., 1996), which is 

thought be an important factor in the reduction of toxicity of OSPM over time (Madill et al. 

2001). Toor et al. (2008) have shown that NAs degrade over time, with the majority of the NAs 

degraded are of lower molecular weight and have the lowest number of rings, which causes a 

reduction in acute toxicity of tailings water. However, some chronic toxicity remains that is 

thought to be due to remaining NAs with high molecular weight and more ring structures.    The 

results of this study will be of considerable interest to oil sands companies since young tailings 

material is toxic to R. sylvatica larvae. This means that amphibians are unlikely to survive in 
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wetlands constructed from young OSPM, and those wetlands should somehow be made 

inaccessible to amphibians to avoid potentially severe detrimental effects on populations of 

native amphibians in the area. On the encouraging side, this work presents solid evidence, 

through low mortality rates among tadpoles caged both in more mature OSPM and reference 

wetlands, that amphibian populations may be able to form part of sustainable communities in 

wetlands containing more mature OSPM. 

 

3.4.2 Tadpole Growth 

 
 In both years of this study, measures of growth (length, weight, and their change over 

time) were analyzed. Tadpole growth is a very important endpoint since it has been shown that 

survival of juvenile frogs is positively related to size at metamorphosis (Morey and Reznick, 

2001). In 2006, growth of tadpoles in only one OSPM site could be compared with that of one 

reference site due to problems described in section 3.3.1.1., and growth was similar between 

sites. Any real differences from the ‘treatment’ effect of different maturity wetlands would have 

been obscured because of the 100% mortality of tadpoles raised in young OSPM-affected 

wetlands. Rather than acute and severe toxicity, the expectation was to see decreased growth due 

to the higher exposure of all tailings related contaminants.   

 

 In 2007, body size among tadpoles was higher in those raised in young OSPM-containing 

wetlands. This was an unexpected result because normally organisms dealing with toxic insult 

are expected to be smaller, expending more energy towards detoxification efforts, rather than 

growth (Berven, 1990; Morey and Reznick, 2001). I do not believe this is directly related to 

exposure to OSPM. Rather, the increased tadpole size is most likely due to lower density of 

tadpoles as a result of significantly higher mortality of tadpoles in these enclosures. This result is 

supported by Eaton et al. (2005), who found that increased densities of tadpoles resulted in 

smaller size at the time of metamorphosis. Many other researchers have also discussed similar 

correlations (Berven, 1990; Morey and Reznick, 2001). Food limitation is the mechanism that is 

most often used to explain density dependent effects on growth and survival (Kupferberg, 1997). 

However, we provided a steady, unlimited, diet of boiled lettuce to the tadpoles. Therefore, food 

limitation was not likely, but energy expenditure in acquiring food may have been different for 
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tadpoles in cages with high density versus cages with low tadpole density. Another possible 

reason for increased size in tadpoles raised in young OSPM-containing wetlands is that these 

tadpoles were significantly older at the time of metamorphic climax, meaning they had more 

time to grow. Metamorphosis and related hormonal endpoints will be further discussed in chapter 

four of this thesis. The observation that tadpoles cannot complete metamorphosis yet continue to 

grow has been reported several times (Allen, 1929; Shi, 2000). Because of amphibians’ abilities 

to keep growing without completing metamorphosis (Boone, 2005) it was decided to analyze 

growth rate in terms of weight and length gain per day, which gives a more accurate 

representation of growth because it takes into consideration the difference in growth periods. 

Tadpole weight gain per day in 2007 was not different among wetland classes. Length gain per 

day was different but only due to effects of age of wetland, not OSPM status. This result was not 

readily explainable, but may be due to the high plasticity of tadpoles causing variation within 

populations as well as amongst different populations (Morey and Reznick, 2001). The results of 

daily growth suggest that tadpole growth is not being affected directly by contamination and 

more likely to be changing due to differing growth periods and/or lower tadpole densities in 

enclosures from young OSPM-containing wetlands. 

 

3.4.3 Whole Tadpole Triglyceride Concentrations 

 
 Tadpole whole-body triglyceride concentrations were only measured in the second year 

(2007) of this study. Triglycerides are a main form of energy storage in many types of animals, 

and are a common biomarker used in ecotoxicology studies of many species (Owen et al., 2005), 

especially in fish (Adams, 1999; Bennett and Janz, 2007). Our goal was to use total body 

triglyceride concentration as a possible indicator of overall condition and energy storage or 

consumption due to exposure to OSPM. We found that triglyceride concentrations were different 

among wetlands; however, concentrations did not show an expected pattern with tadpoles 

exposed to the wetlands with highest contaminant levels having the lowest triglyceride 

concentrations. Tadpoles from young OSPM-containing wetlands had triglyceride concentrations 

higher than all other wetland classes except for old reference sites, which had the highest 

concentrations. This is best explained by the lower tadpole densities in wetlands that caused the 

highest mortality, similar to the growth effects, which may have resulted in less energy 
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expenditure due to less competition with other tadpoles. In young OSPM-containing wetlands 

tadpole survival was 41.5% lower than in old OSPM-containing wetlands, 62.6% lower than in 

young reference wetlands, and 54.7% lower than in old reference sites. This means that young 

OSPM-containing wetlands had 41.5%, 62.6%, and 54.7% lower tadpole densities than old 

OSPM-affected, young reference, and old reference wetlands, respectively. Another possible 

explanation for these unexpected results is the delay to metamorphosis in tadpoles raised in 

young OSPM wetlands, which could have allowed them more time to accumulate more stores of 

triglycerides. It has been postulated that greater stores of lipids would be advantageous to 

amphibians under starvations conditions. This could possibly allow for greater survival of 

amphibians that are larger, which generally have larger lipid stores (Scott et al., 2007).  

 

3.5 Conclusions 

 
Although morphometric endpoints in tadpoles did not show expected differences, less 

mature (young) OSPM does not look to be a good option for the formation of wetlands. Survival 

of tadpoles was generally poor in wetlands that were young and contained OSPM. In the longer 

term this may decrease the chances of sustainable amphibian populations from forming in 

wetlands constructed on oil sands mine sites. However, if the OSPM wetlands were allowed to 

mature for a sufficient period of time, which this study suggests is at least seven years, toxicity 

may decrease to a level comparable with reference wetlands as shown by the survival rates of 

tadpoles in wetlands formed with more mature OSPM. Wetlands formed from older OSPM may 

therefore be able to support native amphibian populations. It was beyond the range of this study 

to determine what caused the reduction in OSPM toxicity over time, but as discussed earlier it is 

known that some known toxic constituents of OSPM, such as NAs and PAHs, can be degraded 

by microbes, which would reduce toxicity of OSPM-containing wetlands. For a more complete 

picture of the ability of wetlands formed with OSPM to support amphibian populations, 

reproductive assays should be completed in a field type study. As well, juvenile and adult stage 

frogs should be investigated. 
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CHAPTER 4: TADPOLE ENDOCRINE FUNCTION, METAMORPHOSIS, AND 

HEPATIC ENZYME ACTIVITY 

 

 4.1 Introduction 

 
In the past few decades, amphibians have been increasingly studied as indicators of 

environmental degradation and contamination from various sources. Pesticides (Cooke, 1972; 

Diana et al., 2000; Fort et al., 2004), estrogenic compounds (Hogan et al., 2006), and 

contaminants from the petrochemical chemical industry (Huang et al., 2007; Pollet and Bendell-

Young, 2000) have all presented causes for concern for which amphibians have been used as an 

indicator of toxicity. The oil sands of northern Alberta are another place where amphibians could 

be useful as an environmental indicator species. Currently, the oil sands industry is rapidly 

expanding and both solid and liquid tailings materials, called oil sand process-affected materials 

(OSPM), are accumulating in very large quantities (Madill et al. 2001; Quagraine et al., 2005). 

Government regulation requires liquid tailings to be stored in large dyked tailings ponds until 

reclamation can take place (Crowe et al., 2001). The “wet landscape” approach to reclamation of 

OSPM, which involves creating wetlands from fluid tailings in mined-out pits, is one method for 

the reclamation of OSPM (Madill et al. 2001). To be viable, wetlands constructed with OSPM 

must be able to support a functioning ecosystem. However, OSPM has proven toxic to many life 

forms (Clemente and Fedorak, 2005; Franklin et al., 2002; Leung et al., 2003; Rogers et al., 

2002) and it is unknown if formation of functioning ecosystems is possible. Toxicity from 

OSPM appears to decrease over time (Lai et al., 1996); therefore, older wetlands formed with 

OSPM are expected to be more ecologically viable. 

 

As an important part of native ecosystem function in the Athabasca Oil Sands Region 

(Figure 1.1) amphibians must be able to live sustainably in oil sands constructed wetlands if they 
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are to be considered ecologically viable. Amphibians are sensitive to environmental 

contamination (Cooke, 1981; Gupta et al., 2007) and have a unique transition between two 

distinct life stages (metamorphosis) that can be used as an important bioindicator. These factors 

make them ideal indicator species for use in testing the ecological viability of constructed 

wetlands. Metamorphosis must be completed if amphibians such as Rana sylvatica are to 

reproduce successfully. Amphibian metamorphosis has been extensively studied and is 

hormonally regulated, with thyroid hormone (TH) playing the most important role (Galton, 1992; 

Shi, 2000; Buchholz et al., 2007; Tata, 2006; Fort et al., 2007). Thyroid hormones are present in 

two forms, with triiodothyronine (T3) having the greatest biological activity. The other hormone, 

thyroxine (T4) (Denver, 1998), has to be converted to T3 to function actively (Shi, 2000). 

Thyroxine produced by the thyroid gland is converted to T3 by deiodinase enzymes in the 

thyroid and peripheral tissues such as the liver (Denver, 1998; Huang et al., 2001; Cai and 

Brown, 2004). As a result, both T3 and T4 concentrations need to be measured to understand 

thyroid status during amphibian development (Fort et al., 2007) and can be used as markers of 

exposure to contaminants. Contaminant interference with thyroid hormone production or its 

action on target tissues may have negative effects on metamorphosis, which would preclude 

establishment of healthy R. sylvatica populations in oil sands constructed wetlands.  

 

In this study, amphibian metamorphosis and thyroid hormone status are used as 

indicators of the ecological sustainability of wetlands formed with OSPM. 7-ethoxyresorufin-o-

dealkylase (EROD) activity was also measured as a biomarker of exposure to potential toxicants 

found in wetlands formed with OSPM. The EROD activity is a well established biomarker, since 

EROD activity increases with increasing contaminant exposure (Whyte et al., 2000). The EROD 

assay has been previously used in birds and mammals exposed to contaminants from the oil 

sands region (Gentes, 2006). Sensitivity of amphibians to contaminants, their unique 

development, and the fact they are indigenous to the oil sands region were my reasons for 

choosing R. sylvatica larvae as a test organism for the investigation of toxicity of wetlands 

formed with OSPM. 
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4.2 Materials and Methods 

4.2.1 Experimental Design 

 
See section 3.2.1 

4.2.2 Time To Metamorphosis 

 
 Time to metamorphosis was defined as the number of days it took tadpoles to reach 

metamorphic climax [gosner stage 42 (Gosner, 1960)], with day zero being the day early pre-

metamorphic tadpoles were placed in the enclosures. The study was started on May 9, 2006 and 

May 11, 2007. 

4.2.3 Thyroid Hormones 

4.2.3.1 Whole-Body Thyroid Hormone Extraction 

See section 3.2.6 for details, since triglyceride and thyroid hormone extractions follow 

the same technique, initially. 

4.2.3.2 Thyroid Hormone Quantification 

 
 Thyroid hormones were quantified in an extract that was produced from single whole 

tadpoles. Commercially available competitive enzyme immunoassay kits were used for 

quantifying the hormones. Individual kits specific for Triiodothyronine (T3) and Thyroxine (T4) 

were used.  In year one, kits were obtained from MP Biomedicals, Orangeburg, NY, USA (T3 – 

07BC-1005 and T4 07BC-1007). In year two, to be consistent with another researcher 

conducting parallel research, very similar kits were acquired from BioQuant Inc., San Diego, 

CA, USA (T3 - BQ043T and T4 -BQ044T).  

4.2.4 Liver Somatic Index (LSI) 

 
 The wet weights of tadpole livers were measured at the time of necropsy. The liver 

somatic index (LSI) of each tadpole was then calculated by the following formula: 

 

                                         LSI =Liver weight / (Body weight – Liver weight)  (4.1) 
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The LSI gives a measure of each frog’s liver size in relation to its body weight.                                                      

4.2.5 Hepatic Detoxification Enzyme Activity 

4.2.5.1 Liver Microsome Production 

 
 Microsome production in this study used an adaptation of the methods described in Papp 

et al. (2005). Tadpole livers were removed and snap frozen in liquid nitrogen within five minutes 

of euthanasia, by placing tadpoles in a 500 mg/L solution of MS222 (ethyl-m-aminobenzoate 

methanesulfonate salt, MP Biomedicals, Solon, OH, USA) dissolved in water. The livers of five 

wood frog larvae from each enclosure were pooled and homogenized. If five livers were not 

available due to poor survival, as few as three livers were pooled. If fewer than five livers were 

used, this was adjusted in calculating the final the amount of resorufin formed per mg of protein 

per minute. All chemicals for preparation of buffers were acquired from Sigma Aldrich, 

(Oakville, ON, Canada). During the entire process, tools, buffers, and samples were kept cool by 

working on crushed ice. 

 
While still frozen, pooled livers forming each sample were removed from cryovials and 

placed in 2ml glass homogenization tubes (Wheaton Science Products, Millville, NJ, USA). One 

milliliter of HEPES (4-2-hydroxyethyl) -1-piperazineethanesulfonic acid) homogenization buffer 

(0.02 M HEPES: 0.15 M KCL; pH 7.5) was then pipetted into the glass tube and the sample 

homogenized by 20 – 30 up and down strokes of a hand homogenizer. The resulting homogenate 

was poured into a 36ml centrifuge tube (VWR International, Mississauga, ON, Canada) and the 

glass homogenization tube was then rinsed with homogenization buffer until all particles were 

removed. The rinsate was also added to the centrifuge tube and the final volume was made to 35 

ml with homogenization buffer. Six samples were then centrifuged (Sorvall WX90, Thermo 

Scientific, Waltham, MA, USA) for 20 minutes at 10 000 g at a temperature of 4 °C. The 

centrifuge rotor was pre-cooled in a refrigerator prior to use. After centrifugation, the supernatant 

was carefully poured into a clean centrifuge tube, preventing the transfer of fat, which formed a 

layer on the surface. Fat was removed before pouring by quickly inserting and removing a plastic 

micropipette tip, to which the fat adhered. The volume in the new tubes was again made to 35 ml 

with homogenization buffer. These samples were centrifuged for one hour at 100 000 g at 4 °C. 

After this final centrifugation, supernatants were carefully poured off and the inside of the tubes 
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were dried using tissue paper, being careful not to touch the pellet at the bottom. The resulting 

microsome pellets were then resuspended in 600 µl of buffer [0.05 M tris (2-amino-2-

hydroxymethyl-1, 3-propanediol); 1mM EDTA (ethylenediamine tetraacetic acid); 20% v/v 

glycerol)] and stored as 300 µl aliquots in cryovials at - 80°C until further analysis. 

 

4.2.5.2 Ethoxyresorufin -o-Deethylase Activity (EROD) 

  

The EROD activity was measured using an adaptation of the method published by Papp 

et al. (2005) and Gentes et al. (2006). Enzyme activity was quantified by measuring the 

production of the fluorescent compound, resorufin (Sigma Aldrich, Oakville, ON, Canada). 

Since EROD was the only enzyme being measured, the only required substrate was 7-ethoxy 

resorufin (7-ER) (Sigma Aldrich, Oakville, ON, Canada), which was prepared in methanol at a 

concentration of 207 mM and stored at -20 °C. At the time of the reaction the 207 mM 7-ER was 

diluted to 11.7 mM with phosphate buffer (sodium phosphate 0.05 M, pH 8.0). The reaction was 

carried out in a 96-well, flat bottom, microtitre plate. All samples were run in triplicate, except in 

cases of insufficient sample when duplicates were run, with a specific blank used for all cases.  

The specific blank contained all reagents except for microsomes and was used to separate 

fluorescence produced by resorufin from that of other reagents. The final volume in each well 

was 180 µl, which consisted of the following (added in the order mentioned):  for sample wells - 

40 µl phosphate buffer, 80 µl microsomes (see section 4.2.2.2), and 30 ul 7-ER working solution. 

This mixture was then incubated for ten minutes at room temperature. After incubation, 30 µl of 

NADPH (2 mg/ml in phosphate buffer) was added to start the enzymatic reaction. The reaction 

was run for 40 minutes then stopped by adding 60 µl of acetonitrile, which contained 600 µg/ml 

fluorescamine used for protein quantification. The fluorescence of the resorufin product was then 

measured by excitation at 530 nm and emission at 590 nm using a microplate fluorometer 

(Dynex Technologies, Chantilly, VA, USA). 

 

 Resorufin formation was quantified by subtracting the specific blank’s fluorescence from 

the mean of the triplicate sample. This value was then compared to a standard curve generated 

from stock resorufin salt (Sigma Aldrich, Oakville, ON, Canada) solution. The EROD enzyme 

activity was reported as the amount of resorufin formed per milligram of protein per minute. 



4.2.5.4 Total Protein Quantification 

  
Protein content of each sample was quantified using a fluorescamine method adapted 

from Kennedy and Jones (1994) and Olsgard (2007). In this method, total protein in each sample 

is determined at the same time in the same well as production of resorufin by the enzyme ethoxy 

resorufin-O-deethylase (CYP450-1A). A bovine serum albumin (BSA) standard curve was 

developed to quantify the concentration of protein in each sample well. This assay was carried 

out in a black, flat bottomed, 96-well microplates that was read using a microtitre plate 

fluorometer (Dynex Technologies, Chantilly, VA, USA).   

 

 To stop the enzyme reaction by precipitating the enzymes, 60 µl of a 0.6 mg/ml solution 

of fluorescamine in acetonitrile was added to each well. The addition of the fluorescamine 

(Sigma Aldrich, Oakville, ON, Canada) allowed for the measurement of total protein 

simultaneously with the enzyme activity. Immediately after stopping the enzyme reaction and 

measuring the EROD activity (see section 4.2.2.3), fluorescence of each sample was read at 390 

nm excitation and 460 nm emission on the previously mentioned microplate fluorometer. The 

reading of fluorescence was then compared with the BSA standard curve generated earlier and 

presented as total amount of protein per ml of microsomes. 

 

4.2.6 Statistics 

 

In year two (2007), each wetland was not compared to each of the other wetlands 

separately. Based on the knowledge that as OSPM-containing wetlands get older there is a 

reduction in toxicity, due to bioremediation, I grouped wetlands according to their age (either 

young or old) and OSPM status (OSPM or no OSPM). I assume that wetlands of the same group 

(young OSPM-containing, old OSPM-containing, young reference, old reference) have similar 

characteristics, such as concentration of NAs. This method of grouping allowed me to complete 

the two-way ANOVA described below to test the hypothesis that there will be an interaction 

between age and OSPM status of wetlands. We predict that older OSPM-containing wetlands 

will be similar to reference wetlands and much less toxic than young OSPM-containing 

wetlands. 
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Statistics were carried out using SPSS statistical software package (Version 16.0.1, SPSS 

Inc., Chicago, IL, USA). Differences were considered to be significant when p ≤ 0.05. All data 

were tested for normality and equality of variances assumptions using the Shapiro-Wilks test and 

Levene’s test, respectively. In year one, the experimental design was planned for a two-way 

ANOVA. However, due to loss of a reference site, a one-way ANOVA was completed to 

determine if there were differences in tadpole time to metamorphosis, thyroid hormone status, 

liver weight and LSI, and EROD activity, among the three remaining experimental sites. If 

assumptions of normality or homogeneity of variances were violated, data presented as 

percentages were arcsin square root transformed, and regular, numeric data were log10 

transformed. If assumptions were met after transformation, an ANOVA was performed on the 

transformed data. If assumptions could not be met the non-parametric Kruskal-Wallis test was 

performed.  In year two, if assumptions were met, a two-way ANOVA was completed on the 

same variables as in year one. Age of wetlands (young or old) and OSPM status (OSPM or no 

OSPM) of the wetlands were the two factors in the two-way ANOVA. If assumptions of 

normality and homogeneity of variances were violated the same method for transforming data as 

in year one was taken. After transformation, if assumptions were met a two-way ANOVA was 

performed. If assumptions were not met, the Scheirer-Ray-Hare extension of the Kruskal-Wallis 

[a non-parametric variation of a two-way ANOVA test (Sokal and Rohlf, 2003)], was performed 

as is in Rickwood et al. (2008). 

 

4.3 Results 

4.3.1 Year One (2006) 

4.3.1.1 Time to Metamorphosis 

 
Tadpoles raised in a young OSPM-containing site were not included in this analysis 

because they all died early in the study. Data from two of three trenches (six of nine enclosures) 

were not included in the analysis because water levels were reduced, which can cause 

metamorphosis to occur earlier than it would normally (Shi, 2000). This effect was observed in 

the two trenches with reduced water levels, with metamorphosis of tadpoles being completed at a 

much smaller than normal size soon after reduction of water levels. The tadpoles in remaining 
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trenches that were included in the analysis showed no difference in time to metamorphosis in 

year one (ANOVA, p = 0.275) ; (Figure 4.1). 

4.3.1.2 Whole-body Thyroid Hormone Concentration 

 
Only triiodothyronine (T3) was quantified in the entire bodies of tadpoles because sample 

size was insufficient. Whole-body T3 concentrations in R. sylvatica tadpole raised in the OSPM-

containing wetland were not significantly different from those raised in the reference wetland 

(ANOVA, p = 0.310); (Figure 4.2). 

4.3.1.3 Resorufin Production 

 
The production of resorufin (EROD assay) was not complete due to lack of liver tissue. 

 

4.3.2 Year Two (2007) 

4.3.2.1 Time to Metamorphosis 

 
Tadpoles raised in young OSPM-containing sites took a significantly longer time to 

complete metamorphosis than tadpoles in any of the other classes of wetlands. A significant 

difference due to an interaction between treatment effects, as well as the treatment effect of age 

alone was detected, but not due to OSPM status alone (two-way ANOVA, interaction p < 0.001, 

age p < 0.001, OSPM status p = 0.566); (Figure 4.3). 

 

4.3.2.2 Whole-body Thyroid Hormone Concentration 

 
 Similar to year one, whole-body T3 concentrations in tadpoles did not differ among 

wetlands. No significant difference due to an interaction between treatment effects or treatment 

effects alone was detected (two-way ANOVA, interaction p = 0.571, age p = 0.133, OSPM status 

p = 0.474); (Figure 4.4). However, in year two, tadpole whole-body concentrations of T4 did 

differ among wetlands. A significant difference due to an interaction between treatment effects 

was detected, but not treatment effects alone (two-way ANOVA, interaction p = 0.011, age p = 

0.782, OSPM status p = 0.281); (Figure 4.5). Tadpoles raised in young OSPM-containing 

wetlands had the highest concentration of T4. The lowest concentration of T4 was found in 

tadpoles raised in young reference sites. Also for thyroid hormone ratio (T3:T4), a significant



 

 
Figure 4.1 Year one mean time until metamorphosis (d ± S.E.) of Rana sylvatica tadpoles raised 
in a reference wetland and an old oil sands process-affected material (OSPM)-containing 
wetland. The number of enclosures per type of wetland is shown in parentheses (n), differences 
were considered significant when  p < 0.05. No significant differences were detected (ANOVA, 
p = 0.275). 
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Figure 4.2 Year one mean whole-body triiodothyronine (T3) concentration (ng/g ± S.E.) of Rana 
sylvatica tadpoles raised in a reference wetland and an old oil sands process-affected material 
(OSPM)-containing wetland. The number of enclosures per type of wetland is shown in 
parentheses (n), differences were considered significant when  p < 0.05. No significant 
differences were detected (ANOVA, p = 0.310). 
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difference due to an interaction between treatment effects was detected, but not treatment effects 

alone (two-way ANOVA, interaction p = 0.006, age p = 0.314, OSPM status p = 0.064); (Figure 

4.6). 

 

4.3.2.3 Liver Weight and Liver Somatic Index (LSI) 

 
As in year one, there was no difference in the weight of the livers of tadpoles that were 

raised in different classes of wetlands. No significant differences due to an interaction between 

treatment effects or treatment effects alone were detected (two-way ANOVA, interaction p = 

0.794, age p = 0.592, OSPM status p = 0.233); (Figure 4.7). For LSI, a significant difference due 

to an interaction between treatment effects, as well as the treatment effect of OSPM status alone, 

was detected, but not due to age alone (two-way ANOVA, interaction p < 0.001, age p = 0.448, 

OSPM status p < 0.001); (Figure 4.8). 

 

4.3.2.4 Resorufin Production (EROD activity) 

 

The production of resorufin, and therefore EROD activity, was much higher in young 

OSPM-containing wetlands when compared to all other classes of wetlands. A significant 

difference due to an interaction between treatment effects was detected, but not treatment effects 

alone (two-way ANOVA, interaction p = 0.002, age p = 0.126, OSPM status p = 0.437); (Figure 

4.9).  
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Figure 4.3 Year two mean time to metamorphosis (d ± S.E.) of Rana sylvatica tadpoles raised in 
different wetlands grouped by the factors of age (young or old) and oil sand process-affected 
material (OSPM) status (OSPM containing or reference). The number of enclosures per type of 
wetland is shown in parentheses (n), differences were considered significant when  p < 0.05. A 
significant difference due to an interaction between treatment effects, as well as the treatment 
effect of age alone was detected, but not due to OSPM status alone (two-way ANOVA, 
interaction p < 0.001, age p < 0.001, OSPM status p = 0.566). 
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Figure 4.4 Year two mean whole-body triiodothyronine (T3) (ng/g ± S.E.) concentration of 
Rana sylvatica tadpoles raised in different wetlands grouped by the factors of age (young or old) 
and oil sand process-affected material (OSPM) status (OSPM containing or reference). The 
number of enclosures per type of wetland is shown in parentheses (n), differences were 
considered significant when  p < 0.05. No significant difference due to an interaction between 
treatment effects or  treatment effects alone was detected (two-way ANOVA, interaction p = 
0.571, age p = 0.133, OSPM status p = 0.474). 
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Figure 4.5 Year two mean whole-body thyroxine (T4) concentration (ug/dL ± S.E.) of Rana 
sylvatica tadpoles raised in different wetlands grouped by the factors of age (young or old) and 
oil sand process-affected material (OSPM) status (OSPM containing or reference). The number 
of enclosures per type of wetland is shown in parentheses (n), differences were considered 
significant when p < 0.05. A significant difference due to an interaction between treatment 
effects was detected, but not treatment effects alone (two-way ANOVA, interaction p = 0.011, 
age p = 0.782, OSPM status p = 0.281). 
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Figure 4.6 Year two mean thyroid hormone ratio (T3/T4 ± S.E.) of Rana sylvatica tadpoles 
raised in different wetlands grouped by the factors of age (young or old) and oil sand process-
affected material (OSPM) status (OSPM containing or reference). The number of enclosures per 
type of wetland is shown in parentheses (n), differences were considered significant when  p < 
0.05. A significant difference due to an interaction between treatment effects was detected, but 
not treatment effects alone (two-way ANOVA, interaction p = 0.006, age p = 0.314, OSPM 
status p = 0.064). 
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Figure 4.7 Year two mean liver weight (g ± S.E.) of Rana sylvatica tadpoles raised in different 
wetlands grouped by the factors of age (young or old) and oil sand process-affected material 
(OSPM) status (OSPM containing or reference). The number of enclosures per type of wetland is 
shown in parentheses (n), differences were considered significant when  p < 0.05. No significant 
difference due to an interaction between treatment effects or  treatment effects alone were 
detected (two-way ANOVA, interaction p = 0.794, age p = 0.592, OSPM status p = 0.233). 
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Figure 4.8 Year two mean liver somatic index (LSI) (LSI ± S.E.) of Rana sylvatica tadpoles 
raised in different wetlands grouped by the factors of age (young or old) and oil sand process-
affected material (OSPM) status (OSPM containing or reference). The number of enclosures per 
type of wetland is shown in parentheses (n), differences were considered significant when  p < 
0.05. A significant difference due to an interaction between treatment effects, as well as the 
treatment effect of OSPM status alone was detected, but not due to age alone (two-way ANOVA, 
interaction p < 0.001, age p = 0.448, OSPM status p < 0.001). 
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Figure 4.9 Year two mean ethoxyresorufin-o-dealkylase (EROD) activity (pmol/min/mg ± S.E) 
in Rana sylvatica tadpoles raised in different wetlands grouped by the factors of age (young or 
old) and oil sand process-affected material (OSPM) status (OSPM containing or reference). The 
number of enclosures per type of wetland is shown in parentheses (n), differences were 
considered significant when  p < 0.05. A significant difference due to an interaction between 
treatment effects was detected, but not treatment effects alone (two-way ANOVA, interaction p 
= 0.002, age p = 0.126, OSPM status p = 0.437). 
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4.4 Discussion 

 

4.4.1 Time to Metamorphosis 

 
 In year two the results of this study were similar to those of Pollet and Bendell-Young 

(2000). Tadpoles (Bufo boreas in the case of Pollet and Bendell-Young) raised in reference 

wetlands completed metamorphosis faster than those raised in wetlands containing by OSPM.  

However, the present study classified wetlands by age (young or old) and OSPM status (OSPM-

containing or reference). Only tadpoles raised in young, assumed to be more toxic, OSPM-

containing wetlands showed a delay in metamorphosis. This is consistent with the idea that as 

OSPM-affected wetlands age, toxicity of the wetland is reduced due to natural biochemical 

processes such as biodegradation (Lai et al., 1996) and photolysis of contaminants such as 

naphthenic acids and PAHs. This delay indicates that increased exposure to contaminants in 

young OSPM-containing wetlands causes a physiological stress in tadpoles that delays 

metamorphosis. Due to the complex mixture of contaminants it is not possible to identify any 

specific contaminant as the cause of the delayed metamorphosis.  

 
Late metamorphosis negatively affects amphibians. Tadpoles completing metamorphosis 

later have decreased survival when they reach the young adult stage (Berven, 1990; Morey and 

Reznick, 2001). As well, tadpoles that complete metamorphosis earlier have the advantage of 

being larger once they reached the juvenile frog stage and are able to reproduce earlier (Berven, 

1990; Pollet and Bendell-Young, 2000).  

 
 For amphibians such as R. sylvatica to be part of a functioning ecosystem, they must 

reproduce successfully, which entails completion of metamorphosis and survival until adulthood.  

This is compromised in R. sylvatica from young OSPM-containing wetlands, which ultimately 

would lead to poor establishment of local amphibian populations.  

 

4.4.2 Thyroid Hormone Status 

 
Thyroid hormones (THs) have many functions in many different species such as 

regulation of growth, development, and metabolism (Brent, 1994). Thyroid hormones are also 
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the main governing factor in amphibian metamorphosis (Shi, 2000; Fort et al., 2007). These 

compounds have complex functions and affect multiple events during metamorphosis such as tail 

resorption and forelimb development. Without THs, metamorphosis can become arrested.  

Interestingly, this arrested metamorphosis can be completed if THs are provided at a later time 

(Rot-Nikcevic and Wassersug, 2004). The current study found no differences in T3 

concentrations. T4 concentrations were different among young OSPM wetlands, which had 

higher concentrations than young reference wetlands. Overall this difference was very small and 

difficult to explain. However, the ratio of T3:T4, which gives a measure of the rate of 

deiodination of T4 to T3 (Picard-Aitken et al., 2007), was the lowest in tadpoles raised in young 

OSPM-containing wetlands. These alterations in thyroid status of R. sylvatica I believe to be 

responsible for the delayed/arrested metamorphosis in tadpoles living in young OSPM-

containing wetlands, because of the strong link between THs and metamorphosis I have 

discussed. As well, alterations in thyroid status may also have other, unmeasured effects on 

amphibian metabolism, since THs control basal metabolic rate along with other metabolic 

processes. 

 

4.4.3 Hepatic Detoxification Enzyme [7-ethoxyresorufin dealkylase (EROD)] Activity 

 
The activity of EROD is a commonly used biomarker of exposure to a variety of 

industrial contaminants (Havelkova et al., 2007). The activity of the cytochrome P450 1A (CYP 

450) enzyme family is linked to the enzyme 7-ethoxyresorufin-o-dealkylase (EROD). Exposure 

of test organisms to contaminants often results in an increased EROD enzyme activity. Rogers 

(2003) showed that naphthenic acids, which are considered to be one of the major toxic 

components of OSPM, may induce the EROD enzyme. Also, OSPM has been shown to contain 

PAHs (Madill et al. 2001) that are known to induce CYP 450 enzymes and EROD activity (van 

der Oost et al., 2003). Therefore, a difference in EROD activity of tadpoles among wetlands may 

indicate increased exposure of our test organisms to contaminants, which would affect their 

physiology and ultimately their ability to function in a particular wetland. 

 
This study found the highest EROD activity in tadpoles caged in young OSPM-

containing wetlands. This activity was significantly higher than old OSPM-containing sites as 
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well as young reference sites. These results are consistent with higher levels of contaminants in 

the young OSPM wetlands. These findings also agree with water chemistry data of current 

naphthenic acid concentrations (Appendix 2) plus those previously reported, as well as higher 

PAH concentrations (Clemente and Fedorak, 2005; Gentes, 2006; Madill et al. 2001). These 

results are similar to those of Gauthier et al. (2004), who found that amphibians exposed to 

contaminated water exhibited increased EROD activity when compared to control sites. Our 

overall EROD activity results were lower than those found by Gauthier [11.7 pmol/min/mg 

protein (control) versus 77.5 pmol/min/mg protein (exposure)]. This may be due to the difference 

in species and their size but it may also be a result of sample storage. There are conflicting 

reports noted in a review published by Whyte et al. (2000) that state that sample EROD activity 

can be stable for up to 24 months, while others have stated that even at -80 °C a reduction in 

activity by 50% can occur after seven days. Livers in this study were stored at -80 °C for a period 

of approximately 4 months. 

 

When tadpoles caged in OSPM-containing wetlands were compared to those in old 

reference sites their EROD activity was higher, but it was not statistically different. This result 

may be explained by the variation caused by exposure to different environmental factors or 

differences in physiological factors among tadpoles (Goksoyr and Forlin, 1992; Havelkova et al., 

2007) and not an increased amount of contaminants in the reference wetland. Another possible 

explanation may be that PAHs, which are known EROD inducers, occur naturally in the soil 

throughout the oil sand region (FTFC, 1995). This could have exposed tadpoles in all wetlands to 

PAHs of varying concentrations. 

 

4.5 Conclusions 

 
During the 2007 field study, metamorphosis was severely delayed, thyroid status was 

altered, and EROD enzymes were induced in tadpoles raised in young constructed wetlands 

formed with OSPM. Tadpoles caged in older OSPM-containing wetlands were similar to both 

young and old reference wetlands in terms of time to completion of metamorphosis, thyroid 

status, and EROD activity. These findings were in agreement with the findings of chapter 3, 

which found decreased survival in young OSPM-containing wetlands but not in old OSPM-
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affected wetlands. These results suggest that as wetlands age they become less toxic, most likely 

due to a reduction in contaminant levels. This study shows that metamorphosis of tadpoles is 

delayed or completely arrested with exposure to OSPM contaminants. This experiment also 

indicates the wet landscape approach to reclamation has the potential to support populations of 

native amphibians, but only if the wetlands are sufficiently aged (7 years or more).  



 

 

 

 

 

CHAPTER 5: GENERAL DISCUSSION 

 
Currently, there are three oil sands companies producing bitumen by surface mining 

methods from deposits near Fort McMurray, Alberta, Canada. The number of companies 

involved in the mining of oil sands is increasing rapidly and so is the output of oil. This increase 

in the oil production also increases the amount of problematic by-products, including tailings 

materials. A major concern with the large amount of tailings is their toxicity. Adverse biological 

effects of solid and liquid tailings are believed to be associated with increased pH, increased 

salinity, PAHs from unrecovered bitumen, and naphthenic acids. Naphthenic acids are 

considered to be the greatest source of toxicity to wildlife. A proposed method for reclamation of 

liquid oil sands tailings material is the wet landscape approach in which 20 to 40% of the final 

reclamation area will be comprised of wetlands. These may include small, shallow wetlands and 

large lakes formed in mined-out pits. Before such a method can be implemented, researchers are 

trying to determine whether or not wetlands created with oil sands process-affected material 

(OSPM) can, with time, support a viable ecosystem. During early research into the use of OSPM 

in wetland construction, a number of wetlands were built to serve as real-world working models 

for use in experiments. This study examined the ability of these created wetlands to support a 

viable native ecosystem by using Rana sylvatica larvae as species that is representative of other 

aquatic life and will show biological responses to toxicants (bioindicator).  

 

Bioindicators have been used extensively in studies on oil sands impact and reclamation 

research. To date, organisms from different trophic levels have been investigated, notably plants 

(Crowe et al., 2001), phytoplankton (Leung et al., 2003), birds (Gentes et al., 2007; Gurney et al., 

2005), and fish (Nero et al., 2006). Amphibians, which represent a native, upper trophic level, 

aquatic and terrestrial vertebrate, are expected to inhabit reclaimed oil sands mining and tailings 

storage areas after reclamation. Amphibians are a unique and valuable study organism because 

 73



they live a fully aquatic existence during their larval stage, but live a mostly terrestrial life as 

adults. The larval stage was chosen for this study due to its suitability for representing aquatic 

life (Cooke, 1981). The main goal of the third chapter of this thesis was to investigate if 

amphibians that are native to the oil sands region could survive and grow in wetlands formed 

with OSPM. The fourth chapter investigated the metamorphosis and thyroid hormone status of 

Rana sylvatica larvae (Degitz et al., 2005; Opitz et al., 2005; Zhang et al., 2006; Shi, 2000). The 

relationship between metamorphosis and thyroid hormone status has been previously used as an 

indicator of exposure to environmental toxicants (Fort et al., 2007; Zhang et al., 2006). Due to 

the well-studied process of metamorphosis and its dependence on thyroid hormone, this work, 

along with several others, have examined metamorphosis in amphibians for detection of 

endocrine and thyroid disrupting compounds (Degitz et al., 2005; Opitz et al., 2005; OECD, 

2008). As well, the hepatic detoxification enzyme (CYP450 1A) activity in Rana sylvatica was 

measured as a biomarker of exposure to contaminants.  

 
The first field season (2006) had several problems that interfered with obtaining 

sufficient samples for all intended measurements, assays, and statistical analyses. Only three of 

nine enclosures in the older OSPM-containing wetland group yielded useful samples. As well, 

the only data obtained from enclosures in the young OSPM-containing wetland was survival. 

These problems combined with the death of all tadpoles in the young OSPM-containing site 

reduced the number of tadpoles available for measurements and additional analysis. In spite of 

the limited numbers of animals available for the laboratory assays, survival data did show 

interesting results that supported the hypothesis of this study that the youngest OSPM-containing 

wetlands, which have the highest levels of toxic components, would show the highest mortality 

and other detrimental effects when compared to older OSPM-containing wetlands. The highest 

mortality was among tadpoles raised in the young OSPM-containing wetland (4m CT). In 2006, 

100% of the tadpoles in this wetland died within two weeks of the start of the study. This was 

presumably due to high concentrations of PAHs, naphthenic acids, high salinity, or a 

combination of possible contaminants (Table 3.3). There was no difference in survival between 

the other two wetlands (one old OSPM site and one reference). This also supported the 

hypothesis that as wetlands containing OSPM age, they become less toxic.  Similar results were 

obtained in 2007. The highest mortality occurred in all of the youngest OSPM-containing sites. 
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In 2007, the wetlands were grouped by their age and OSPM status. 4m CT again showed very 

high mortality but it was not 100%. It should be noted that in young OSPM-containing wetlands 

tadpoles either died quite quickly or survived and grew very large, as this was an unexpected 

result. The tadpoles that did survive seemed less susceptible or better able to deal with 

contaminants. Overall, these data imply that young OSPM-containing wetlands are not ideal and 

cannot be considered adequately reclaimed until higher viability of tadpoles can be assured, 

especially since this species is a logical and relevant sentinel of ecological sustainability. On the 

other hand, the 2007 data suggest that if OSPM-containing wetlands are allowed to age (> 7 

years) the mortality rates of R. sylvatica are similar to those in reference wetlands. The findings 

of this study support those of Gentes (2006), who found that it may take 10 years for wetlands 

formed with OSPM to become suitable for bird populations.  

 
In 2007, surviving tadpoles in some of the young OSPM sites were significantly larger 

than those in all other wetlands in 2007. This is not likely directly linked to exposure to OSPM, 

but rather is a result of lengthened growth period caused either by a longer time to 

metamorphosis, or reduced competition from very low animal densities within enclosures caused 

by the high mortality in young OSPM-containing wetlands. Since food was provided in each of 

the enclosures it is unlikely that food quality or composition caused size related differences. It 

has been shown on many occasions that tadpoles can keep growing even if they do not complete 

metamorphosis (Allen, 1929). Lengthened growth period is a possible cause of increased tadpole 

size in young OSPM wetlands since more time and energy could be allocated to growth, rather 

than to metamorphosis. A second possible cause is less social competition and crowding in 

enclosures in young OSPM-containing wetlands, since the high mortality rate left fewer tadpoles 

in these enclosures. Tadpole size has been correlated with tadpole density in wetlands (Berven, 

1990; Eaton et al., 2005).  

 
Metamorphosis is a period of rapid development and change in all amphibian tissues 

(Degitz et al., 2005). The time it takes amphibians to complete metamorphosis is a commonly 

used endpoint in amphibian ecotoxicology because it is a readily visible change that is altered by 

exposure to chemicals and other disturbances in habitat. Decreasing or lengthening the time to 

metamorphosis can adversely affect tadpole and juvenile frog survival (Berven, 1990). The 

problems of low water levels and evaporation in some wetlands during the first season of this 
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study caused apparent premature metamorphosis at a very small body size in the old OSPM and 

reference wetlands. Tadpoles in OSPM-containing wetlands were not included in the analysis 

due to 100% mortality before metamorphosis was complete. In the remaining wetlands no 

differences in time to metamorphosis were noted. In contrast, during year two of this study there 

was a significant increase in the time to metamorphosis in all exposure groups. Tadpoles caged 

in young OSPM wetlands experienced a lengthened or complete arresting of metamorphosis. 

Metamorphosis of tadpoles in old OSPM wetlands, and both young and old reference wetlands, 

was completed much sooner (> 20 days) than those of young OSPM-containing wetlands. These 

data provide more evidence that young OSPM wetlands are toxic to amphibians but this toxicity 

appears to decrease as the OSPM wetlands age. 

 
In larval amphibians, such as Rana sylvatica tadpoles, thyroid hormones (THs) control 

metamorphosis (Shi, 2000; Fort et al., 2007; Tata, 2006). The thyroid hormone system has also 

been shown to be a possible target for certain pollutants, which could alter thyroid hormone 

function and thus metamorphosis (Brown et al., 2004; Degitz et al., 2005; Helbing et al., 2006; 

Opitz et al., 2005). Therefore, THs in developing amphibians is a logical endpoint to measure. 

Although significant differences in metamorphosis were found between treatment types, there 

were no differences in triiodothyronine (T3) in either year. In year 2 there was a difference in T4 

concentrations, but only between tadpoles in young OSPM and young reference wetlands. This 

result is not readily explainable and is not consistent with the delayed metamorphosis in tadpoles 

from young OSPM wetlands. A difference in the ratio of T3: T4 was noted between tadpoles 

from young OSPM and young reference wetlands and may signify a change in the deiodination 

of T4 to T3 (Picard-Aitken et al., 2007). This combined with the fact that the slowest 

metamorphosis was found in the same wetland groups suggests that the delays noted in time to 

metamorphosis are caused by interference with THs. These results suggest that thyroid hormones 

in wood frogs need further study to shed light on possible mechanisms triggering alterations in 

timing to metamorphosis. A detailed evaluation of the thyroid system including the thyroid 

glands and deiodinase enzymes that produce the T3, the biologically active form of the hormone, 

plus thyroid hormone receptors should also be studied to give a more complete picture of the 

mechanisms involved in the endocrine disruption that was evident in exposed animals (Fort, 

2007). 
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Lipids such as triglycerides are the main form of energy storage in many species and 

have been extensively measured in fish (Adams, 1999) and mammals. Environmental stresses, 

such as exposure to contaminants, have been shown to alter stores of lipids in fish (Adams, 1999) 

Studies have shown that amphibians and fish with lower energy stores have a poorer chance at 

survival and successful overwintering (Biro et al., 2004; Scott et al., 2007). This study found that 

tadpoles from old reference wetlands, the ideal reference sites, had the greatest stores of 

triglycerides followed by young OSPM wetlands, the most challenging sites regarding toxic 

challenge. Curiously, the lowest stores were found in young reference sites and old OSPM sites. 

The low energy stores in tadpoles on these latter sites may be explained by the quicker 

metamorphosis, which likely means energy is being used for metamorphosis and not available 

for storage. Metamorphosis could also lead to altered energy stores because it is a time of high 

energy demand and tadpoles do not eat during this transition period (Scott et al., 2007). Another 

explanation could be that the high densities of tadpoles in the young reference site and old 

OSPM site were the cause of lower lipid stores. However, the low survival of tadpoles in young 

OSPM wetlands probably overwhelmed more subtle effects caused by exposure to contaminants 

and the surviving tadpoles would be those least sensitive to toxicants. As well, the delayed 

metamorphosis and continuous feeding of tadpoles in young OSPM wetlands would have 

allowed more time for accumulation of energy stores. Previous studies have stated that exposure 

of fish to contaminants such as metals (Levesque et al., 2002) could deplete energy stores. A 

reduction in triglycerides was also seen in crabs as a result of exposure to elevated ammonia 

levels (Hong et al., 2007), so it may be inferred that OSPM may cause alterations in energy 

stores however, the data from this study did not support this. Differences in triglyceride 

concentrations seemed not to be caused by tadpoles spending more energy detoxifying 

contaminants, which is known to happen; but instead energy stores seem to be altered by indirect 

effects such as low densities (high mortality) or lengthened time to metamorphosis caused by 

exposure to OSPM. If energy stores in R. sylvatica were lowered due to exposure to OSPM, they 

may have compromised fitness and survival. This study could not conclude this because, like 

other assays, effects may have been masked due to very low survival in the young OSPM-

containing wetlands.  
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The activity of the enzyme 7-ethoxyresorufin dealkylase has been used extensively as a 

biomarker of exposure to environmental pollutants including oil sands related contaminants. 

Previous research in birds (Gentes, 2006; Smits et al., 2000) and in mammals (Rogers, 2003) has 

shown that exposure to tailings and naphthenic acids can stimulate EROD activity. This study 

found that EROD activity was highest in young OSPM wetlands as predicted. This shows that 

amphibians exposed to young OSPM wetlands, which have higher levels of naphthenic acids and 

PAHs, have to expend more resources detoxifying contaminants than amphibians raised in older, 

presumably ‘cleaner’ reclaimed wetlands. This leaves fewer metabolic resources for growth, 

development, energy storage, and other bodily functions. On another note, other studies such as 

those quoted in Rogers (2003) have reported very large increases in EROD activity with 

exposure to some known EROD inducers. This could mean that toxicants found in OSPM are not 

great inducers of EROD activity, which could be an explanation for the low EROD activities. 

More likely, any larger induction of EROD by exposure to OSPM were masked by the large 

scale mortality of tadpoles in young OSPM wetlands, which we hypothesized, would cause the 

most EROD induction because they contain the highest level of potential EROD inducing 

contaminants. Another possible reason for not seeing larger differences in EROD activity among 

tadpoles in young OSPM wetlands and other wetlands is the fact that bitumen is found naturally 

in soils throughout the oil sands region. Bitumen would be a source of EROD inducing PAHs 

that would likely be present at all sites. More investigation into the effects of OSPM and known 

toxic components such as naphthenic acids on EROD induction should be conducted as it may 

prove to be a useful biomarker in oil sands research. 

 
CONCLUSIONS 

 
Over the duration of this study many biological endpoints related to growth, 

development, and future fitness of population stability were used as tools to asses the health of 

amphibians, which are expected to inhabit reclaimed oil sands mining areas. Comparisons were 

made between reference wetlands and OSPM-containing wetlands of different ages (4 total 

classes). This research has shown that young OSPM-containing wetlands will not support 

sustainable amphibian life due to acute toxicity to tadpoles, while old OSPM-containing 

wetlands can support amphibian survival similar to reference wetlands. Tadpoles raised in young 

OSPM-containing wetlands had delayed metamorphosis, increased liver EROD activity, and 
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altered thyroid status (lower T3:T4 ratio). The larger growth in tadpoles from young OSPM-

containing wetlands and triglyceride differences were likely due to differences in tadpole density 

due to lower survival caused by contaminant exposure in young OSPM-containing wetlands. 

From this research it is concluded that the use of the wet landscape approach to reclamation will 

be able to support populations of indigenous amphibians such as Rana sylvatica, but only after 

wetlands have matured, so biotic and abiotic processes can reduce the compounds responsible for 

acute toxicity. This study confirms that toxicity of OSPM is decreasing over time. However, 

more work needs to be completed to further the knowledge of how well amphibians will perform 

in wetlands formed with old OSPM, as well as more investigation into how reclaimed wetlands 

will perform ecologically. If implementation of this reclamation method does occur on a large 

scale, an ecological monitoring program should be established for amphibians because 

amphibians are integral to a functioning ecosystem in both aquatic and terrestrial environments. 

They could also continue to serve as an important monitoring tool for ongoing reclamation 

efforts.  

 

Currently, the only toxicological studies on amphibians are based on larval amphibians 

up to the completion of metamorphosis. Further in-situ studies on amphibians must be completed 

to gain a better understanding of how different life stages of amphibians such as Rana sylvatica 

will perform in reclaimed areas on the oil sands. Included should be health and reproductive 

studies on adult amphibians and the hatchability of their eggs. Clearly these two phases are 

critical to population stability (Berven, 1990). Harris et al. (2000) have shown that amphibians at 

various stages of development are differentially sensitive to toxicants. Also, more species of 

amphibians must be investigated since the previous study by Pollet and Bendell-Young (2000) 

has shown differences in biological response of different amphibian species (R. sylvatica and B. 

boreas) to OSPM. Similarly, other researchers have noted strong species differences among 

amphibians exposed to contaminants in the environment. Harris et al. (2000) noted differences in 

the sensitivities of the frog R. pipiens and B. americanus to pesticides, while Snodgrass et al. 

(2004) found that R. clamitans showed more toxic responses to coal combustion wastes than R. 

sylvatica. Although it cannot completely replace a well-controlled laboratory experiment for 

reducing external variation or a field study for dealing with the most realistic environmental 
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variables (Harris et al., 2001), this study is another example of how caging tadpoles can be a 

useful technique for studying environmental contamination.  
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